- Облакомер: дотянуться до облаков
- Применение: точный прогноз на взлет и посадку
- Принцип действия: как лазер распознает облака
- ДВО-3Л: высокая точность и надежность
- События, связанные с этим
- Облакомер — прибор для измерения высоты облаков
- Лазерный облакомер: принцип работы
- Облачность-единица измерения? Прибор для измерения облочности? От чего зависит облачность?
- Каким прибором измеряется облачность?
- МЕТЕОРОЛОГИЧЕСКИЕ ПРИБОРЫ
Облакомер: дотянуться до облаков
Недавно холдинг «Швабе» представил новое изделие для аэропортов – облакомер ДВО-3Л. Это специальный лазерный дальномер, который дистанционно измеряет расстояние от земли до нижней границы облаков. Что это за устройство и для чего нужно определять высоту облаков – в нашем материале.
Применение: точный прогноз на взлет и посадку
Облакомеры просто незаменимы в метеорологии и авиации, ведь именно в этих сферах так важно точное прогнозирование погодных условий. Одним из важнейших инструментов определения изменения метеоусловий является определение высоты облаков.
В метеорологии под высотой облаков подразумевается высота их нижней границы над поверхностью земли. В основном измеряют высоту облаков среднего и нижнего ярусов – это не выше 2500 метров. Важно определить высоту самых нижних облаков. Иногда она принимается равной нулю, например, при тумане.
Туман, осадки, ухудшенная видимость – это все следствия низкой облачности, которая занимает первое место среди погодных явлений, оказывающих наибольшее влияние на регулярность и безопасность полетов воздушных судов. Таким образом, применение измерителей высоты облаков, или облакомеров, – обязательное требование к аэропортам и аэродромам. Точный и оперативный прогноз погодных условий позволяет повысить безопасность при взлете и посадке воздушных судов. Помимо безопасности, очевидна и экономическая составляющая. По оценкам специалистов, правильный своевременный прогноз позволяет снизить почти на треть число метеорологически обусловленных нарушений графика полетов, а это в масштабе целой страны дает экономию в миллионы долларов в год.
Таким образом, измерение высоты нижней границы облаков при помощи облакомера является одним из важнейших параметров прогнозирования опасных погодных явлений. От оперативности и надежности таких прогнозов зависит не только работа любого аэропорта, но и многие отрасли промышленности и сельского хозяйства. Еще одна цель использования данного прибора – это определение уровня концентрации аэрозолей атмосферы. Сегодня, как известно, экологическая обстановка требует особого контроля за воздействием от хозяйственной деятельности человека на окружающую среду.
Принцип действия: как лазер распознает облака
Современный облакомер – это компактный и мобильный прибор, который при необходимости можно легко перевезти на любое расстояние. Работа такого прибора может быть основана как на лазере, так и на любом другом элементе, который способен выступать в качестве когерентного света. Сегодня все же одним из самых распространенных измерителей высоты облаков остается лазерный облакомер.
Данный прибор работает по давно известному принципу лидара (LIDAR англ. Light Identification Detection and Ranging «обнаружение, идентификация и определение дальности с помощью света»). Это устройство часто используют для получения и обработки информации об удаленных объектах. Например, их применяли даже для измерения расстояния до Луны.
Принцип действия лидара не имеет больших отличий от радара: направленный луч источника излучения отражается от целей, возвращается к источнику и улавливается высокочувствительным приемником, время отклика прямо пропорционально расстоянию до цели.
Главная особенность конструкции лазерного облакомера – это вертикальное расположение самого лазера и элемента, который выступает приемником света. Таким образом, лазерный импульс направлен вверх в атмосферу, а его продолжительность составляет всего несколько наносекунд.
Во время этих наносекунд некоторая часть энергии луча рассеивается. Рассеяние зависит от соотношения размеров частицы и длины волны, которая падает на частицу. В физике этот эффект называется рассеянием Ми. Таким образом, часть света рассеивается назад и улавливается приемником облакомера. Далее по установленной формуле рассчитывается полученное время задержки в расстояние.
ДВО-3Л: высокая точность и надежность
Современные облакомеры работают на специальных импульсных диодных лидарах, поскольку только лазеры данного типа гарантируют максимальную точность полученных результатов и высокую надежность работы. Одним из таких устройств и является лазерный импульсный облакомер ДВО-3Л разработки Лыткаринского завода оптического стекла (ЛЗОС) холдинга «Швабе».
Его главное отличие – повышенный в 16 раз интервал обслуживания по сравнению с предыдущими моделями. Этого удалось добиться за счет применения в конструкции в качестве источника излучения полупроводникового лазера сроком службы до восьми лет. Ранее в качестве источника использовалась импульсная лампа, требовавшая замены каждые полгода.
Среди других новшеств – возможность представления всей необходимой информации на пульт управления с цветным сенсорным дисплеем. Для сравнения, модели предыдущего поколения отображали информацию на индикаторе, а кнопки и другие элементы управления были механическими.
Как рассказали разработчики, во второй половине этого года пройдет опытная эксплуатация ДВО-3Л на четырех аэродромах в разных регионах страны. Облакомеры установят в районе взлетно-посадочной полосы. В процессе эксплуатации будут фиксироваться малейшие возможные нарушения и особенности работы: сходимость результатов с основными облакомерами при различных видах облачности и ее высоте, атмосферных осадках и тумане.
В холдинге отметили, что сроки серийного производства будут определены по результатам опытной эксплуатации. Уже на сегодняшний день в числе потенциальных заказчиков – метеорологические службы, в том числе филиалы «Авиаметтелеком Росгидромета» в Екатеринбурге, Сочи, Хабаровске и в других регионах страны.
События, связанные с этим
Pilad – российский бренд прицельной оптики
Лазерный микроскоп МИМ-340: увидеть живую клетку
Источник
Облакомер — прибор для измерения высоты облаков
Облакомеры используются в метеорологии, когда нужно точно определить высоту нижней границы облаков. Данный прибор способен за небольшой отрезок времени обеспечить получение точных результатов. При этом его работа может быть основана как на лазере, так и на любом другом элементе, который способен выступать в качестве когерентного света. Ещё одна цель использования данного прибора — это определение уровня концентрации аэрозолей атмосферы.
Лазерный облакомер: принцип работы
Одним из самых распространённых облакомеров остаётся лазерный облакомер, который работает по принципу лидара. Данное устройство известно уже достаточно давно, его часто используют учёные для получение данных, а их принцип действия применяли даже для измерения расстояния до Луны. Главная особенность конструкции лазерного облакомера — это вертикальное расположение самого лазера и элемента, который выступает приёмником света. Благодаря тому, что лазерный импульс направлен вверх в атмосферу, а его продолжительность составляет всего несколько наносекунд учёные могут быстро получать нужные результаты для проведения исследований.
За время прохождения луча через аэрозоль, с постепенным рассеиванием его определённой части в ней, достигается эффект рассеяния Ми. При этом некоторая часть света будет рассеяна по направлению назад к источнику света и поймана специальным устройством, которое выступает в качестве приёмника. Далее потребуется пересчитать полученное время задержки в расстояние по установленной формуле.
Именно благодаря такому анализу полученных результатов и временных задержек лазерных импульсов мы имеем возможность точно определить высоту нижней границы облаков.
Основа работы облакомера заключается на том, что при любых изменениях уровня освещённости происходит изменение сопротивления фотоэлемента.
(Облакомер на атомном ледоколе «50 лет Победы»)
Современные облакомеры представляют собой компактные и достаточно лёгкие приборы, которые достаточно просто транспортировать и при необходимости можно перевезти на любое расстояние. Все они используются для определения уровня высоты нижней границы облаков и дополнительно — вертикальной видимости. Благодаря уникальным особенностям конструкции они могут распознавать одновременно от 1 до 3 слоёв облаков. Такие приборы просто незаменимы в метеорологии и авиации, ведь именно в этих сферах так важно получить точные данные по уровню облачности.
Кроме этого сейчас облакомеры работают на специальных импульсных диодных лидарах, поскольку только лазеры данного типа гарантируют максимальную точность полученных результатов и высокую надёжность работы.
Конструкция облакомера состоит из нескольких важных частей: блока питания, основного блока, оптики и внутреннего обогревателя для поддержания стабильного температурного режима во время проведения измерений. При этом установленные передатчики внутри представляют собой лазерный диод.
Источник
Облачность-единица измерения? Прибор для измерения облочности? От чего зависит облачность?
Облачностью называется степень покрытия небосвода облаками. Она измеряется в 10-балльной системе. Один балл равен 7% или 10% площади видимого неба. Отдельно оценивается нижняя облачность, поскольку нижние облака больше затеняют и могут дать осадки.
Облакомер — метеорологический прибор для определения высоты нижней границы облаков, Для работы использует либо лазер, либо другой источник когерентного света. Облакомеры также используются для определения концентрации аэрозолей в атмосфере. Лазерный облакомер состоит из вертикально расположенного лазера и приемника света, обычно лидара, приемника лазерного света ИК-диапазона. Лазерный импульс продолжительностью в несколько наносекунд посылается вверх, в атмосферу. Пока луч проходит через аэрозоль некоторая часть его энергии рассеивается на частицах аэрозоли, на частицах с размером порядка длины волны лазерного луча. Из-за эффекта, называемого рассеянием Ми, часть света раасеивается назад и улавливается приемником облакомера.
Таким образом, на основе анализа временных задержек большего количества лазерных импульсов можно построить усредненное вертикальное распределение концентрации аэрозоля в атмосфере. В том числе, можно определить высоту нижней кромки облаков.
На фотографии представлен прибор, который называется «Облакомер» и используется метеорологами. Предназначен он для измерения высоты нижнего края облачного покрова. По устройству он представляет из себя лидар, которые давно известны.
Экваториальной зоне свойственна значительная облачность, потому что пассаты приносят много влаги, а мощные восходящие токи обеспечивают ее конденсацию. Здесь обычны кучевые и грозовые облака.
В тропических зонах барических максимумов нисходящие токи исключают образование облаков.
В субэкваториальных поясах облачность изменяется по сезонам в связи с переменной циркуляцией: в сезон дождей — большая, в сухой — отсутствует. В субтропиках облачность большая зимой, когда в этих широтах находится умеренный воздух, и ничтожная летом — в период господства тропического воздуха.
В умеренных широтах облачность увеличивается в связи с западным переносом морского умеренного воздуха, фронтальной деятельностью, циклонами, прорывами фронтов. Здесь наблюдается сезонность и в количестве и в форме облаков. Зимой господствуют слоистые формы. Весной облачность уменьшается, появляются кучевые, а летом кучевые и кучево-дождевые. Осень — наиболее пасмурное время с слоистыми и слоисто-дождевыми облаками. В континентальных районах облачность меньше, в приморских больше. В полярных странах господствуют слоистые формы.
Средняя годовая облачность для всей Земли оценивается в 5,4 балла, над сушей — 4,8, над океанами — 5,8 балла. Самые облачные места — северные части Атлантического и Великого океанов, где облачность превышает 8 баллов, самые безоблачные — пустыни, не более 1—2 баллов.
Географическое значение облаков состоит в том, что из них выпадают осадки; они задерживают часть солнечной радиации и тем самым влияют на световой и тепловой режимы земной поверхности, препятствуют тепловому излучению Земли, создавая «тепличный эффект» . Наконец, облака осложняют работу авиации, аэрофотографирование и др.
Источник
Каким прибором измеряется облачность?
Облака — один из самых сложных для наблюдения метеорологических элементов, поэтому приборов нет.
Нужно на глаз определить степень покрытия небосвода облаками (10% — 1 балл облачности, 30% — 3 балла, весь небосвод покрыт облаками — 10 баллов) , род и вид облаков, хотя бы приблизительно — их высоту. Правда, есть метеостанции, запускающие в каждый срок наблюдений шар-пилот, скорость подъема которого известна; скрылся шар в облаках через столько-то секунд — и известна высота. Но во-первых, далеко не все станции запускают такие шары, во-вторых, шар может проскочить между кучевыми облаками, и в-третьих — и это самое главное — удачей считается именно последний случай, потому что шар-пилот нужен в первую очередь для определения не высоты облаков, а направления ветра на разных высотах.
[ссылка заблокирована по решению администрации проекта]
Характеристики облачности (определяются визуально)
Количество облаков — степень покрытия неба облаками (в определённый момент или в среднем за некоторый промежуток времени) , выраженная в 10-балльной шкале или в процентах покрытия. Современная 10—балльная шкала облачности принята на первой Морской Международной Метеорологической Конференции (Брюссель, 1853 г.) .
Отдельно определяется общее количество облаков и количество облаков нижнего яруса; эти числа записываются через дробную черту, например 10/4.
В авиационной метеорологии применяется 8-октантная шкала, которая проще при визуальном наблюдении: небо делится на 8 частей (то есть пополам, потом ещё пополам и ещё раз) , облачность указывают в октантах (восьмых долях неба) . В авиационных метеорологических сводках погоды (METAR, SPECI, TAF) количество облаков и высота нижней границы указывается по слоям (от самого нижнего к более верхним) , при этом используются градации количества:
FEW — незначительные (рассеянные) — 1-2 октанта (1-3 балла) ;
SCT — разбросанные (отдельные) — 3-4 октанта (4-5 баллов) ;
BKN — значительные (разорванные) — 5-7 октантов (6-9 баллов) ;
OVC — сплошные — 8 октантов (10 баллов) ;
SKC — ясно — 0 баллов (0 октантов) ;
NSC — нет существенной облачности (любой количество облаков с высотой нижней границы 1500 м и выше, при отсутствии кучево-дождевых и мощно-кучевых облаков) .
Указываются наблюдаемые формы облаков (латинскими обозначениями) в соответствии с международной классификацией облаков.
Высота нижней границы облаков (ВНГО)
Определяется ВНГО нижнего яруса в метрах. На ряде метеостанций (особенно авиационных) этот параметр измеряется прибором (погрешность 10-15 %), на остальных — визуально, ориентировочно (при этом погрешность может достигать 50-100 %; визуальная ВНГО — самый ненадёжно определяемый элемент погоды) .
Источник
МЕТЕОРОЛОГИЧЕСКИЕ ПРИБОРЫ
МЕТЕОРОЛОГИЧЕСКИЕ ПРИБОРЫ — приборы и установки для измерения и регистрации физических характеристик земной атмосферы (температуры, давления и влажности воздуха, скорости и направления ветра, облачности, осадков, прозрачности атмосферы), а также температуры воды и почвы, интенсивности солнечной радиации и т. д. С помощью М. п. обнаруживают и оценивают физ. процессы, к-рые не могут быть восприняты непосредственно, а также проводят научные исследования. М. п. применяются в различных областях науки и техники, во многих отраслях народного хозяйства.
В мед.-биол, практике М. п. используются для исследования и оценки климата отдельных районов, а также микроклимата жилых и производственных зданий.
Первый М. п. был создан в Индии более 2 тыс. лет назад для измерения количества выпадающих осадков, однако регулярно М. п. стали применять только в 17 в. после изобретения термометра и барометра. В России систематические климатол. инструментальные наблюдения проводятся с 1724 г.
В зависимости от способа регистрации данных М. п. разделяются на показывающие и самопишущие. С помощью показывающих М. п. получают визуальные данные, к-рые через имеющиеся в этих приборах отсчетные устройства позволяют определять значения измеряемых величин. К показывающим М. п. относятся термометры, барометры, анемометры, гигрометры, психрометры и др. Самопишущие М. п. (термографы, барографы, гигрографы и др.) автоматически записывают показания на движущейся бумажной ленте.
Температура воздуха, воды, почвы измеряется термометрами: жидкостными — ртутными и спиртовыми, биметаллическими, а также электротермометрами, в к-рых первичное восприятие температуры осуществляется посредством датчиков (см.) — термоэлектрических, терморезистивных, транзисторных и других преобразователей (см. Термометрия). Регистрация температуры производится при помощи термографов, а также посредством термоэлектрических преобразователей, соединенных (в т. ч. и дистанционно) с регистрирующими приборами. Влажность воздуха измеряется психрометрами (см.) и гигрометрами (см.) различного типа, а для регистрации изменения влажности во времени используют гигрографы.
Измерение и регистрацию скорости и направления ветра проводят с помощью анемометров, анемографов, анеморумбометров, флюгеров и т. д. (см. Анемометр). Количество выпадающих осадков измеряют осадкомерами и дождемерами (см. Дождемер), а регистрируют плювиографами. Атмосферное давление измеряют ртутными барометрами, анероидами, гипсотермометрами, а регистрируют барографами (см. Барометр). Интенсивность солнечной радиации, излучение земной поверхности и атмосферы измеряют пиргелиометрами, пир-геометрами, актинометрами, альбедо-метрами, а регистрируют пиранографами (см. Актинометрия).
Все большее значение приобретают дистанционные и автоматические М. п.
Библиография: Метеорологические приборы и автоматизация метеорологических измерений, под ред. Л. П. Афиногенова и М. С. Стернзата, Л., 1966; Рейфер А. Б. и др. Справочник по гидрометеорологическим приборам и установкам, Л., 1976.
Источник