Автоколлимационный метод измерения фокусного расстояния

Автоколлимационный метод измерения фокусного расстояния

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы измерения фокусного расстояния

Objective lenses. Methods of measuring the focal length

Дата введения 1984-01-01

Постановлением Государственного комитета СССР по стандартам от 20 апреля 1982 г. N 1590 срок введения установлен с 01.01.84

ВЗАМЕН ГОСТ 13095-67

ПЕРЕИЗДАНИЕ. Сентябрь 1988 г.

Настоящий стандарт распространяется на объективы различного назначения и устанавливает три метода измерения фокусного расстояния в зависимости от требуемой точности измерения в видимой области спектра.

Стандарт не распространяется на микрообъективы.

1. МЕТОД УВЕЛИЧЕНИЯ

1. МЕТОД УВЕЛИЧЕНИЯ

1.1. Метод увеличения — основан на измерении линейного увеличения оптической системы, состоящей из объектива коллиматора и испытуемого объектива. Погрешность измерения — не более 0,5%.

1.2.1. Измерение следует проводить на установке по схеме, приведенной на черт.1.

1 — источник света; 2 — конденсор; 3 — молочное (опаловое) стекло; 4 — светофильтр; 5 — штриховая шкала; 6 — объектив коллиматора; 7 — испытуемый объектив; 8 — микроскоп с окуляр-микрометром или микрометрическим поперечным перемещением

1.2.2. Фокусное расстояние объектива коллиматора должно быть не менее чем в 3 раза больше фокусного расстояния испытуемого объектива , погрешность измерения фокусного расстояния объектива коллиматора не должна быть более 0,1%.

1.2.3. Числовая апертура объектива микроскопа должна быть 0,5 расчетного относительного отверстия испытуемого объектива.

Увеличение микроскопа должно быть не менее 100 .

1.2.4. Штриховая шкала должна быть аттестована с погрешностью не более 0,002 мм.

Размеры штриховой шкалы должны быть такими, чтобы ее изображение, видимое в плоскости шкалы окуляра микроскопа, было не менее 5 мм.

1.2.5. Погрешность положения штриховой шкалы коллиматора, соответствующего фокусировке его на бесконечность для заданной длины волны, не должна превышать 0,1% фокусного расстояния.

1.2.6. Относительная погрешность определения цены деления шкалы барабана окуляр-микрометра для предметной плоскости микроскопа не должна быть более 0,2%.

1.2.7. Относительная погрешность определения размера изображения штриховой шкалы по шкале механизма микрометрического перемещения микроскопа не должна быть более 0,2%.

1.2.8. Допуск перпендикулярности опорного торца объективодержателя к оптической оси объектива коллиматора не должен превышать ±5′.

1.2.9. Допуск параллельности направляющей поперечного перемещения микроскопа плоскости опорного торца объективодержателя не должен превышать ±10′.

1.3. Подготовка к измерению

1.3.1. Испытуемый объектив устанавливают в объективодержатель.

1.3.2. Штриховую шкалу устанавливают в задней фокальной плоскости объектива коллиматора и равномерно освещают источником света.

1.3.3. Для выделения расчетной длины волны испытуемого объектива между осветителем и штриховой шкалой устанавливают светофильтр. Тип светофильтра должен быть указан в технических условиях на испытуемый объектив.

Примечание. Измерение фокусного расстояния объектива коллиматора, установку штриховой шкалы в задней фокальной плоскости объектива коллиматора проводят с одним и тем же светофильтром.

1.4. Проведение измерений

1.4.2. По шкале барабана окуляр-микрометра микроскопа снимают отсчет при наведении на изображение штриха и отсчет — при наведении на изображение штриха . Наведение на изображение штрихов и и снятие отсчетов повторяют не менее трех фаз.

1.4.3. По шкале поперечного перемещения микроскопа снимают отсчет при наведении перекрестья микроскопа на изображение штриха и отсчет — при наведении на изображение штриха .

Наведение на изображение штрихов и и снятие отсчетов повторяют не менее трех раз.

1.5. Обработка результатов

1.5.1. Фокусное расстояние испытуемого объектива при использовании окуляр-микрометра микроскопа определяют по формуле

где — фокусное расстояние объектива коллиматора, мм;

— линейное увеличение;

— расстояние на штриховой шкале между штрихами и (размер объекта), мм;

— расстояние между изображениями штрихов и (размер изображения объекта), мм;

— цена деления шкалы барабана окуляр-микрометра, определяемая в предметной плоскости микроскопа с помощью объект-микрометра, мм;

и — отсчеты по шкале барабана окуляр-микрометра;

— постоянный коэффициент для штриховой шкалы данного коллиматора и используемого микрообъектива, заранее определенный по форм

1.5.2. Фокусное расстояние испытуемого объектива при использовании поперечного микрометрического перемещения микроскопа определяют по формуле

где и — отсчеты по шкале поперечного перемещения микроскопа;

— постоянный коэффициент для данной штриховой шкалы и коллиматора, заранее определенный по формуле: .

2. МЕТОД ФАБРИ-ЮДИНА

2.1. Метод Фабри-Юдина — основан на внефокальном наблюдении двух следов узких световых пучков, прошедших через контролируемую систему и зрительную трубу, и измерении расстояния между ними. Метод позволяет измерить фокусное расстояние в пределах 100-2000 мм. Погрешность измерения — не более 0,4%.

2.2.1. Измерение следует проводить на установке по схеме, приведенной на черт.2.

1 — источник света; 2 — конденсор; 3 — щель коллиматора; 4 — объектив коллиматора; 5 — диафрагма с набором пар щелей; 6 — испытуемый объектив; 7 — объектив зрительной трубы; 8 — окуляр-микрометр

2.2.2. Фокусное расстояние объектива коллиматора — 550-900 мм, относительное отверстие — 1:10.

2.2.3. Раздвижную щель располагают в фокальной плоскости объектива коллиматора.

2.2.4. Диафрагму устанавливают параллельно щели коллиматора.

2.2.5. Установка должна иметь набор диафрагм с парами параллельных щелей. Относительная погрешность измерения расстояния между щелями не должна быть более 0,2%. Размеры щелей в зависимости от диапазона измерения фокусных расстояний приведены в рекомендуемом приложении.

2.2.6. Погрешность определения фокусного расстояния объектива зрительной трубы не должна быть более 0,1%.

2.3. Подготовка к измерению

2.3.1. Осветитель устанавливают так, чтобы щель коллиматора находилась в центре светового пучка.

2.3.2. Установку коллиматора проверяют на бесконечность.

2.3.3. Разворотом зрительной трубы в горизонтальной плоскости и наклоном коллиматора в вертикальной плоскости устанавливают изображение щели коллиматора в центре поля зрения, при этом диафрагма со щелями выведена из поля зрения.

2.3.4. Окуляр зрительной трубы устанавливают на резкое изображение нитей винтового микрометра.

2.3.5. Испытуемый объектив устанавливают в объективодержатель.

2.3.6. В зависимости от размера измеряемого фокусного расстояния выбирают и устанавливают одну из рекомендуемых пар щелей диаграммы. При смене пар щелей добиваются получения самого большого расстояния между центрами пучков лучей в фокальной плоскости объектива зрительной трубы (см. рекомендуемое приложение).

2.3.7. Изображение щели коллиматора устанавливают параллельно вертикальной нити микрометра.

2.4. Проведение измерений

2.4.2. Наведение на середину каждого следа изображения щели повторяют не менее пяти раз. За результат измерения принимают среднее арифметическое значение.

2.4.3. Для повышения точности измерение расстояния между следами изображений пары щелей повторяют, но с другой парой щелей

где — цена деления окуляр-микрометра.

2.5. Обработка результатов измерений

2.5.1. Фокусное расстояние объектива определяют по формуле

где — расстояние между щелями, мм;

— фокусное расстояние зрительной трубы, мм;

— расстояние между следами изображения выбранной пары щелей, измеренное окуляр-микрометром, мм.

2.5.2. За результат измерения фокусного расстояния объектива принимают среднее арифметическое двух его значений, полученных с двумя парами щелей.

3. УГЛОМЕРНЫЙ МЕТОД

3.1. Угломерный метод — основан на измерении углов, под которыми видны изображения шкалы, установленной в фокальной плоскости объектива. Погрешность измерения — не более 0,2%.

3.2.1. Измерение следует проводить на одной из двух установок, схемы которых представлены на черт.3 и 4.

Примечание. Конкретную схему установки указывают в технических условиях на объективы конкретного вида.

1 — зрительная труба; 2 — угломерное устройство; 3 — продольные направляющие; 4 — испытуемый объектив; 5 — объективодержатель; 6 — поворотное устройство; 7 — измерительная шкала; 8 — конденсор; 9 — источник света; 10 — автоколлимационная труба; 11 — светофильтр

1 — вспомогательная зрительная труба; 2 — теодолит; 3 — испытуемый объектив; 4 — объективодержатель; 5 — продольные направляющие; 6 — измерительная шкала; 7 — конденсор; 8 — светофильтр; 9 — источник света

3.2.2. Отклонение оси вращения поворотного устройства от вертикали не должно быть более 5′.

3.2.3. Продольные направляющие должны быть жестко связаны с поворотным устройством.

3.2.4. Объективодержатель должен иметь возможность перемещаться по направляющим и надежно закрепляться на них.

3.2.5. Центр крепежного отверстия объективодержателя (см. черт.3) должен лежать в плоскости, проходящей через вертикальную ось поворотного устройства, и визирную ось зрительной трубы в положении поворотного устройства, когда опорный торец объективодержателя перпендикулярен к автоколлимационной трубе. Несовпадение центра отверстия объективодержателя с указанной плоскостью должно быть не более 3 мм.

3.2.6. Визирная ось автоколлимационной трубы должна быть перпендикулярна к оси вращения поворотного устройства. Допуск перпендикулярности указанных элементов должен быть не более 2′.

3.2.7. Визирная ось измерительной трубы должна быть параллельна визирной оси автоколлимационной трубы и соосна ей. Допуск параллельности указанных элементов не должен превышать 1′.

3.2.9. Диаметр входного зрачка зрительной трубы должен быть равен или больше входного зрачка испытуемого объектива.

3.2.10. Угломерное устройство должно обеспечивать измерение углов с погрешностью не более 2″.

Примечание. Теодолит с вспомогательным коллиматором, используемый в качестве угломерного устройства (см. черт.3), должен быть жестко связан с поворотным устройством, его вертикальная ось должна быть совмещена с осью поворотного устройства с погрешностью не более 5 мм. Вспомогательный коллиматор должен быть жестко связан с основанием скамьи, его оптическая ось должна быть совмещена с оптической осью теодолита с допуском ±3 мм.

3.2.11. Измерительная шкала должна представлять собой стеклянную пластину, на непрозрачном (зеркальном) покрытии которой нанесены прозрачные штрихи. Разница в расстояниях до симметричных штрихов вправо и влево от нуля не должна быть более 0,05 мм. Погрешность измерения расстояний между штрихами не должна быть более 0,002 мм.

3.2.12. Измерительная шкала должна быть параллельна опорному торцу испытуемого объектива и совмещена с его фокальной плоскостью. Погрешность несовмещения шкалы с фокальной плоскостью не должна превышать глубины резкости изображения. Допуск параллельности шкалы опорному торцу не должен быть более 1′.

3.2.13. Конденсор в осветителе штрихов шкалы должен иметь апертуру, обеспечивающую заполнение светом входного зрачка испытуемого объектива.

3.2.14. Спектральную область пропускания светофильтра, при которой измеряют фокусное расстояние объектива, указывают в технических условиях на объектив конкретного вида.

3.2.15. Теодолит (см. черт.4) следует устанавливать как можно ближе к первой линзе испытуемого объектива. Точка пересечения осей теодолита должна совпадать с оптической осью испытуемого объектива. Несовпадение указанных элементов не должно быть более 5 мм.

3.3. Подготовка к измерению по схеме, приведенной на черт.3.

3.3.1. Снимают отсчет с угломерного устройства, соответствующий положению поворотного устройства, когда опорный торец объективодержателя перпендикулярен к визирной оси автоколлимационной трубы.

3.3.2. Закрепляют объектив в объективодержателе первой линзой к зрительной трубе.

3.3.3. Совмещают плоскость входного зрачка объектива с вертикальной осью поворотного устройства. Для этого объективодержатель с испытуемым объективом сместить по направляющим до такого положения, чтобы изображение входного зрачка объектива не смещалось в выходном зрачке зрительной трубы при наблюдении его с помощью лупы.

3.3.4. Устанавливают измерительную шкалу на направляющие и перемещают ее до тех пор, пока изображение центрального штриха шкалы не будет резким. Контроль проводят зрительной трубой, установленной на бесконечность для указанной спектральной области.

3.3.6. Выставляют шкалу так, чтобы при развороте поворотного устройства изображения штрихов шкалы не смещались по высоте в поле зрения зрительной трубы.

3.3.7. В положении поворотного устройства по п.3.3.1 изображение нуля шкалы совместить с перекрестьем зрительной трубы, смещая шкалу по направляющим параллельно фокальной плоскости.

3.4. Подготовка к измерению по схеме, приведенной на черт.4.

3.4.1. Закрепляют объектив в объективодержателе.

3.4.2. Выполняют юстировку по п.3.3.4 с использованием вспомогательной зрительной трубы.

3.4.3. Выставляют измерительную шкалу параллельно фокальной плоскости испытуемого объектива. Для этого необходимо развернуть шкалу так, чтобы изображения крайних штрихов, наблюдаемые вспомогательной зрительной трубой, были одинаковой резкости. Контроль — по п.3.4.2.

3.4.4. Устанавливают перед первой линзой испытуемого объектива теодолит в соответствии с требованиями п.3.2.15.

3.4.5. Выставляют ось вращения теодолита по уровню. Отклонение оси теодолита от вертикали не должно быть более 5′.

3.4.6. Выставляют шкалу так, чтобы при развороте зрительной трубы теодолита изображения штрихов не смещались по высоте в поле ее зрения.

3.4.7. Изображение нулевого штриха шкалы совмещают с оптической осью испытуемого объектива по бликам в объективе, смещая шкалу в поперечном направлении при подсветке только нулевого штриха.

3.5. Проведение измерений по схеме, приведенной на черт.3.

3.5.4. Повторяют измерения по п. 3.5-3.5.3 для нескольких точек поля зрения объектива .

Примечание. Зоны поля зрения должны быть указаны в технических условиях на испытуемый объектив.

3.5.5. Измерения по пп.3.5.1-3.5.4 повторяют не менее трех раз.

3.6. Проведение измерений по схеме, приведенной на черт.4.

3.6.5. Измерения по пп.3.6.1-3.6.4 повторяют не менее трех раз.

3.7. Обработка результатов

где и — расстояния на измерительной шкале между нулевым штрихом и симметричными от него штрихами в зоне поля зрения объектива .

Примечание. Для определения фокусного расстояния для центра поля зрения объектива в прямоугольной системе координат построить кривую, откладывая по оси абсцисс значения вычисленных фокусных расстояний, а по оси ординат — квадраты расстояния до соответствующих зон поля объектива . Точка пересечения продолжения прямолинейного участка кривой с осью абсцисс определит значение фокусного расстояния для центра поля зрения объектива.

3.7.4. Относительную погрешность измерения определяют по формуле

где — фокусное расстояние испытуемого объектива, мм;

— расстояние от оптической оси до точки поля зрения, в которой проводят измерение, мм;

— погрешность измерения расстояния между штрихами шкалы, мм;

— диаметр входного зрачка испытуемого объектива, мм;

— погрешность отсчета угла по теодолиту, рад.

Источник

Автоколлимационный способ измерения фокусного расстояния объектива Текст научной статьи по специальности « Медицинские технологии»

Аннотация научной статьи по медицинским технологиям, автор научной работы — Ершов А.Г.

Предложен автоколлимационный способ измерения фокусного расстояния линзового объектива „Апо-Марс-7“ на длине волны 1,064 мкм. Проанализированы источники неопределенностей, влияющих на конечную неопределенность измерения. Изложены ограничения по применению данного способа при других длинах волн и для других объективов.

Похожие темы научных работ по медицинским технологиям , автор научной работы — Ершов А.Г.

Autocollimation Method for Measuring the Focal Distance of a Lens

An autocollimation method for measuring the focal distance of a long-range lens Apo-Mars-7 at the wavelength of 1.064 um is described. Factors affecting the final measurement uncertainty are considered. Limitations of the method application to other wavelengths and lenses are specified.

Текст научной работы на тему «Автоколлимационный способ измерения фокусного расстояния объектива»

ОПТИЧЕСКИЕ И ОПТИКО-ЭЛЕКТРОННЫЕ ПРИБОРЫ И СИСТЕМЫ

АВТОКОЛЛИМАЦИОННЫЙ СПОСОБ ИЗМЕРЕНИЯ ФОКУСНОГО РАССТОЯНИЯ ОБЪЕКТИВА

Государственный оптический институт им. С. И. Вавилова, 199053, Санкт-Петербург, Россия

Предложен автоколлимационный способ измерения фокусного расстояния линзового объектива „Апо-Марс-7″ на длине волны 1,064 мкм. Проанализированы источники неопределенностей, влияющих на конечную неопределенность измерения. Изложены ограничения по применению данного способа при других длинах волн и для других объективов.

Ключевые слова: фокусное расстояние, автоколлимационный способ, неопределенность измеряемой величины .

Известные многочисленные способы измерения фокусных расстояний объективов условно можно подразделить на две большие группы — 1) с использованием установок, в состав которых входит коллиматор, и 2) с использованием установок, не содержащих коллиматор. К первой группе относятся следующие методы: регламентируемые гос. стандартом [1] метод увеличения и метод Фабри — Юдина, а также различные модификации этих методов [2, 3]; прямой метод, метод коллиматора и трубы с фокусировкой [4]. Ко второй группе можно отнести угломерный метод (также регламентируемый гос. стандартом [1]) и его модификации, автоколлимационный метод Русинова и другие автоколлимационные методы [2, 5]. Традиционные способы дополняются различными изобретениями [3, 6, 7].

Исторически сложилось так, что при реализации подавляющего большинства методов измерения фокусных расстояний объективов производятся в видимом диапазоне спектра. При необходимости определения фокусного расстояния в инфракрасном или ультрафиолетовом диапазоне возникают трудности реализации известных методов измерения, вызванные особенностями создания и юстировки коллиматоров, а также спецификой применения угломерных приборов в этих диапазонах. На практике это приводит к большим дополнительным материальным затратам. Однако определение фокусного расстояния в указанных диапазонах может быть необходимым условием при разработке некоторых оптических и оптико-электронных приборов. Например, при создании и настройке лазерного высотомера по программе „Фобос-Грунт» [9, 10] знание абсолютных значений углов отклонения пучков излучения лазерного передающего модуля относительно одной из осей измерительной системы

Термин „неопределенность измеренного значения» (кратко — „неопределенность»), используемый в настоящей статье, и связанный с ним подход к оцениванию качества измерения закреплены в международных метрологических документах [8]. Эта концепция, связанная, в частности, с признанием непостижимости истинного значения измеряемой величины, не нашла, однако, широкой поддержки в научной среде в отличие от классической концепции, основанной на терминологии погрешностей.

координат и их неопределенностей является принципиальным для системы управления космическим аппаратом при посадке на поверхность Фобоса (спутник Марса). При настройке и юстировке лазерного высотомера угол отклонения пучка вычисляется по формуле, содержащей фокусное расстояние использованного при данных измерениях объектива, в фокальной плоскости которого создана имитация бесконечно удаленного облучаемого объекта.

Для имитации реальных условий работы, юстировки, настройки и измерения необходимых параметров лазерного высотомера была создана установка на базе линзового объектива „Апо-Марс-7″ с фокусным расстоянием 1800 мм и относительным отверстием 1:3,6. Данный объектив рассчитан и изготовлен для работы в видимом диапазоне спектра (ахроматизован в области 570. 710 нм), а лазерный передающий модуль высотомера работает на длине волны 1,064 мкм. Поэтому при определении углов отклонения пучков необходимо не только выставить плоскость фоточувствительной матрицы, при помощи которой визуализируется излучение с X = 1,064 мкм, в плоскость наилучшего изображения (фокальную плоскость), но и измерить фокусное расстояние объектива на этой длине волны. При больших габаритах объектива „Апо-Марс-7″ данная задача достаточно сложна и предполагает создание дорогостоящего оборудования. Наиболее подходящим для решения этой задачи мог бы быть один из описанных в работе [5, с. 32—37] автоколлимационных способов, однако их анализ показал, что в данном случае они неприемлемы. Таким образом, необходимо было разработать сравнительно простой способ измерения фокусного расстояния объектива „Апо-Марс-7″, который по неопределенности измеренного значения фокусного расстояния, трудоемкости и финансовым затратам на реализацию удовлетворял бы заданным ограничениям.

Основная задача заключалась в установке в единую плоскость источника излучения с X = 1,064 мкм и фоточувствительной плоскости матрицы, предназначенной для фиксации пучков излучения лазерного передающего модуля и изображений волокон приемного модуля. Эту единую плоскость необходимо совместить с плоскостью наилучшего изображения для объектива „Апо-Марс-7″ [11]. В качестве источника первичного излучения был выбран све-тодиод LED1070-03 фирмы «Roithner Lasertechnik» (Австрия) с максимальной мощностью излучения на длине волны 1,07 мкм и полушириной спектральной полосы излучения 55 нм. Требуемая длина волны 1,064 мкм выделялась с помощью узкополосного прозрачного в видимой области спектра интерференционного фильтра «MaxLine™ LaserLineFilter 1064» фирмы «Edmund Optics» (США) с полной шириной полосы пропускания по полувысоте от максимума, составляющей более 4 нм. На рис. 1 показана спектрограмма z(X) пропускания интерференционного фильтра: справа — узкая полоса с центром на длине волны 1,064 мкм; в центре — широкая полоса пропускания в видимой области. z

90 80 70 60 50 40 30 20 10 0

400 500 600 700 800 900 1000 X, нм

Для повышения отношения сигнал/шум и увеличения контраста изображения на матрице камеры излучающая площадка светодиода была принята в качестве первичного и единственного источника излучения. Прозрачность узкополосного светофильтра в видимой области

играет решающую роль, так как с помощью микроскопа можно наблюдать как излучающую площадку светодиода, так и топологию фоточувствительных элементов матрицы при выставлении их в единую плоскость.

Схема установки для измерения фокусного расстояния объектива автоколлимационным способом приведена на рис. 2, а. Излучающая площадка светодиода 3 и плоскость фоточувствительных элементов матрицы 4 выставлены в одну плоскость, которая съюстирована по нормали относительно оптической оси объектива 2 в пределах ± 0,1 мм. После светодиода по ходу лучей установлен интерференционный светофильтр 5, размер которого влияет на увеличение оптического пути до 0,7 мм. Наблюдаемая в микроскоп, через фильтр, излучающая площадка светодиода, посредством подвижек светодиода, приводится в плоскость наилучшего изображения. Микроскоп (без изменения фокусировки) перемещается параллельно плоскости наилучшего изображения в направлении матрицы ПЗС-камеры GRAS20 фирмы «Ophir-Spiricon» (Израиль), при этом фоточувствительный слой матрицы также должен находиться в плоскости наилучшего изображения для микроскопа. За объективом на подвижном основании установлено автоколлимационное плоское зеркало 1 со световым диаметром 345 мм и точностью формы #=0,3 и AN=0,1. Посредством юстировочных подвижек зеркала 1 автоколлимационное изображение светодиода приводится в центр матрицы.

Жесткая конструкция светодиод—матрица—интерференционный фильтр перемещается вдоль оптической оси объектива до получения четкого изображения излучающей площадки светодиода на матрице (рис. 3) ПЗС-камеры. Для наведения изображения использовался электронный инструмент программного обеспечения его захвата и обработки (на рисунке показан штриховыми линиями в центре); „провал» в центре изображения обусловлен наличием электрода. Положение плоскости наилучшего изображения найдено с неопределенностью ±0,1 мм.

Необходимо отметить, что конструкция светодиод— матрица—интерференционный фильтр установлена на универсальный суппорт, позволяющий настраивать ее по трем координатам. Суппорт, в свою очередь, установлен на оптический рельс 6 (см. рис. 2, а), обеспечивающий передвижение суппорта перпендикулярно оптической оси объектива. Такая установка

позволила реализовать методику измерения фокусного расстояния объектива „Апо-Марс-7″ на длине волны 1,064 мкм.

Если передвигать конструкцию светодиод—матрица—интерференционный фильтр по оптическому рельсу в плоскости наилучшего изображения от условного нулевого положения (на оптической оси объектива), то, разворачивая зеркало 1 (см. рис. 2, а), можно компенсировать это линейное смещение, так чтобы изображение на матрице оставалось неподвижным в пределах менее 1 пиксела, равного 4,4×4,4 мкм. Тогда фокусное расстояние можно определить по формуле

где ё — линейное смещение по оптическому рельсу; а — угол разворота автоколлимационного зеркала.

Измерение величины ё осуществляется с помощью отсчетного устройства со стандартной неопределенностью ± 0,1 мм, а наведение конструкции с точностью до 1 пиксела производится путем микроподвижки зеркала, при этом угол его разворота а измеряется автоколлимационным теодолитом 3Т2КА со стандартной неопределенностью ±2″.

Измеренные значения ё, а, / приведены в таблице. Среднее арифметическое значение / =1801 мм, а расширенная неопределенность для доверительной вероятности 0,95 составляет ± 2 мм. Таким образом, результат измерения фокусного расстояния объектива „Апо-Марс-7″ на длине волны 1,064 мкм можно представить в виде/=1801 ± 2 мм.

165,5 5° 15′ 20″ 1803

166,0 5° 17′ 08″ 1798

162,0 5° 09′ 01″ 1801

161,0 5° 07′ 02″ 1801

161,0 5° 07′ 22″ 1800

160,0 5° 05′ 15″ 1801

161,5 5° 07′ 56 1802

160,0 5° 05′ 15 1801

Необходимо более подробно пояснить, что величина ё — это смещение конструкции светодиод—матрица—фильтр в плоскости наилучшего изображения в пределах ±ё/2 от оптической оси объектива. На рис. 2, б показано смещение в одну сторону от оптической оси (чтобы не перегружать рисунок), а в таблице — полное смещение ё.

Достигнутую неопределенность можно проанализировать с учетом технических требований к юстировке лазерного высотомера. Согласно работе [7] конечная неопределенность при измерении углов расхождения боковых пучков излучения лазерного высотомера относительно центрального пучка определяется в основном неплоскостностью базового стола коор-динатно-измерительной машины, неплоскостностью базового основания лазерного высотомера и неопределенностями автоколлимационных приборов: трубы ЮС-107 и теодолита 3Т2КА. В случае уменьшения этих неопределенностей более, чем в два раза они будут соизмеримы с неопределенностью измерения фокусного расстояния, ограничение которой в данной схеме зависит от неопределенности положения плоскости наилучшего изображения, составляющей ± 0,1 мм. Можно рассмотреть относительные неопределенности, составляющие неопределенность измерения фокусного расстояния: неопределенность измерения линейного смещения 5ё= 0,1/160=0,0006 и неопределенность измерения угла 5а= 2/18315=0,0001. Измерение величины ё с неопределенностью 0,01 мм при современном уровне техники не представляет трудности, тогда как стандартная неопределенность измерения углов теодолитами или подобными приборами в редких случаях составляет менее 2″. Таким образом, при достаточно малых материальных затратах конечную неопределенность измерения фокусного расстояния вышеописанном способом можно уменьшить более, чем в четыре раза — до значения

± 0,4 мм. Этого вполне достаточно, так как при использовании способа юстировки лазерного высотомера и измерений его параметров, изложенного в работе [9], неопределенность измерения фокусного расстояния значительно меньше неопределенности измерений остальных параметров.

Сравним полученные результаты с результатами измерения фокусных расстояний известными способами [1, 3, 4]. Например, в работах [1, 4] неопределенность измерения фокусного расстояния в относительной мере составляет от 0,1 до 0,02 %. При использовании предлагаемого способа это значение равно 2/1797=0,001=0,1 %, если не прибегать к более точным измерениям величины d, и равно 0,02 %, если измерять d с неопределенностью 0,01 мм. Эти оценки также сравнимы с неопределенностью измерений фокусных расстояний различными способами, описанными в работе [3]: 0,1. 0,01 %.

Рассмотрим условия, при которых предложенный способ измерения фокусного расстояния может быть реализован.

1. Источник излучения и его автоколлимационное изображение должны находиться в поле зрения объектива при всех измеряемых значениях d. При линейных размерах светодио-дов 1 мм и более, а матриц — 5 мм и более минимальное ограничение линейного поля зрения составляет не менее десятка миллиметров.

2. Плоскость наилучшего изображения наблюдается с помощью матричного приемника, что накладывает особые ограничения, так как изображение на матричном приемнике, при наблюдении в псевдоцветах, в некоторых случаях может отличаться от ожидаемого.

3. Установка источника излучения и плоскости матричного приемника в единую плоскость ограничена глубиной резкости микроскопа, связанной, в свою очередь, с его рабочим расстоянием, большое значение которого предпочтительно для наблюдения и фиксации изображения.

4. Перемещение конструкции светодиод—матрица—интерференционный фильтр в пределах d не должно приводить к ее уходу из плоскости наилучшего изображения.

Таким образом, как следует из вышеизложенного, рассмотренный способ измерения фокусного расстояния предпочтителен для длиннофокусных объективов с линейными полями зрения, достаточными для размещения как источника излучения, так и матричного приемника.

1. ГОСТ 13095-82. Объективы. Методы измерения фокусного расстояния. М.: Изд-во стандартов,1982.

2. Афанасьев В. А. Оптические измерения: Учебник для вузов. М.: Высш. школа, 1981. 229 с.

3. Пизюта Б. А., Михайлов И. О. Новые оптико-электронные приборы для оптических измерений: Учеб. пособие. Новосибирск: СГГА, 1996. 77 с.

4. Кирилловский В. К. Оптические измерения: Учеб. пособие. СПб: СПбГУ ИТМО, 2005. Ч. 3. 67 с.

5. Афанасьев В. А., Жилкин А. М., Усов В. С. Автоколлимационные приборы. М.: Недра, 1982. 144 с.

6. Пат. 2072217 РФ. Способ определения фокусного расстояния длиннофокусных оптических систем и устройство для его осуществления / В. И. Мещеряков, О. К. Филиппов, М. И. Синельников. 1997.

7. Пат. 2408862 РФ. Способ определения фокусного расстояния оптической системы / С. В. Зуев. 2011.

8. Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement [Электронный ресурс] : .

9. Ершов А. Г. Измерительная система координат космического лазерного высотомера-вертиканта, метод юстировки и анализ неопределенностей. // Вестн. ФГУП „НПО им. С. А. Лавочкина». Космонавтика и ракетостроение. 2012. № 5. С. 73—79.

10. Kuvaldin E. V., Ershov A. G., Zakharenkov V. F., Polyakov V. M., Arhipova L. N.. Testing unit for laser rangefinder // Proc. of SPIE. 2010. Vol. 7544. Р. 754457.

11. Способ определения плоскости наилучшего изображения автоколлимационным методом / Ершов А. Г. Заявка на изобретение № 2011100518 РФ. 2012.

Сведения об авторе

Александр Георгиевич Ершов — „ГОИ им. С. И. Вавилова»; ст. научный сотрудник; E-mail: ers@npkgoi.ru,

Рекомендована Институтом Поступила в редакцию

Ссылка для цитирования: Ершов А. Г. Автоколлимационный способ измерения фокусного расстояния объектива // Изв. вузов. Приборостроение. 2015. Т. 58, № 7. С. 537—542.

AUTOCOLLIMATION METHOD FOR MEASURING THE FOCAL DISTANCE OF A LENS

S. I. Vavilov State Optical Institute, 199053, Saint Petersburg, Russia E-mail: ers@npkgoi.ru

An autocollimation method for measuring the focal distance of a long-range lens Apo-Mars-7 at the wavelength of 1.064 um is described. Factors affecting the final measurement uncertainty are considered. Limitations of the method application to other wavelengths and lenses are specified.

Keywords: focal distance, measurement, uncertainty.

Aleksander G. Ershov — S. I. Vavilov State Optical Institute; Senior Researcher;

E-mail: ers@npkgoi.ru, alexer61@mail.ru

Reference for citation: Ershov A. G. Autocollimation method for measuring the focal distance of a lens // Izvestiya Vysshikh Uchebnykh Zavedeniy. Priborostroenie. 2015. Vol. 58, N 7. P. 537—542 (in Russian).

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector