Меню

Бесконтактные методы измерения длины



Метрология

Методы и средства измерений физических величин

Как и чем производят измерения?

В результате измерения определяют числовое значение измеряемой величины, равное отношению измеряемой величины к единице измерения или эталону.
В зависимости от конкретных условий, применяемых измерительных средств и приемов их использования измерения могут производиться различными способами или методами. С точки зрения общих приемов получения результатов измерения различают измерения непосредственные , т. е. прямые и косвенные .

Прямые измерения

При прямых измерениях искомая величина определяется непосредственно показаниями прибора или измерительной шкалы инструмента.
К прямым измерениям относятся измерения длин линейками, штангенинструментом, микрометрами, широкодиапазонными инкрементными измерительными головками с цифровым отсчетом, высотомерами, измерения углов — угломерами и др.

Косвенные измерения

При косвенных измерениях искомая величина (размер или отклонение) определяется по результатам прямых измерений одной или нескольких величин, связанных с искомой величиной определенной функциональной зависимостью, т. е. после определения косвенных величин, влияющих на искомую, определяют искомую величину, используя математические методы вычислений или преобразований.
Примером косвенных измерений могут служить измерения диаметра вала по длине его окружности с помощью рулетки или обкатного ролика, измерения на координатно-измерительных машинах (КИМ) , и др.
На рисунке представлен пример косвенного измерения диаметра вала с помощью рулетки, при этом измеряется длина окружности и с помощью известной зависимости D = L/π определяется ее диаметр.

Прямые измерения более просты и сразу приводят к результату измерения, поэтому они имеют преимущественное распространение в машиностроении.
Однако в ряде случаев прямые измерения не могут быть осуществлены, например, при измерении штангенциркулем расстояния между осями отверстий, при измерениях на КИМ, при измерении валов большого диаметров и др.
Прямые измерения иногда уступают по точности косвенным измерениям, как это имеет место при измерении углов угломерами, погрешности которых в десятки раз превышают погрешности синусных линеек.
Косвенные измерения широко применяют при координатных измерениях, потому что результат измерения всегда получают расчетом по определенным при измерении координатам двух или нескольких точек.

Каждое измерение может производиться абсолютным или относительным методом .

Абсолютный метод измерения

При абсолютном методе весь измеряемый размер определяется непосредственно по показаниям прибора. В настоящее время большинство приборов и инструментов измеряют абсолютным методом – штангенинструмент, микрометры, широкодиапазонные индикаторы и преобразователи, высотомеры, КИМ, угловые энкодеры и др.

Относительный метод измерения

Относительный (сравнительный) метод измерения дает только отклонение размера от установочной меры или образца, по которым прибор был установлен на ноль. Определение размера в этом случае производится алгебраическим суммированием размера установочной меры и показаний прибора при измерении.

Приборы для относительных измерений требуют дополнительной затраты времени для предварительной настройки прибора по установочной мере, что существенно снижает производительность измерений при небольших партиях проверяемых деталей. Снижение производительности становится несущественным, если после настройки прибором производят большое число измерений.
Приборы для относительных измерений в ряде случаев позволяют получить более высокую точность, а при измерении больших партий деталей и более высокую производительность контроля, благодаря удобству отсчета отклонений размера по шкале прибора.

Относительный метод измерения применяется на контрольных приспособлениях и автоматах, в приборах активного контроля.

Кроме того, методы измерения делятся на комплексные и дифференцированные .

Комплексный метод измерения

Комплексный метод измерения заключается в сопоставлении действительного контура проверяемого объекта с его предельными контурами, определяемыми величинами и расположением полей допусков отдельных элементов этого объекта.
Комплексный метод измерения обеспечивает проверку накопленных погрешностей взаимосвязанных элементов объекта, ограниченных суммарным допуском. Этот метод измерения является наиболее надежным с точки зрения обеспечения взаимозаменяемости и обычно осуществляется проходными калибрами, сконструированными по принципу подобия.
Примером комплексного метода измерения может служить проверка резьбы гайки проходной резьбовой пробкой.

Читайте также:  Как измерить мощность своего голоса

Дифференцированный метод измерения

Дифференцированный метод измерения сводится к независимой проверке каждого элемента отдельно. Этот метод не может непосредственно гарантировать взаимозаменяемости изделий.
Например, при дифференцированной проверке среднего диаметра, шага и половины угла профиля резьбы необходимо дополнительно подсчитать приведенный средний диаметр резьбы, включающий отклонения перечисленных выше элементов резьбы, и убедиться, что он находится в заданных пределах.

Комплексный метод измерения применяется преимущественно при проверке изделий, а дифференцированный метод — при проверке инструментов, настройке станков и при выявлении причин размерного брака изделий.

При проверке изделий предельными калибрами обычно сочетаются комплексные и дифференцированные методы измерений.
Каждый из перечисленных выше методов измерения может осуществляться контактным или бесконтактны м способом.

Контактный метод измерения

Контактный метод измерения осуществляется путем непосредственного соприкосновения измерительных поверхностей (наконечников) прибора или инструмента с поверхностью контролируемого объекта.

Бесконтактный метод измерения

Бесконтактный метод измерения характеризуется отсутствием измерительного контакта прибора с проверяемым объектом (например, при пневматическом методе измерения, при измерении на проекторах, микроскопах, лазерных приборах, лазерных итерферометрах и т.п.) .
В последнее время получил большое распространение бесконтактный метод измерения с помощью лазерного сканирования, в том числе 3D сканирования и лазерных триангуляционных измерениях.

Измерительные средства

Измерительные средства, применяемые в металлообрабатывающей промышленности, можно разделить на три основные группы:

  • меры и калибры;
  • универсальные инструменты и приборы, специальные средства измерений — контрольные приспособления, контрольные автоматы, приборы активного контроля;
  • координатно-измерительные машины.

Мерами называются средства измерения, служащие для воспроизведения одного или нескольких известных значений данной величины.

Калибрами называются меры, служащие для проверки правильности размеров, форм и взаимного расположения частей изделия.
Калибры долгое время являлись одними из наиболее распространенных измерительных средств, но с повышением точности металлообработки, распространением станков с ЧПУ, появлением индикаторов, электронных приборов и инструментов с цифровым отсчетом и КИМ применение калибров существенно снизилось.

Универсальные инструменты и приборы служат для определения значений измеряемой величины.
Они различаются по конструктивным признакам, по целевому назначению, по степени механизации, пределам измерения, цене деления аналогового или цифрового отсчета и прочим показателям.

Классификация средств измерения

Универсальные измерительные инструменты и приборы классифицируются по конструктивным признакам на:

  • механические инструменты, снабженные штриховой шкалой и нониусом — штангенинструменты и (штангенциркули, штангенглубиномеры, штангенрейсмасы и др.) и универсальные угломеры;
  • электронные штангенинструменты с цифровым отсчетом (штангенциркули, штангенглубиномеры, штангенрейсмасы) ;
  • микрометрические инструменты, основанные на применении микропар (микрометры, микрометрические нутромеры, глубиномеры и др.) ;
  • электронные микрометрические инструменты с цифровым отсчетом (микрометры, нутромеры, глубиномеры и др.) ;
  • механические индикаторы со шкалой и стрелкой;
  • электронные индикаторы с цифровым отсчетом;
  • оптические приборы (длиномеры, интерферометры, проекторы, микроскопы, лазерные приборы и др.) ;
  • индуктивные приборы;
  • широкодиапазонные приборы (емкостные, индуктивные и фотоэлектрические) ;
  • пневмоиндуктивные приборы;
  • высотомеры;
  • координатно-измерительные машины (КИМ) .

Кроме того, существуют специальные приборы — контрольные приспособления, контрольные автоматы и приборы активного контроля, предназначенные для контроля одной или нескольких однотипных деталей после их обработки на станке или в процессе обработки.

По числу одновременно проверяемых размеров приборы разделяются на одномерные и многомерные.
По установившейся на производстве терминологии простейшие измерительные средства — калибры, линейки, штангенинструмент, микрометры, уровни — именуются измерительным инструментом.

Источник

Бесконтактное измерение длины и скорости движущихся материалов
Датчик длины, расстояния и скорости металлопроката, бумаги, пластмассы и др.

Немецкая компания ASTECH предлагает решения для бесконтактного измерения расстояния, длины, ширины, скорости, уровня наполнения, а также системы распознавания цвета. Фирма производит отдельные компоненты и комплектные системы, включающие в себя современные оптоэлектронные и лазерные сенсоры, модули обработки сигналов и интерфейсные модули для подключения к промышленным системам управления. На долю компании ASTECH приходится примерно треть европейского и более половины немецкого рынка металлургии и пластмасс в сегменте измерения скорости перемещения продукции.

VLM500 бесконтактный высокоточный датчик для измерения длины и скорости непрерывно движущихся различных материалов: металлический лист, труба, профиль, кабель, бумага, текстиль, пластик, резина, керамика, древесина. VLM500 позволяет решить самые разные задачи, например, измерение, мерная нарезка, позиционирование, регулирование, контроль качества итд. Применение датчиков VLM500 обеспечит безусловное технологическое преимущество предприятия в условиях конкуренции.

Оптический
измеритель
VLM500

  • Презентация VLM500 для металлургии (26МБ, 107 фото, рус.)
  • Презентация VLM500 для не-металлов (10МБ, 35 фото, рус.)

Компания ASTECH предлагает VLM500 в качестве чрезвычайно надежного, хорошо зарекомендовавшего себя датчика, точно приспособленного к требованиям промышленной практики. Независимо от материала, VLM500 измеряет бесконтактным способом длину и скорость, и благодаря его интерфейсам он может быть оптимальным способом интегрирован в процесс автоматизации и обеспечения качества. При измерении отсутствует контакт, проскальзывание и износ поверхностей, обеспечивается высокая точность, надёжность и экономичность применения, прибор несложен при вводе в эксплуатацию.

Бесконтактный высокоточный измеритель VLM500 предназначен для измерения с точностью до 0,05% длины и скорости различных непрерывно движущихся материалов, таких, как лист, труба, профиль, плёнка, керамика, бумага, древесина, резина, нить, фольга, текстиль, кабель. Прибор позволяет автоматизировать многие процессы, например, управление мерной нарезкой, контроль раскроенных листов и даже определение толщины листа при прокате.

VLM500 применяется при намотке катушек и рулонов, на экструдерах, при вальцовке, рихтовке, вытяжке и других технологиях обработки материалов. Принцип измерения нечувствителен к изменяющимся свойствам матовой, глянцевой, маслянистой, зернистой поверхности, к различным неровностям и загрязнениям. Посторонний внешний свет компенсируется программно-техническими методами. Для металлургии VLM500 выпускается также в специальном исполнении для работы с раскалёнными до высокой температуры светящимися трубами, профилями, листом, проволокой из различных металлов, включая сталь, медь, латунь, алюминий.

Принцип работы VLM500

Источник белого света, мощный светодиод (LED), посредством первого объектива создаёт на поверхности измеряемого материала световое пятно, изображение которого на уровне кристаллической решётки через второй объектив считывается фотодиодной матрицей высокого разрешения. Изображение анализируется быстродействующим мощным процессором, который по последовательности смены изображений расчитывает скорость материала, вплоть до 50 м/с. В основе датчика VLM500 лежит пространственно распределенный частотный фильтр (англ.: spatial filter), который позволяет выполнять бесконтактное измерение длины и скорости движущихся материалов. Такой принцип обеспечивает фильтрацию выделенных решетчатых структур (т. н. импульсная сеточная модуляция). Оптически различимые структуры поверхности материала распознаются, программно структурируются, как решётка и передаются на CCD-датчик. Оптические датчики, которые используют этот принцип, работают без соприкосновения с поверхностью объекта и обеспечивают таким образом полностью бесконтактное измерение.

Через объектив измеряемый объект отображается на строку датчика CCD, который действует как дифференциальная оптическая решетка. Это специализированная аналоговая микросхема, состоящая из светочувствительных фотодиодов, использующая технологию приборов с зарядовой связью. Строка CCD работает только как оптическая решетка и не используется для съёмки изображения. Интегрированный в датчик источник белого света служит для освещения измеряемого объекта. Влияние внешнего света эффективно подавляется в процессе отображения объекта, этот вопрос был решен технологически.

Вследствие импульсной сеточной модуляции при движении объекта возникает импульсный сигнал, частота которого пропорциональна скорости объекта. Из измеренной частоты сигнала рассчитывается скорость и длина объекта. Благодаря многоконтурному регулированию сигнала и сложным алгоритмам происходит практически автоматическое приспособление датчика к различным структурам, освещенности и поверхности материалов.

VLM500 работает автономно; датчик, освещение, обработка сигнала и электропитание интегрированы в приборе. Благодаря цифровой концепции системы в распоряжении пользователя имеются разнообразные функции, гарантирующие гибкость применения. Благодаря имеющимся в приборе интерфейсам VLM500 легко сочетается с производственными процессами, органами управления и системами сбора результатов измерения, характеризуется простотой обслуживания и калибровки. Для использования в экстремальных условиях может быть поставлен специальный защитный корпус.

Программное обеспечение VLMTool предоставляется бесплатно, оно позволяет выполнять конфигурирование измерителя, менять настройки и параметры через интерфейс RS232. Все установки могут быть защищены паролем. Техника работы с программой детально описана в инструкции по эксплуатации. Опционально предлагается определение направления движения, часы реального времени, различные счетчики, монтажные принадлежности, защитный корпус, вентиляторный обдув, благодаря которому прибор может проводить измерения в условиях сильной задымленности, что характерно для металлургического производства.

Выходные сигналы VLM500 идентичны сигналам инкрементального энкодера, они вырабатываются быстродействующим процессором пропорционально скорости. Измеритель может интегрироваться в имеющуюся систему автоматизации или обработки данных. Все входы и выходы являются оптоизолированными, то есть они гальванически развязаны с остальной электроникой. Для программирования и конфигурирования предназначен интерфейс RS 232, который является стандартом и имеется в каждом приборе. Базовое исполнение VLM500 располагает картой AB3 с 4 выходами: один логический «Лампа ОК», два программируемых импульсных выхода (фазы A и B), а четвертый программируемый выход служит сигналом рабочего статуса.

VLM500 имеет три входа управления: Standby, направление и триггер. Дальнейшие последовательные и шинные интерфейсы, аналоговые выходы, различные импульсные выходы с высоким расширением опционально доступны в виде плат расширения. Подробнее об оснащении измерителя, опциональных интерфейсных картах и принадлежностях на следующей странице.

VLM500 A универсальный измеритель с автоподстройкой к изменяющимся свойствам поверхности различных материалов.

VLM500 D специальный измеритель для металлов, имеет широкую гамму допускаемых дистанций.

VLM500 L специальный измеритель для малых скоростей.

VLM500 E универсальный измеритель с увеличенной до 330 мм рабочей дистанцией.

Отдельно представлены и проиллюстрированы многочисленные особенности применения бесконтактного датчика VLM500 для решения различных производственных задач.

В представленной фотогалерее размещены 28 фотографий из имеющихся примерно 300 фотографий бесконтактного датчика VLM500 на реальном производстве.

Исполнение VLM500 VLM500 A VLM500 D VLM500 L VLM500 E
Дистанция измерения стандартная (точность измерения 0,05%) 185 ± 15 мм 240 ± 15 мм 185 ± 10 мм 330 ± 30 мм
Дистанция измерения расширенная (точность измерения 0,2%) 185 ± 15 мм 240 ± 30 мм 185 ± 15 мм 330 ± 30 мм
Пределы измеряемой скорости при стандартной дистанции 0,010. 36,6 м/с
0,60. 2200 м/мин
0,003. 20,0 м/с
0,18. 1200 м/мин
0,002. 4,16 м/с
0,12. 250 м/мин
0,010. 33,3 м/с
0,60. 2000 м/мин
Пределы измеряемой скорости при расширенной дистанции 0,020. 50,0 м/с
1,20. 3000 м/мин
0,012. 40,0 м/с
0,72. 2400 м/мин
0,005. 10,0 м/с
0,30. 600 м/мин
0,016. 45,0 м/с
1,00. 2700 м/мин
Пределы измеряемой скорости при стандартной дистанции со встроенным фильтром FB2V 0,006. 4,6 м/с
0,35. 280 м/мин
0,003. 2,5 м/с
0,18. 150 м/мин
0,002. 1,6 м/с
0,08. 100 м/мин
0,007. 4,5 м/с
0,41. 270 м/мин
Пределы измеряемой скорости при расширенной дистанции со встроенным фильтром FB2V 0,012. 9,5 м/с
0,75. 570 м/мин
0,007. 5,5 м/с
0,42. 330 м/мин
0,004. 3,3 м/с
0,25. 200 м/мин
0,014. 9,0 м/с
0,82. 540 м/мин

Основные общие технические данные VLM500:

Источник