Меню

Чем обеспечивается достоверность измерений



Что такое достоверность измерений?

Основная характеристика измерений – это достоверность измерений.

Достоверность измерений – это характеристика, определяющая степень доверия к полученным результатам измерений. По данной характеристике измерения делятся на достоверные и недостоверные. Достоверность измерений зависит того, известна ли вероятность отклонения результатов измерения от настоящего значения измеряемой величины. Если же достоверность измерений не определена, то результаты таких измерений, как правило, не используются. Достоверность измерений ограничена сверху погрешностью измерений.

Что такое воспроизводимость результатов измерений?

Воспроизводимость результатов измерений — близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.).

Примечание: Воспроизводимость измерений может характеризоваться средними квадратическими погрешностями сравниваемых рядов измерений.

Перечислите общие способы обнаружения и уменьшения систематических погрешностей.

Для устранения систематических погрешностей в процессе уже начатого измерения применяются различные способы

Способ введения поправок базируется на знании систематической погрешности и действующих закономерностей ее изменения. При использовании данного способа в результат измерения, полученный с систематическими погрешностями, вносят поправки, по величине равные этим погрешностям, но обратные по знаку.

Способ замещения состоит в том, что измеряемая величина заменяется мерой, помещенной в те же самые условия, в которых находился объект измерения. Способ замещения применяется при измерении следующих электрических параметров: сопротивления, емкости и индуктивности.

Способ компенсации погрешности по знаку состоит в том, что измерения выполняются два раза таким образом, чтобы погрешность, неизвестная по величине, включалась в результаты измерений с противоположным знаком.

Способ противопоставления похож на способ компенсации по знаку. Данный способ состоит в том, что измерения выполняют два раза таким образом, чтобы источник погрешности при первом измерении противоположным образом действовал на результат второго измерения.

Перечислите специальные способы обнаружения и уменьшения систематических погрешностей.

Источник

Точность и достоверность результатов измерений

Содержание

Точность и достоверность результатов измерений ……………………………8

Список использованной литературы …………………………………………..11

Введение

Метрология как наука и область практической деятельности человека зародилась в глубокой древности. На всем пути развития человеческого общества измерения были основой взаимоотношений людей между собой, с окружающими предметами, с природой. При этом вырабатывались определенные представления о размерах, формах, свойствах предметов и явлений, а также правила и способы их сопоставления.

С течением времени и развитием производства ужесточились требования к качеству метрологической информации, что привело в итоге к созданию системы метрологического обеспечения деятельности человека.
В данной работе мы рассмотрим одно из направлений метрологического обеспечения — метрологическое обеспечение деятельности по сертификации и стандартизации продукции в Российской Федерации.

Погрешность измерений

Метрология – наука об измерениях, методах средствах обеспечения их единства и способах достижения требуемой точности.

Измерение – нахождение значения физической величины опытным путем с помощью спец тех средств.

Значение физической величины это — количественная оценка, т.е. число, выраженное в определенных единицах, принятых для данной величины. Отклонение результата измерения от истинного значения физической величины называют погрешностью измерения:

где А – измеренное значение, А0 – истинное.

Так как истинное значение неизвестно, то погрешность измерения оценивают исходя из свойств прибора, условий эксперимента, анализа полученных результатов.

Обычно объекты исследования обладают бесконечным множеством свойств. Такие свойства называют существенными или основными. Выделение существенных свойств называют выбором модели объекта. Выбрать модель — значит установить измеряемые величины, в качестве которых принимают параметры модели.

Идеализация, присутствующая при построении модели, обуславливает несоответствие между параметром модели и реальным свойством объекта. Это приводит к погрешности. Для измерений необходимо, чтобы погрешность была меньше допустимых норм.

Виды, методы и методики измерений.

В зависимости от способа обработки экспериментальных данных различают прямые, косвенные, совокупные и совместные измерения.

Прямые — измерение, при котором искомое значение величины находят непосредственно из опытных данных (измерение напряжения вольтметром).

Косвенные — измерение, при котором искомое значение величины вычисляется по результатам прямых измерений других величин (коэффициент усиления усилителя вычисляют по измеренным значениям входного и выходного напряжений).

Результат, полученный в процессе измерения физической величины на некотором временном интервале — наблюдением. В зависимости от свойств исследуемого объекта, свойств среды, измерительного прибора и других причин измерения выполняют с однократным или многократным наблюдениями. В последнем случае для получения результата измерения требуется статистическая обработка наблюдений, а измерения называют статистическими.

В зависимости от точности оценки погрешности различают измерения с точным или с приближенным оцениванием погрешности. В последнем случае учитывают нормированные данные о средствах и приближенно оценивают условия измерений. Таких измерений большинство. Метод измерения – совокупность средств и способов их применения.

Числовое значение измеряемой величины определяют путем её сравнения с известной величиной — мерой.

Методика измерений — установленная совокупность операций и правил, выполнение которых обеспечивает получение результата измерений в соответствии с выбранным методом.

Читайте также:  Окпд 2 средства измерения метрология

Измерение – единственный источник информации о свойствах физических объектов и явлений. Подготовка к измерениям включает:

· анализ поставленной задачи;

· создание условий для измерений;

· выбор средств и методов измерений;

· опробование средств измерений.

Достоверность результатов измерений зависит от условий, в которых выполнялись измерения.

Условия – это совокупность величин, влияющих на значение результатов измерения. Влияющие величины разделяются на следующие группы: климатические, электрические и магнитные (колебания электрического тока, напряжения в сети), внешние нагрузки (вибрации, ударные нагрузки, внешние контакты приборов). Для конкретных областей измерений устанавливают единые нормальные условия. Значение физической величины, соответствующее нормальному, называют номинальным. При выполнении точных измерений применяют специальные средства защиты, обеспечивающие нормальные условия.

Организация измерений имеет большое значение для получения достоверного результата. Это в значительной мере зависит от квалификации оператора, его технической и практической подготовки, проверки средств измерений до начала измерительного процесса, а также выбранной методики проведения измерений. Во время выполнения измерений оператору необходимо:

· соблюдать правила по технике безопасности при работе с измерительными приборами;

· следить за условиями измерений и поддерживать их в заданном режиме;

· тщательно фиксировать отсчеты в той форме, в которой они получены;

· вести запись показаний с числом цифр после запятой на две больше, чем требуется в окончательном результате;

· определять возможный источник систематических погрешностей.

Принято считать, что погрешность округления при снятии отсчета оператором не должна изменять последнюю значащую цифру погрешности окончательного результата измерений. Обычно ее принимают равной 10 % от допускаемой погрешности окончательного результата измерений. В противном случае число измерений увеличивают настолько, чтобы погрешность округления удовлетворяла указанному условию. Единство одних и тех же измерений обеспечивается едиными правилами и способами их выполнения.

Слагаемые делят на погрешность меры, погрешность преобразования, погрешность сравнения, погрешность фиксации результата. В зависимости от источника возникновения могут быть:

· погрешности метода (из-за неполного соответствия принятого алгоритма математическому определению параметра);

· инструментальные погрешности (из-за того, что принятый алгоритм не может быть точно реализован практически);

· внешние ошибки — обусловлены условиями, в которых проводятся измерения;

· субъективные ошибки — вносятся оператором (неправильный выбор модели, ошибки отсчитывания, интерполяции и т.д.).

В зависимости от условий применения средств выделяют:

· основную погрешность средства, которая имеет место при нормальных условиях (температура, влажность, атмосферное давление, напряжение питания и т.д.), оговоренных ГОСТ;

· дополнительную погрешность, которая возникает при отклонении условий от нормальных.

В зависимости от характера поведения измеряемой величины различают:

· статическую погрешность — погрешность средства при измерении постоянной величины;

· погрешность средства измерения в динамическом режиме. Она возникает при измерении переменной во времени величины, из-за того, что время установления переходных процессов в приборе больше интервала измерения измеряемой величины. Динамическая погрешность определяется как разность между погрешностью измерения в динамическом режиме и статической погрешностью.

По закономерности проявления различают:

· систематическую погрешность — постоянную по величине и знаку, проявляющуюся при повторных измерениях (погрешность шкалы, температурная погрешность и т.д.);

· случайную погрешность — изменяющуюся по случайному закону при повторных измерениях одной и той же величины;

· грубые погрешности (промахи) следствие небрежности или низкой квалификации оператора, неожиданных внешних воздействий.

По способу выражения различают:

· абсолютную погрешность измерения, определяемую в единицах измеряемой величины, как разность между результатом измерения А и истинным значением А :

· относительную погрешность — как отношение абсолютной погрешности измерения к истинному значению:

Так как Аn , то на практике в вместо А подставляют Ап .

Абсолютную погрешность измерительного прибора

где Ап — показания прибора;

Относительную погрешность прибора:

Приведенную погрешность измерительного прибора

где L — нормирующее значение, равное конечному значению рабочей части шкалы, если нулевая отметка находится на краю шкалы; арифметической сумме конечных значений шкалы (без учета знака), если нулевая отметка находится внутри рабочей части шкалы; всей длине логарифмической или гиперболической шкалы.

Точность и достоверность результатов измерений

Точность измерений — степень приближения измерения к действительному значению величины.

Достоверность – это характеристика знаний как обоснованных, доказанных, истинных. В экспериментальном естествознании достоверными знаниями считаются те, которые получили документальное подтверждение в ходе наблюдений и экспериментов. Наиболее полным и глубоким критерием достоверности знаний является общественно-историческая практика. Достоверные знания следует отличать от вероятностных знаний, соответствие которых действительности утверждается только в качестве возможной характеристики.

Достоверность измерений – это показатель степени доверия к результатам измерения, то есть вероятность отклонений измерения от действительных значений. Точность и достоверность измерений определяются погрешностью из-за несовершенства методов и средств измерений, тщательности проведения опыта, субъективных особенностей и квалификации экспериментаторов и других факторов.

Государственная система приборов.

Повышение требований к количеству и качеству средств измерений для нужд народного хозяйства привело к созданию Государственной системы промышленных приборов и средств автоматизации (ГСП). ГСП – это совокупность изделий, предназначенных для использования в промышленности в качестве технических средств автоматических и автоматизированных систем контроля, измерения, регулирования и управления технологическими процессами (АСУТП). С помощью средств ГСП измеряются и регулируются величины: пространства и времени, механические, электрические, магнитные, тепловые и световые.

Читайте также:  Измерения человека для построения чертежа

Развитие науки и техники обуславливает повышение роли измерений. Количество средств и методов измерения непрерывно возрастает, при этом важно, чтобы количественное и качественное развитие метрологии происходило в рамках единства измерении, под которым понимают представление результатов в узаконенных единицах с указанием значения и характеристик погрешностей.

Заключение

В деятельности по метрологическому обеспечению участвуют не только метрологи, т.е. лица или организации, ответственные за единство измерений, но и каждый специалист: или как потребитель количественной информации, в достоверности которой он заинтересован, или как участник процесса её получения и обеспечения измерений.

Современной состояние системы метрологического обеспечения требует высокой квалификации специалистов. Механическое перенесение зарубежного опыта в отечественные условия невозможно, и специалистам необходимо иметь достаточно широкий кругозор, чтобы творчески подходить к выработке и принятию творческих решений на основе измерительной информации. Это касается не только работников производственной сферы. Знания в области метрологии важны и для специалистов по сбыту, менеджеров, экономистов, которые должны использовать достоверную измерительную информацию в своей деятельности.

Список использованной литературы

1. Под ред. В. А. Швандара, Стандартизация и управление качеством продукции: Учебник для ВУЗов, В. Пейджер, Е. М. Купряков и др.; — М.: Юнити-Дана, 2000;

Источник

Точность и достоверность результата измерения

Применение рассмотренных выше элементов общей теории измерений необходимо для обеспечения точности и достоверности результата измерения. При многократных наблюдениях получают ряд значений, обрабатывая которые находят результат измерения. Для обработки применяют инструменты математической статистики, рассматривая ряд значений как выборку из генеральной совокупности. Опираясь на теорию вероятностей, математическая статистика позволяет оценить надежность и точность выводов, делаемых на основании ограниченного статистического материала.

Точность характеризуется значением, обратным значению относительной погрешности. Величина, обратная абсолютной погрешности, называется мерой точности. В зависимости от требуемой точности, в процессе измерений могут применяться как однократные, так и многократные наблюдения. Если выполняется лишь одно наблюдение, то результат наблюдения является результатом измерения. Если выполняется больше одного наблюдения, результат измерения получают в итоге обработки результатов наблюдений, как правило, в виде среднего арифметического.

Требуемая точность технических измерений может также обеспечиваться повторением многократных наблюдений. В этом случае многократные наблюдения одного и того же объекта выполняются несколько раз. Чтобы сократить время, необходимое для обработки нескольких рядов многократных наблюдений, в начале процесса обработки применяют индикаторы, позволяющие определить предпочтительный ряд и в дальнейшем обрабатывать только этот ряд.

Такими индикаторами является сумма остаточных погрешностей и сумма квадратов остаточных погрешностей. Эти индикаторы являются косвенной характеристикой несмещенности и эффективности оценки, полученной при обработке результатов многократных наблюдений.

Если измерения проводились несколько раз и получено несколько рядов результатов наблюдений, то при одинаковом количестве наблюдений в разных рядах наименьшую сумму остаточных погрешностей будет иметь тот ряд, в котором результаты распределились симметрично относительно среднего арифметического значения, т.е. наиболее близко к нормальному закону. Для дальнейших вычислений рекомендуется выбирать именно его, т.к. он в наибольшей степени будет удовлетворять условию равноточности, а при исключенной систематической погрешности — условию несмещенности оценки результата измерения.

Несмещенная оценка — статистическая оценка, математическое ожидание которой совпадает с оцениваемой величиной. Про несмещенную оценку говорят, что она лишена систематической ошибки.

Однако симметричность не является исчерпывающей характеристикой распределения. Следующим важным в метрологии признаком является компактность распределения. По этому признаку при фиксированном числе наблюдений предпочтительный ряд может быть определен индикатором эффективности. Эффективной называется та из нескольких возможных несмещенных оценок, которая имеет наименьшую дисперсию. Условию эффективности будет удовлетворять ряд с наименьшей суммой квадратов остаточных погрешностей.

Очевидно, что в практической метрологии эффективная оценка является предпочтительной. Признак эффективности свидетельствует о том, что субъективная составляющая случайной погрешности минимальна, наблюдения выполнялись более аккуратно и будет обеспечен наименьший размер случайной погрешности.

В теоретической метрологии рассматривается также состоятельная оценка, являющаяся идеальной моделью для многократных измерений, к которой желательно стремиться, но получить ее практически невозможно. При состоятельной оценке истинное и действительное значение совпадают, погрешность равна нулю. Это достигается бесконечным увеличением числа наблюдений. Состоятельной называется оценка, в которой при числе наблюдений, стремящемся к бесконечности, дисперсия стремится к нулю.

Достоверность результата измерения полагается высокой, если P близка к единице ( P — вероятность, с которой истинное значение физической величины удалено от действительного значения на интервал, не превышающий погрешности). В технических измерениях значение P, как правило, принимается равным 0,95. Это говорит о том, что если проводить такие измерения 100 раз, то в 95 случаях истинное значение окажется удалено от действительного значения на интервал, размеры которого не превышают погрешности, а в 5 случаях окажется удалено на интервал, превышающий погрешность. Поэтому в измерениях, имеющих непосредственное влияние на безопасность и здоровье, значение P принимается равным 0,99. Такую же вероятность назначают при однократных измерениях. Это объясняется тем, что при прочих равных обстоятельствах (в первую очередь, при одинаковом числе наблюдений), размеры P и \Delta взаимосвязаны: чем больше P, тем больше \Delta, следовательно, назначая высокую степень уверенности, мы рассматриваем наихудший вариант контролируемых событий.

Читайте также:  Анемометр для измерения скорости воздушного потока

Задавая большую степень неопределенности контролируемым посредством измерений событиям, мы получаем большую уверенность в том, что они произойдут.

Существует способ одновременно увеличивать достоверность и уменьшать неопределенность результата измерений, т.е. увеличивать P и уменьшать \Delta. Этот способ — увеличение числа наблюдений, n. Однако дополнительные наблюдения делают более дорогим процесс измерения. В этой связи актуален рассмотренный в первом разделе вопрос корректной записи результатов измерений.

2.5. Прямые равноточные измерения с многократными наблюдениями

ГОСТ 8.207-76 Прямые измерения

Метод прямых равноточных измерений с многократными наблюдениями является основополагающим, используется в технических измерениях для повышения достоверности результата, является основой для многих методов метрологических измерений, для методов косвенных измерений.

Классификация прямых и многократных измерений рассмотрена выше. Требование прямых измерений связано с правилами учета погрешности. Современные средства измерений, как правило, являются сложными устройствами, выполняющими косвенное измерение физических величин. Однако результаты, как правило, рассматриваются как результаты прямых измерений, — поскольку погрешность косвенных измерений внутри средства измерений уже учитывается его классом точности.

Равноточность измерений истолковывается в широком смысле, как одинаковая распределенность (в узком смысле равноточность измерений понимается как одинаковость меры точности всех результатов измерений). Наличие грубых ошибок (промахов) означает нарушение равноточности как в широком, так и в узком смысле.

На практике условие равноточности считается выполненным, если наблюдения производятся одним и тем же оператором, в одинаковых условиях внешней среды, с помощью одного и того же средства измерения. При таких условиях будут получены равнорассеянные (по-другому, равноточные, от слов равная точность), т.е. одинаково распределенные случайные величины.

Метод прямых равноточных измерений с многократными наблюдениями изложен в ГОСТ 8.207 — 76. В этом разделе дополнительно к ГОСТ 8.207 — 76 приводятся необходимые для выполнения расчетов сведения и комментарии.

Комментарии к ГОСТ 8.207 — 76. Раздел 2. Результат измерения и оценка его среднего квадратического отклонения

Результат измерения находят как среднее арифметическое результатов наблюдений:

где n — число наблюдений.

Для оценки среднего квадратического отклонения результата измерения находим случайные отклонения результатов отдельных наблюдений, принимаем их за остаточные погрешности,

Для минимизации случайной и систематической составляющих погрешности, при наличии нескольких групп наблюдений (реализаций), используют два свойства остаточных погрешностей: сумма остаточных погрешностей равна нулю,

и сумма квадратов остаточных погрешностей минимальна,

Для дальнейших вычислений рекомендуется выбрать реализацию, удовлетворяющую этим условиям.

Степень рассеяния результатов наблюдений вокруг среднего арифметического значения характеризуется средним квадратическим отклонением, (СКО):

Среднее квадратическое отклонение результатов наблюдения — числовая характеристика из теории вероятности, в практической метрологии вместо него применяется оценка СКО:

Оценка СКО учитывает ограниченность объем а выборки: при малом объем е выборки оценка СКО будет заметно больше, чем СКО, а при большом объем е выборки оценка СКО не будет заметно отличаться от СКО.

Полученное значение СКО результатов наблюдения не так универсально, как среднее арифметическое исправленных результатов наблюдений и не может быть непосредственно принято за значение случайной погрешности результата измерения. Для этого, прежде всего, необходимо восстановить размерность физической величины, ликвидировав нелинейность преобразования физической величины, разделив СКО результатов наблюдения на корень из n. Полученное значение принимают за оценку среднего квадратического отклонения результата измерения:

Комментарии к ГОСТ 8.207 — 76. Раздел 4. Доверительные границы не исключенной систематической погрешности результата измерения

Источники систематической погрешности разнообразны. Ее могут вызвать условия измерения, метод измерения, особенности средства измерения и другие причины. Существенный вклад вносит и трудно исключается инструментальная составляющая систематической погрешности. Эту составляющую будем рассматривать в качестве не исключенной систематической погрешности. При этом различаются основная и дополнительная инструментальная погрешность. Обе погрешности определяются классом точности средства измерения. Дополнительная погрешность возникает при выходе условий измерения за нормальные пределы и принимается равной удвоенному значению основной погрешности.

Предположим, что наблюдения были получены в результате измерения цифровым вольтметром, имеющим класс точности, обозначенный цифрой 1,5 в кружочке, причем условия измерения выходили за нормальные пределы.

Основная инструментальная погрешность:

Дополнительная инструментальная погрешность:

Вычисление систематической составляющей погрешности, \theta и случайной составляющей погрешности, \varepsilon, а также определение на их основе погрешности результата измерения, \Delta, выполняется согласно ГОСТ 8.207 — 76.

Источник