Акселерометры для измерения скорости

Датчики ускорения (акселерометры) 200

Датчики ускорения (акселерометры) – приборы, предназначенные для измерения проекции ускорения движущегося объекта (разность истинного и гравитационного ускорения). Акселерометры представляют собой чувствительные элементы, отклонение от первоначального положения которых и является величиной ускорения.

Акселерометры бывают одно-, двух- и трёхкомпонентными. Они измеряют ускорение соответственно по одной, двум и трём осям.

Некоторые модели обладают встроенной системой сбора и обработки информации, что позволяет создать завершённую систему для измерения ускорения.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Ижевск, Казань, Калуга, Кемерово, Киров, Краснодар, Красноярск, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Датчики ускорения (акселерометры)» вы можете купить оптом и в розницу.

Источник

Как правильно выбрать акселерометр и датчик ускорения

Нужен акселерометр? Столкнувшись с разнообразием технологий, формы, размера, диапазона измерений, нововведений даже самые опытные инженеры могут столкнуться с проблемой выбора правильной модели. Надеемся, что данная статья поможет быстрее сориентироваться в широкой номенклатуре акселерометров.

Принцип измерений

Первый шаг к правильному выбору акселерометра – это определение наиболее подходящего параметра измерений. Сегодня используются три технологии построения акселерометра:
— пьезоэлектрические акселерометры – самый распространенный на сегодняшний день вид акселерометров, которые широко используются для решения задач тестирования и измерений. Такие акселерометры имеют очень широкий частотный диапазон (от нескольких Гц до 30 кГц) и диапазон чувствительности, а также выпускаются в различных размерах и формах. Выходной сигнал пьезоэлектрических акселерометров может быть зарядовым (Кл) или по напряжению. Датчики могут использоваться для измерений как удара, так и вибрации.
— пьезорезистивные акселерометры обычно имеют малый диапазон чувствительности, поэтому они больше подходят для детектирования ударов, чем определения вибрации. Еще одна область их применения – испытания на безопасность при столкновении. В большинстве своем пьезорезистивные акселерометры отличаются широким диапазоном частот (от нескольких сотен Гц до 130 кГц и более), при этом частотная характеристика может доходить до 0 Гц (т.н. DC датчики) или оставаться неизменной, что позволяет измерять сигналы большой продолжительности.
— акселерометры на переменных конденсаторах относятся к компонентам новейших технологий. Как и пьезорезистивные акселерометры, они имеют DC ответ. Такие акселерометры отличаются высокой чувствительностью, узкой полосой пропускания (от 15 до 3000 Гц) и отличной температурной стабильностью. Погрешность чувствительности в полном температурной диапазоне до 180°C не превышает 1.5 %. Акселерометры на переменных конденсаторах используются для измерений низкочастотной вибрации, движения и фиксированного ускорения.

Измеряемые параметры

Схематично, параметры, измеряемые акселерометрами, можно сгруппировать в следующие классы:

  • измерение вибрации: объект вибрирует, если он производит колебательные движения относительно положения равновесия. Вибрацию измеряют в транспортной и аэрокосмической промышленности, а также на промышленном производстве.
  • измерение ударных ускорений: внезапное возбуждение структуры, создающее резонанс. Ударный импульс может создаваться взрывом, ударом молотка по предмету или в результате столкновения с другим объектом.
  • измерение движения: медленное перемещение со скоростью от доли секунды до нескольких минут, например, перемещение руки робота или подвеска автомобиля.
  • сейсмоисследования: измерения малых перемещений и низкочастотной вибрации. Такие измерения требуют специализированных малощумящих акселерометров с высокой разрешающей способностью. Акселерометры для сейсмоисследований контролируют движения мостов, полов, а также определяют землетрясения.

Общие понятия

Перед обсуждением технологии и особенностей применения, необходимо сделать несколько общих замечаний.
Частотная характеристика – это зависимость электрического выходного сигнала акселерометра от внешнего механического воздействия в частотном диапазоне с фиксированной амплитудой. Это один из основных параметров, от которого зависит выбор того или иного компонента. Диапазон частот обычно определяется серией экспериментов и указывается в спецификации. Обычно этот параметр указывается с точностью ±5% от опорной частоты (обычно 100 Гц).

Многие компоненты специфицированы на ±1 дБ или ±3 дБ. Эти значения указывают на точность акселерометра в заданном частотном диапазоне. Многие data sheet содержат графики типичной АЧХ, которые иллюстрируют флуктуацию точности компонента в различных частотных диапазонах.

Другой важный параметр акселерометра – число осей измерения. Сегодня выпускаются компоненты с одной и тремя измерительными осями. Еще одна возможность построения сложной системы – это организация трех акселерометров в один измерительный блок.

Вибрация

Лучший выбор для измерения вибрации – это пьезоэлектрические акселерометры, благодаря их широкой частотной характеристике, хорошей чувствительности и высокой разрешающей способности. В зависимости от типа выходного сигнала они могут быть с зарядовым выходом и с выходом по напряжению (IEPE).

В последнее время широко используются акселерометры с вольтовым выходным сигналом, поскольку они удобны в применении. Несмотря на разнообразие торговых марок и модификаций, все производители компонентов этой группы придерживаются единого псевдо-стандарта, поэтому легко заменяемы между собой. Обычно такие акселерометры имеют в своей структуре усилитель заряда, поэтому не требуют дополнительных внешних компонентов. Всё, что нужно для подключения акселерометра, — это источник постоянного тока. Таким образом, для измерения вибраций в известном диапазоне и в пределах температурной нормы -55…125°C (до 175°C для высокотемпературных моделей) рекомендуется использовать пьезоэлектрические акселерометры с выходным сигналом по напряжению.

Преимущества акселерометров с зарядовым выходом проявляются в возможности работы при высоких температурах и в широком диапазоне амплитуды, который определяется настройками усилителя заряда (заметим, что акселерометры по напряжению имеют фиксированный диапазон амплитуды). Типичный рабочий диапазон температур составляет -55…288°C, а специализированные компоненты могут работать в диапазоне -269…760°C.

Однако в отличие от IEPE акселерометров, емкостные датчики требуют применения специальных малошумящих кабелей, цена которых значительно превышает цену на стандартные коаксиальные кабели. Для подключения датчиков также потребуются усилители заряда и линейные конвертеры. Подводя итоги, можно придти к заключению, что емкостные акселерометры предпочтительны для высокотемпературных измерений неизвестных заранее ускорений.

В приложениях, где требуется измерять вибрацию очень малой частоты, рекомендуется использовать акселерометры на переменных конденсаторах (VC). Их частотная характеристика составляет от 0 Гц до 1 кГц, в зависимости от требуемой чувствительности. При проведении измерений низкочастотной вибрации VC акселерометр с частотной характеристикой 0-15 Гц будет иметь чувствительность 1 В/г. Такие датчики незаменимы в электрогидравлических шейкерах, в автомобилестроении, в тестовых испытаниях машин и конструкций, в системах подвески, железнодорожном транспорте.

Ударные ускорения

Для измерений ударных ускорений используются две технологии, модельный ряд представлен компонентами на различный уровень силы удара и с различными выходными характеристиками. Выбор акселерометра для ударных ускорений, в первую очередь, зависит от ожидаемого уровня ударного ускорения.

  • Низкий уровень 5000 г, датчик на расстоянии менее 1 метра от точки удара

Для измерения малых ударных ускорений можно использовать акселерометры общего применения. Акселерометр должен иметь линейный диапазон до 500 г и ударопрочность 500 г. Обычно для этого используются датчики с выходным сигналом по напряжению, поскольку они не чувствительны к кабельным вибрациям. Для аттенюации резонанса рекомендуется использовать усилитель с фильтром нижних частот.

Для тестовых испытаний машин на безопасность используются пьезорезистивные акселерометры. Для измерений ударов в дальней зоне применяются специализированные акселерометры со встроенным фильтром и сдвиговой модой. Электронный фильтр уменьшает собственную резонансную частоту акселерометра для предотвращения перегрузки оборудования.

Акселерометры для измерений в ближней зоне имеют рабочий диапазон до 20,000 г. Здесь выбор зависит от специфики проводимого теста, поэтому используются как пьезоэлектрические, так и пьезорезистивные датчики. Обычно такие приборы имеют встроенный механический фильтр.

Также как и при измерении вибрации, частотная характеристика является важнейшим параметром датчиков ударного ускорения. Желательно, чтобы такие датчики имеют широкий диапазон частот (около 10 кГц).

Измерение движения, фиксированного ускорения и низкочастотной вибрации

Для таких целей наиболее подходящим выбором станут акселерометры с переменной емкостью. Они позволяют измерять медленные изменения ускорения и низкочастотную вибрацию, при этом уровень их выходного сигнала достаточно высок. Также, такие датчики обеспечивают высокую стабильность в широком диапазоне рабочих температур.
При установке VC акселерометра в положение, когда его ось чувствительности параллельна оси земного притяжения, выходной сигнал датчика будет равен усилию в 1 г. Такая закономерность известна как DC отклик. Благодаря такой особенности, акселерометры на переменных конденсаторах часто используются для измерений центробежной силы или ускорений и замедлений подъемных устройств.

Условия эксплуатации

После выбора акселерометра соответствующей технологии и отвечающего требованиям целевого применения необходимо рассмотреть ряд следующих факторов. В первую очередь, это условия окружающей среды, где датчик будет использоваться. Сюда относятся рабочая температура, максимальный уровень ускорения и влажность.

Технология Температурный диапазон
Пьезоэлектрические общего применения -55…260°C
Пьезоэлектрические высокотемпературные -55…650°C
Пьезоэлектрические низкотемпературные -184…177°C
С выходом по напряжению общего применения -55…125°C
С выходом по напряжению высокотемпературные -55…175°C
Пьезорезистивные -55…66°C

Диапазон измерений акселерометра указывается в спецификации дважды, что может спутать инженера по применению. Действительный диапазон указывается в динамических характеристиках. Например, IEPE акселерометр может иметь диапазон 500 g, но при определенных условиях среды может выдерживать удар до 1000 g и 2000 g. 500 g – это максимальный диапазон линейной работы акселерометра. Параметры, указанные для определенных условий эксплуатации, показывают максимально допустимый уровень удара.

В случае с акселерометрами зарядового типа, динамические характеристики не содержат рабочего диапазона, поскольку он во многом зависит от усилителя заряда. Здесь лучше обратиться к линейности амплитудной характеристики, которая указывается в разделе динамических параметров. Также как и в предыдущем случае, максимальный диапазон измерений, указанный при определенных условиях эксплуатации, свидетельствует о предельной нагрузочной способности акселерометра.

О возможностях работы датчиков во влажной среде свидетельствуют различные указатели на герметичность исполнения корпуса. Следует заметить, что непрерывное изменение температурных условий может нарушить эпоксидную изоляцию корпуса датчика.

Поскольку современные технологии производства акселерометров используют немагнитные материалы, магнитная чувствительность редко указывается в спецификации на компоненты. Если датчик предназначен для установки на гибкие поверхности, на ведущее место выходят параметры изгиба основания. Сгиб поверхности приводит к изгибу основания акселерометра, что может привести к ошибочному срабатыванию датчика в результате вибрации. Поэтому следует избегать применения компрессионных акселерометров на гибких поверхностях.

Вес акселерометра

При соприкосновении акселерометра и объекта измеряемое ускорение изменится. Этого эффекта можно избежать, если не забывать про вес самого датчика. В качестве эмпирического правила можно принять то, что вес акселерометра должен превышать вес предмета не более чем на 10%.

Чувствительность и разрешение

Когда необходимы датчики с малым выходным сигналом или широким динамическим диапазоном, следует обратиться к параметрам разрешения и чувствительности.

Акселерометр преобразовывает механическую энергию в электрический выходной сигнал. Такой сигнал может выражаться в мВ/г или в пКл/г (для датчиков с зарядовым выходом). Обычно линейка акселерометров содержит несколько моделей с различной чувствительностью, оптимальное значение которой зависит от уровня измеряемого сигнала. Например, для измерений сильных ударных колебаний требуются датчики с низкой чувствительностью.

Для приложений, требующих измерений малых ускорений, лучшим решением будет использование акселерометра с высокой чувствительностью, где выходной сигнал будет выше уровня шума усилителя. Например, если ожидается уровень вибрации 0.1g, а чувствительность датчика составляет 10 мВ/g, напряжение выходного сигнала составит 1 мВ и потребуется акселерометр с более высокой чувствительностью.

Разрешение связано с минимальным значимым сигналом акселерометра. Этот параметр базируется на уровне собственных шумов акселерометра (а при выборе IEPE акселерометра, и на внутренней электронной схеме) и выражается в g rms.

Перейти в каталог «Датчики ускорения»

Источник

Акселерометр: что это, как работает и зачем нужен в фитнес-браслете, часах и смартфоне

Практически в каждом описании характеристик современного смартфона, фитнес-браслета или умных часов можно встретить упоминание датчика под названием «акселерометр». Еще его могут называть «датчик ускорения» или G-сенсор. Что это такое, как работает и зачем нужен в телефоне, часах или браслете, читайте далее.

Акселерометр: что это и зачем нужен?

Простым языком, акселерометр – это прибор, измеряющий ускорение (величину изменения скорости). Название прибора происходит от латинского «accelero», что дословно переводится, как «ускоряю» и греческого «metreō», что в переводе означает «измеряю».

Измерение величины динамического ускорения позволяет определить, насколько быстро и в каком направлении движется устройство с акселерометром. По конструктивному исполнению акселерометры подразделяются на однокомпонентные, двухкомпонентные, трёхкомпонентные (одноосевые, двух осевые и трехосевые). Например, 3-осевой датчик ускорения может определять величину и направление ускорения как векторную величину во всех трех осях.

Часто этот датчик путают с гироскопом, но это совершенно разные датчики, хотя часто они взаимодополняют друг друга для достижения более точных результатов, а иногда даже могут выполнять одни и те же функции. Отличаются же эти датчики принципом работы и эффективностью при выполнении конкретной задачи.

В основном в устройствах акселерометр используется для определения ориентации, ударов, вибрации и ускорения координат. Например, в смартфонах именно акселерометр отвечает за переворот картинки при изменении положения корпуса, а фитнес-браслетах он активирует экран при вращении запястья.

Где применяется акселерометр?

Датчик ускорения применяется в самых различных сферах:

  • Навигационные устройства летательных аппаратов. Без приборов на основе гироскопов и акселерометров не может обойтись ни один самолет, вертолет и даже квадрокоптер. Так, например, для работы квадрокоптера необходимо минимум три гироскопа.
  • Автомобили. В автомобилях акселерометр интегрируется в системы безопасности и стабилизации. Прибор определяет экстренное торможение или дорожно-транспортное происшествие и запускает электрическую цепь, которая заставляет подушки безопасности срабатывать.
  • Промышленность. Датчики активно используются в различных станках, агрегатах и производственных линиях в системах защиты для отключения питания в случае поломок или при достижении критических значений.
  • Электроника. В компьютерах и ноутбуках акселерометр применяется для защиты жестких дисков от ударов и падений. В случае обнаружения падения прибор отдает команду считывающим головкам принять безопасное положение для избегания повреждения диска и потери данных.
  • В смартфонах и планшетах акселерометр отвечает за смену ориентации экрана при повороте корпуса, а также за управление игровым процессом при наклонах гаджета. В фитнес-браслетах и часах акселерометр применяется для подсчета шагов, отслеживания сна и активации экрана поднятием запястья.
  • Бытовая техника. Да, акселерометрами могут оснащаться даже стиральные машины, утюги и тепловентиляторы. Например, в утюгах акселерометр, обнаружив его падение, отключает питание, чтобы не допустить возникновения пожара.

Как работает акселерометр?

Большинство устройств оснащается емкостными, пьезорезистивными и пьезоэлектрическими приборами. Часто акселерометр представляет собой микроэлектромеханическую систему (MEMS), содержащую несколько компонентов, каждый размером от 1 до 100 микрометров. Размер же прибора обычно не превышает габариты спичечной головки.

Механический акселерометр

Объяснить принцип работы акселерометра проще на механическом приборе. Он состоит из пружины, прикрепленной к корпусу, подвижной массы и демпфера. Масса или, проще сказать, грузик, крепится к пружине. С обратной стороны грузик поддерживает демпфер, гасящий вибрации грузика. Во время ускорения корпуса пружина деформируется (растягивается или сжимается) по противоположным осям под воздействием грузика, стремящегося сохранить свое первоначальное положение, то есть отстать или опередить корпус. На величине деформации и основываются вычисления прибора.

Для получения информации о положении предмета в трехмерном пространстве используется три таких прибора, объединенных в один комплекс.

Конечно же, никто не будет «запихивать» в компактный фитнес-браслет или смартфон такую громоздкую конструкцию. Поэтому она заменяется миниатюрным чипом. Хотя чип и более сложный, чем прибор с шариком и пружиной, он имеет те же основные элементы.

У такого чипа имеется корпус, который крепится к часам или смартфону, «гребенчатая» секция с отведенными по сторонам пластинами и ряд фиксированных пластин, снимающих показания. Эта секция может перемещаться вперед и назад, изменяя значение напряженности поля вокруг контактов. Полученные данные передаются на обработку электроникой и программным обеспечением, после чего происходит вычисление физического расположения устройства.

Внутренняя работа акселерометра

Но самое интересное, как изготавливаются такие акселерометры. При толщине примерно 500 микрон ни один инструмент не сможет его создать. Вместо этого инженеры используют некоторые уникальные химические свойства кремния и силикона с другими веществами. Весь процесс изготовления полностью автоматизирован и выполняется на конвейерных линиях без участия человека.

Также понять как работает акселерометр поможет короткое видео ниже:

Чем отличается акселерометр от гироскопа?

Хотя в некоторых случаях гироскоп и акселерометр и могут выполнять одни и те же функции, это два абсолютно разных датчика, которые часто используются в паре для достижения максимального эффекта. Часто такой дуэт называют 6-осевым датчиком.

Акселерометр не умеет точно измерять угол поворота устройства в пространстве, а может лишь примерно его оценить. На практике это может выражаться в ложных срабатываниях и задумчивости в повороте экрана. И тут на помощь приходит гироскоп. Не вдаваясь в подробности о принципе работы данного прибора, скажем, что он может определять не только угол поворота устройства, но и скорость поворота, что, например, во время игры на смартфоне позволяет реализовать более быстрое и точное управление.

Поэтому в большинстве устройств эти два прибора устанавливаются совместно для достижения наибольшей эффективности.

Акселерометр в фитнес-браслете и смарт-часах

В фитнес-браслетах и умных часах акселерометр отвечает за несколько функций. Обнаруживая поднятие или вращение руки, он отдает сигнал для включения экрана. Также именно акселерометр отвечает за подсчет шагов и мониторинг сна. На акселерометре «завязана» и работа функции «Умный будильник», который будит владельца гаджета в фазе быстрого сна.

Акселерометр в телефоне

Первый акселерометр появился в телефоне Nokia 5500. Там он использовался для подсчета пройденных шагов. Такое решение многим понравилось и с тех пор компания Apple стала оснащать таким датчиком все модели своих iPhone. А начиная с iPhone, если не ошибаюсь, четвертого поколения, в дополнение к акселерометру компания стала оснащать свои смартфоны гироскопом. После этого наличие этой пары датчиков стало стандартом для большинства производителей мобильных устройств.

Акселерометр в телефоне отвечает не только за поворот экрана при наклоне корпуса. Он так же как и в случае с фитнес-браслетом позволяет вести учет пройденного расстояния. Еще акселерометру нашли применение в системных жестах. Например, отключение звука телефона встряхиванием или переворотом смартфона вниз экраном.

Как откалибровать акселерометр?

В некоторых случаях может потребоваться настройка или калибровка акселерометра. Например, если телефон не реагирует на поворот корпуса или не точно считаются шаги. Для смартфонов под управлением операционной системы ANDROID для этих целей есть несколько сторонних приложений, например GPS Status & Toolbox. Для iPhone таких приложений нет, поэтому в случае сбоев придется ограничиться перезагрузкой устройства. Обычно это помогает.

Некоторые производители фитнес-браслетов и смарт-часов также позволяют откалибровать акселерометр. Точнее, не откалибровать, а «обучить» с помощью «Меток поведения», то есть помогая датчику более точно понимать, какое именно действие владелец гаджета выполняет в тот или иной момент. Такая возможность есть у владельцев популярной линейки Xiaomi Mi Band и ряда других моделей.

Сергей Васильев

Интересуюсь всем, что касается умных часов, фитнес-браслетов и другой носимой электроники. С удовольствием поделюсь последними событиями в мире гаджетов, постараюсь помочь подобрать оптимальную модель и разобраться с основными настройками.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector