Чем основан принцип измерения физических величин

Принципы измерения

Методы измерения и их реализация

Измерение – это нахождение значения физической величины опытным путём с помощью специальных технических средств.

По зависимости измерительной величины от времени:

По способу получения результатов:

Прямые – измерения, которыми непосредственно определяются значения одной из величин (линейный размер, масса, температура).

Косвенные – измерения, при которых значения физических величин определяются на основе зависимости этой величины от других, определяемыми другими методами (углы косинусов).

Совокупные – измерение значений однотипных физических величин и наложение их путём решений систем уравнений.

По способу представлений результатов измерений:

Абсолютные – измерения, при которых определяются значения одной или нескольких величин прямым методом.

Относительные – измерения, в результате которых определяются отношения двух или нескольких физических величин (плотность, влажность).

По точности измерений:

С наибольшей возможной точностью (эталонные), предназначающиеся для воспроизведения с наивысшей точностью и передачи единицы величины.

Контрольно-проверочные измерения, направленные на определение точности (погрешности) измерений.

Технические измерения, направленные на определение значений физических величин.

Методы измерений – совокупность применения принципов и средств измерения:

Метод непосредственной оценки, при котором значение физической величины определяется прямыми абсолютными измерениями, а результат наблюдается по шкале измеряемого устройства.

Метод сравнения с мерой.

∆=X-Q,где X – измеряемое значение физической величины, Q – истинное значение, ∆ — абсолютная погрешность.

Принципы измерения.

Принцип измерений – физические явления, положенные в основу измерений (пневматический – зависимость давления воздуха от раствора).

4)индуктивный принцип, основанный на зависимости индуктивности катушки L на положении сердечника;

5)пневматический принцип, основанный на зависимости давления в пневмокамере от размеров проходного сечения сопла;

1-шток

1-источник света

2-скрученная лента – чувствительный элемент

1-

Источник

Принципы и методы измерения

Измерения физических величин и их классификация

Лекция 3. ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН

3.1 Измерения физических величин и их классификация

3.2 Принципы, методы измерений

3.3. Методика выполнения измерений

Достоверность измерительной информации является основой для анализа, прогнозирования, планирования и управления производством в целом, способствует повышению эффективности учета сырья, готовой продукции и энергетических затрат, а также повышению качества готовой продукции.

Измерение — совокупность операций, выполняемых для определения количественного значения величины;

Измерение физической величины – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей и получение значения этой величины.

Объект измерения – реальный физический объект, свойства которого характеризуются одним или несколькими измеряемыми ФВ.

измерительная техника – совокупность технических средств, служащих для выполнения измерений.

Основной потребитель измерительной техники – промышленность. здесь измерительная техника является неотъемлемой частью технологического процесса, так как используется для получения информации о технологических режимах, определяющих ход процессов.

технологические измерения – совокупность измерительных устройств и методов измерений, используемых в технологических процессах.

Объект измерений тело (физическая система, процесс, явление и т. д.), которое характеризуется одной или несколькими измеряемыми или подлежащими измерению физическими величинами.

Качество измерений – это совокупность свойств, обусловливающих соответствие средств, метода, методики, условий измерений и состояния единства измерений требованиям измерительной задачи.

Измерения классифицируются по следующим признакам:

3.1.1 По зависимости измеряемой величины от времени на статические и динамические;

Статические измерения–измерения физической величины, принимаемой в соответствии с измерительной задачей за постоянную на протяжении времени измерения (например, измерение размера детали при нормальной температуре).

Динамические измерения – измерения физической величины, размер которой изменяется с течением времени (например, измерение массовой доли воды в продукте в процессе сушки).

3.1.2 По способу получения результатов на прямые, косвенные, совокупные, совместные;

Прямое измерение – измерение, при котором искомое значение физической величины находят непосредственно из опытных данных. В процессе прямого измерения объект измерения приводится во взаимодействие со средством измерения и по показаниям последнего отсчитывают значение измеряемой величины. Примером прямых измерений могут служить измерения длины линейкой, массы с помощью весов, температуры стеклянным термометром и активной кислотности при помощи рН-метра и т. д.

К прямым измерениям относят измерения подавляющего большинства параметров химико-технологического процесса.

Косвенное измерение – измерение, при котором искомое значение величины находят на основании известной зависимости между этой величиной и величинами, полученными прямым измерением.

Косвенные измерения применяют в двух случаях:

· отсутствует измерительное средство для прямых измерений;

· прямые измерения недостаточно точны.

При проведении химических анализов состава и свойств пищевых веществ широко применяются косвенные измерения. Примером косвенных измерений могут служить измерения плотности однородного тела по его массе и объему; определение массовой доли воды в рыбных продуктах методом высушивания при температуре 105 о С, сущность которого заключается в высушивании продукта до постоянной массы и определении массовой доли воды по формуле:

где М1 – масса бюксы с навеской до высушивания, г; М2 – масса бюксы с навеской после высушивания, г; М – масса навески.

Совокупные измерения – измерения нескольких однородных величин, при которых искомые значения величин находят решением системы уравнений, получаемых при прямых измерениях различных сочетаний этих величин (измерения, при которых масса отдельных гирь набора находится по известной массе одной из них и по результатам прямых сравнений масс различных сочетаний гирь).

Совместные измерения – одновременные измерения двух или нескольких неодноименных величин для нахождения зависимости между ними (например, производимые одновременно измерения приращения длины образца в зависимости от изменений его температуры и определение коэффициента линейного расширения по формуле k= l/(l Dt)).

Совместные измерения практически не отличаются от косвенных.

3.1.3. По связи с объектом на контактные и бесконтактные, при который чувствительный элемент прибора приводится или не приводится в контакт с объектом измерения.

3.1.4. По условиям точностина равноточные и неравноточные.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различными по точности средствами измерений и в разных условиях. Например, массовую долю воды в вяленой рыбе определяли двумя методами: сушкой при температуре 130 о С и на приборе ВЧ при температуре 150 о С, допустимая ошибка в первом случае +1 %, во втором – +0,5 %.

3.1.5 По числу измерений в ряду измерений на однократные и многократные.

Однократное измерение – измерения, выполненное один раз (измерение конкретного времени по часам).

Многократное измерение– измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений т.е. состоящее из ряда однократных измерений. Обычно многократными измерениями считаются те, которые производят больше трех раз. За результат многократных измерений обычно принимают среднее арифметическое значение отдельных измерений.

3.1.6. По метрологическому назначению на технические, метрологические;

Техническое измерение – измерение, выполненное при помощи рабочего средства измерений с целью контроля и управления научными экспериментами, контроля параметров изделий и т. д. (измерение температуры в коптильной печи, определение массовой доли жира в рыбе).

Метрологическое измерение– измерение, производимое при помощи эталона и образцовых средств измерений с целью введения новой единиц физической величины или передачи ее размера рабочим средствам измерений.

3.1.7 По выражению результата измерений на абсолютные и относительные;

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и на использовании физических констант. Например, измерение силы тяжести основано на измерении основной величины – массы (m) и использовании физической постоянной g: F = mg.

Относительное измерение – измерение, производимое с целью получения отношения величины к одноименной величине, играющей роль единицы, или измерения величины по отношению к одноименной величине, принятой за исходную. Например, измерение относительной влажности воздуха.

3.1.8. По сложившимся совокупностям измеряемых величин на электрические (сила тока, напряжение, мощность), механические (масса, количество изделий, усилия);, теплоэнергетические (температура, давление);, физические (плотность, вязкость, мутность); химические(состав, химические свойства, концентрация) , радиотехнические и т. д.

Анализ состояния измерений в пищевой промышленности позволил установить качественный и количественный состав парка измерительной техники, который характеризуется следующим соотношением (%):

– теплотехнические измерения – 50,7;

– механические измерения – 30,4;

– физико-химические измерения – 6,2;

– измерения времени и частоты – 0,6.

Принцип измерений – физическое явление или эффект, положенное в основу измерений. Например, измерение температуры жидкостным термометром основано на увеличении объема жидкости при повышении температуры.

Метод измерений — прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализуемыми принципами измерений.

Классификация измерительных методов представлена на рис.3.1.

Рис 3.1. Классификация методов измерений

Метод непосредственной оценки – метод измерений, в котором значение измеряемой величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия (с отсчетом по шкале или по шкале нониусу – вспомогательной шкале по которой отсчитывают доли деления основной шкалы). Например, отсчет по часам, линейке.

Метод сравнения с мерой – метод измерения, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

Мера – СИ, предназначенное для воспроизведения ФВ заданного размера

Метод сравнения бывает нулевой, дифференциальный, замещения.

Нулевой метод – разновидность дифференциального метода, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля ( чашечные весы). В этом случае значение измеряемой величины равно значению, которое воспроизводит мера.

При дифференциальном методе измеряемая величина х сравнивается непосредственно или косвенно с величиной хм воспроизводимой мерой . О значении х судят по измеряемой прибором разности Δх = х – хм одновременно измеряемых величин х и хм и по известной величине хм, воспроизводимой мерой. Тогда

Метод замещения — метод, в котором искомую величину замещают мерой с известным значением.

В зависимости от контакта с измеряемой величиной методы подразделяются на контактные и бесконтактные, при который чувствительный элемент прибора приводится или не приводится в контакт с объектом измерения. Примером контактного измерения может служить измерение температуры продукта термометром, а бесконтактного – измерение температуры в доменной печи пирометром.

В зависимости от принципа, положенного в основу измерения методы подразделяются на физический, химический, физико-химический, микробиологический, биологический.

Физический метод – метод основан на регистрации аналитического сигнала, фиксирующего некоторое свойство, как результат физического процесса.

С помощью физического метода определяют физические свойства гидробионтов ( массу, длину, цвет) и многие параметры контроля технологического процесса( температуру , давление, время и т.д.) При проведении исследования предусматривают применение различных измерительных приборов. Это метод наиболее объективный и прогрессивный.

Преимущества – быстрота определения, точность результата

Недостатки – невозможность определения многих показателей, в основном аналитических

Химических метод – основан на фиксировании аналитического сигнала, возникающего как результат химической реакции, применяется для оценки состава и свойств продукта.. Например: титрометрия (определение солености, гравиметрия – определение содержания сульфатов в поваренной соли).

Преимущества: наиболее точный и объективный.

Недостатки: длительность анализа, требует подготовки реактивов, большого количества посуды.

Физико-химический метод – основан на регистрации сигнала, возникающего как результат химической реакции, но который при этом фиксируется в виде измерения какого-либо физического свойства. Является в настоящее время наиболее прогрессивный. Физико-химические методы подразделяются на:

— оптические методы – используется связь между оптическими свойствами системы и ее составом.

калориметрический Если – основанные на измерении поглощения электромагнитной энергии в узком интервале длины света (определение количества фенолов, содержания витаминов и т.д.).

рефрактометрический – основанные наизмерении показателя преломления раствора (определение содержания сухих веществ в томате).

потенциалометрический – основан на определении равновесного потенциала ( измерение ЭДС) и нахождении зависимостью между его величиной потенциалоопределяющим компонентом раствора ( Определение РН раствора)

полярографический – основан на определении зависимости силы тока от увеличения напряжения на электроде ячейки погруженной в раствор ( определение тяжелый металлов)

кондуктометрический – основан на определении электрической проводимости растворов электролитов ( определение тяжелых металлов, концентрации пов.соли в растворе).

— комбинированные методы -основаны на разделении сложных смесей на отдельные компоненты и их количественном определении, бывают: хроматографические ( тонкослойной – определение жирнокислотного состава; газожидкостная _ определение аминокислотного состава, пестицидов, адсорбционная, ионообменная ).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Измерение

Измерение — совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений — мер, измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).

  • Принцип измерений — физическое явление или эффект, положенное в основу измерений.
  • Метод измерений — приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность или неопределённость. Примеры измерений:

  1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).
  2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая, или не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов.

Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.

Содержание

Классификация измерений

По видам измерений

Согласно РМГ 29-99 «Метрология. Основыне термины и определения» выделяют следующие виды измерений:

  • Прямое измерение — измерение, при котором искомое значение физической величины получают непосредственно.
  • Косвенное измерение — определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
  • Совместные измерения — проводимые одновременно измерения двух или нескольких неодноимённых величин для определения зависимости между ними.
  • Совокупные измерения — проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.
  • Равноточные измерения — ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.
  • Неравноточные измерения — ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.
  • Однократное измерение — измерение, выполненное один раз.
  • Многократное измерение — измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, то есть состоящее из ряда однократных измерений
  • Статическое измерение — измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.
  • Динамическое измерение — измерение изменяющейся по размеру физической величины.
  • Абсолютное измерение — измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
  • Относительное измерение — измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

Также стоит отметить, что в различных источниках дополнительно выделяют таки виды измерений: метрологически и технические, необходимые и избыточные и др.

По методам измерений

  • Метод непосредственной оценки — метод измерений, при котором значение величины определяют непосредственно по показывающему средству измерений.
  • Метод сравнения с мерой — метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.
    • Нулевой метод измерений — метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля.
    • Метод измерений замещением — метод сравнения с мерой, в котором измеряемую величину замещают мерой с известным значением величины.
    • Метод измерений дополнением — метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.
    • Дифференциальный метод измерений — метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.

По условиям, определяющим точность результата

  • Метрологические измерения
    • Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения [1] .
    • Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения [1] .
  • Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др. [1]

По отношению к изменению измеряемой величины

Статические и динамические.

По результатам измерений

  • Абсолютное измерение — измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.
  • Относительное измерение — измерение отношения величины к одноимённой величине, играющей роль единицы, или измерение изменения величины по отношению к одноимённой величине, принимаемой за исходную.

Классификация рядов измерений

По точности

  • Равноточные измерения — однотипные результаты, получаемые при измерениях одним и тем же инструментом или им подобным по точности прибором, одним и тем же (или аналогичным) методом и в тех же условиях.
  • Неравноточные измерения — измерения, произведённые в случае, когда нарушаются эти условия.

По числу измерений

  • Однократное измерение — измерение выполненное один раз
  • Многократное измерение — Измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений

Классификация измеряемых величин

По точности

По результатам измерений

  • Равнорассеянные и неравнорассеянные

История

Этот раздел статьи ещё не написан.

Единицы и системы измерения

См. также

Примечания

  1. 123 Метрология и технические измерения. Колчков В. И. Ресурс «ТОЧНОСТЬ-КАЧЕСТВО»]

Литература и документация

Литература

  • Кушнир Ф. В. Радиотехнические измерения: Учебник для техникумов связи. — М.: Связь, 1980
  • Нефедов В. И., Хахин В. И., Битюков В. К. Метрология и радиоизмерения: Учебник для вузов. — 2006
  • Пронкин Н. С. Основы метрологии: Практикум по метрологии и измерениям. — М.: Логос, 2007

Нормативно-техническая документация

  • РМГ 29-99 ГСИ. Метрология. Основные термины и определения
  • ГОСТ 8.207-76 ГСИ. Прямые измерения с многократными наблюдениями. Методы обработки результатов наблюдений. Основные положения
  • МИ 2222-92 ГСИ. Виды измерений. Классификация

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Измерение» в других словарях:

ИЗМЕРЕНИЕ — представление свойств реальных объектов в виде числовой величины, один из важнейших методов эмпирического познания. В самом общем случае величиной называют все то, что может быть больше или меньше, что может быть присуще объекту в большей или… … Философская энциклопедия

Измерение X — Измерение Икс … Википедия

измерение — замер, обмер; вымеривание, установление, фиксирование, замеривание, распознавание, промер, диагностирование, смеривание, нахождение, обмеривание, определение Словарь русских синонимов. измерение см. установление 2 Словарь синонимов … Словарь синонимов

измерение — (в психологии) научный метод представления числами интересующего психического свойства или параметров психического процесса на основе нек рых процедурных правил. Совокупность теоретико математических представлений и процедурных правил,… … Большая психологическая энциклопедия

измерение — – получение информации о величине (значении) аналитического сигнала (см. примечание). Примечание Слова измерение , измерять рекомендуется относить только к аналитическому сигналу, т.е. к физическому свойству (параметру), которое используется в… … Химические термины

ИЗМЕРЕНИЕ — ИЗМЕРЕНИЕ, измерения, ср. 1. Действие по гл. измерить измерять. Измерение роста. 2. Измеряемая величина, протяжение (мат.). Куб имеет три измерения: длину, высоту и ширину. ❖ Четвертое измерение (ирон.) перен. сверхъестественная и бесплодно… … Толковый словарь Ушакова

ИЗМЕРЕНИЕ — последовательность эксперим. и вычислит. операций, осуществляемая с целью нахождения значения физ. величины, характеризующей нек рый объект или явление. И. завершается определением степени приближения найденного значения к истинному значению… … Физическая энциклопедия

ИЗМЕРЕНИЕ — ИЗМЕРЕНИЕ, действия, производимые с целью нахождения числовых значений какой либо величины в принятых единицах измерения. Измерение выполняют с помощью соответствующих средств измерения (линейка, часы, весы и т.д.). Различают прямые… … Современная энциклопедия

ИЗМЕРЕНИЕ — совокупность действий, выполняемых при помощи средств измерений с целью нахождения числового значения измеряемой величины в принятых единицах измерения. Различают прямые измерения (напр., измерение длины проградуированной линейкой) и косвенные… … Большой Энциклопедический словарь

измерение — Сравнение конкретного проявления измеряемого свойства (измеряемой величины) со шкалой (частью шкалы) измерений этого свойства (величины) с целью получения результата измерения (значения величины или оценки свойства). [МИ 2365 96] измерение… … Справочник технического переводчика

Измерение — ИЗМЕРЕНИЕ, действия, производимые с целью нахождения числовых значений какой либо величины в принятых единицах измерения. Измерение выполняют с помощью соответствующих средств измерения (линейка, часы, весы и т.д.). Различают прямые… … Иллюстрированный энциклопедический словарь

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector