Меню

Что можно измерить косвенными измерениями



МИ 2083-90 ГСИ. Измерения косвенные. Определение результатов измерений и оценивание их погрешностей

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ОПРЕДЕЛЕНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ И ОЦЕНИВАНИЕ ИХ ПОГРЕШНОСТЕЙ

КОМИТЕТ СТАНДАРТИЗАЦИИ И МЕТРОЛОГИИ СССР

1. ОБЩИЕ ПОЛОЖЕНИЯ

2. КОСВЕННЫЕ ИЗМЕРЕНИЯ ПРИ ЛИНЕЙНОЙ ЗАВИСИМОСТИ

3. КОСВЕННЫЕ ИЗМЕРЕНИЯ ПРИ НЕЛИНЕЙНОЙ ЗАВИСИМОСТИ

4. МЕТОД ПРИВЕДЕНИЯ

5. ФОРМЫ ПРЕДСТАВЛЕНИЯ РЕЗУЛЬТАТА ИЗМЕРЕНИЯ

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ, ИСПОЛЬЗУЕМЫЕ В РЕКОМЕНДАЦИИ

КРИТЕРИЙ ОТСУТСТВИЯ КОРРЕЛЯЦИОННОЙ СВЯЗИ МЕЖДУ ПОГРЕШНОСТЯМИ РЕЗУЛЬТАТОВ ИЗМЕРЕНИИ АРГУМЕНТОВ

ГСИ. ИЗМЕРЕНИЯ КОСВЕННЫЕ

Определение результатов измерений и оценивание их погрешностей

Дата введения 01.01.92

Настоящая рекомендация распространяется на нормативно-техническую документацию, содержащую методики выполнения косвенных измерений, и устанавливает основные положения определения результатов измерений и оценивание их погрешностей при условии, что аргументы, от которых зависит измеряемая величина, принимаются за постоянные физические величины; известные систематические погрешности результатов измерений аргументов исключены, а неисключенные систематические погрешности распределены равномерно внутри заданных границ ± θ.

Термины и определения, используемые в настоящей рекомендации, приведены в приложении 1.

1. ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Искомое значение физической величины А находят на основании результатов измерений аргументов а1, . . . , а i , . . . , а m , связанных с искомой величиной уравнением

. ( 1)

Функция f должна быть известна из теоретических предпосылок или установлена экспериментально с погрешностью, которой можно пренебречь.

1.2. Результаты измерений аргументов и оценки их погрешностей могут быть получены из прямых, косвенных, совокупных, совместных измерений. Сведения об аргументах могут быть взяты из справочной литературы, технической документации.

1.3. При оценивании доверительных границ погрешностей результата косвенного измерения обычно принимают вероятность, равную 0,95 или 0,99. Использование других вероятностей должно быть обосновано.

1.4. Основные положения рекомендации устанавливаются для оценивания косвенно измеряемой величины и погрешностей результата измерения:

при линейной зависимости и отсутствии корреляции между погрешностями измерений аргументов (разд. 2);

при нелинейной зависимости и отсутствии корреляции между погрешностями измерений аргументов (разд. 3);

для коррелированных погрешностей измерений аргументов при наличии рядов отдельных значений измеряемых аргументов (разд. 4).

Примечание. Критерий проверки гипотезы об отсутствии корреляции между погрешностями измерений аргументов приведен в приложении 2.

2. КОСВЕННЫЕ ИЗМЕРЕНИЯ ПРИ ЛИНЕЙНОЙ ЗАВИСИМОСТИ

2.1. Искомое значение A связано с m измеряемыми аргументами a 1 , a 2 , . . . , am уравнением

Корреляция между погрешностями измерений аргументов отсутствует.

Примечание. Если коэффициенты b 1 , b 2 . bm определяют экспериментально, то задача определения результата измерения величины решается поэтапно: сначала оценивают каждое слагаемое bi · ai ; как косвенно измеряемую величину, полученную в результате произведения двух измеряемых величин, а потом находят оценку измеряемой величины A .

2.2. Результат косвенного измерения вычисляют по формуле

(3)

где — результат измерения аргумента а i ; m — число аргументов.

2.3. Среднее квадратическое отклонение результата косвенного измерения вычисляют по формуле

(4)

где — среднее квадратическое отклонение результата измерения аргумента ai .

2.4. Доверительные границы случайной погрешности результата косвенного измерения при условии, что распределения погрешностей результатов измерений аргументов не противоречат нормальным распределениям, вычисляют (без учета знака) по формуле

(5)

где tq , — коэффициент Стьюдента, соответствующий доверительной вероятности P = l — q и числу степеней свободы f эф , вычисляемому по формуле

(6)

где ni , — число измерений при определении аргумента ai , .

2.5. Границы неисключенной систематической погрешности результата косвенного измерения вычисляют следующим образом.

2.5.1. Если неисключенные систематические погрешности результатов измерений аргументов заданы границами θ i ; то доверительные границы неисключенной систематической погрешности результата косвенного измерения Θ( p ) (без учета знака) при вероятности P вычисляют по формуле

( 7)

где k — поправочный коэффициент, определяемый .принятой доверительной вероятностью и числом m составляющих Θ i .

Читайте также:  Как измерить температуру ребенку если он сопротивляется

При доверительной вероятности Р = 0,95 поправочный коэффициент k принимают равным 1,1.

При доверительной вероятности Р = 0,99 поправочный коэффициент принимают равным 1,4, если число суммируемых составляющих m >4. Если же число составляющих m ≤4, то поправочный коэффициент k ≤1,4; более точное значение k можно найти с помощью графика зависимости

где m — число суммируемых составляющих (аргументов); l — параметр, зависящий от соотношения границ составляющих.

На графике кривая 1 дает зависимость k от l при m = 2, кривая 2 — при m = 3, кривая 3 — при m = 4.

Погрешность, возникающая при использовании формулы ( 7) для суммирования неисключенных систематических погрешностей, не превышает 5 % (расчеты получены на основе анализа результатов композиций равномерных распределений).

2.5.2. Если границы неисключенных систематических погрешностей результатов измерений аргументов заданы доверительными границами, соответствующими вероятностям Pi , (границы неисключенных систематических погрешностей результатов измерений аргументов вычислены по формуле ( 7), то границы неисключенной систематической погрешности результата косвенного измерения для вероятности P вычисляют (без учета знака) по формуле

(8)

Для вероятности P = 0,95 ki = 1,1; для Р = 0,99 значения коэффициентов ki определяют в соответствии с п. 2.5.1.

2.6. Погрешность результата косвенного измерения оценивают на основе композиции распределений случайных и неисключенных систематических погрешностей.

2.6.1. Если , то за погрешность результата косвенного измерения принимают неисключенную систематическую составляющую погрешности измерения и ее границы вычисляют в соответствии с п. 2.5.

2.6.2. Если , за погрешность результата косвенного измерения принимают случайную составляющую погрешности измерения и ее границы вычисляют в соответствии с п. 2.4.

2.6.3. Если , то доверительную границу погрешности результата косвенного измерения ∆( P ) вычисляют (без учета знака) по формуле

где K — коэффициент, зависящий от доверительной вероятности и от отношения .

Значения коэффициента K в зависимости от отношения для вероятности P = 0,95 и P = 0,99:

Источник

Что такое косвенные измерения?

Косвенные измерения – это измерения, при которых определение искомого значения физической величины производится на ос­новании результатов прямых измерении других физических вели­чин, функционально связанных с искомой величиной.

Результат находят из решения уравнения, выражающего эту зависимость:

где Q – измеряемая величина; X, Y, Z. W – величины, размер которых определяется из прямых измерений.

Например, требуется измерить удельное электрическое сопротивление некоторого материала. Так как приборов для прямых измерений удельного сопротивления нет, его можно измерить только косвенно. Для этого воспользуемся уравнением

,

где р – удельное сопротивление; R – электрическое сопротивление; S – площадь поперечного сечения; L – длина образца.

Если измерить длину L, площадь поперечного сечения S и электрическое сопротивление R, то можно вычислить и его удельное сопротивление.

Косвенные измерения достаточно часто встречаются в метрологии, где ими пользуются при воспроизведении единиц. Такие измерения позволяют получать более точный результат, чем прямые. Особенно велика роль косвенных измерений в естественных науках, когда реализация прямых измерений при изучении явлений затруднительна. Например, явления, изучаемые в астрономии, молекулярной и атомной физике и т. д.

Примеры косвенных измерений: определение эффективной мощ­ности двигателя при его испытании на основании прямых измерений крутящего момента и частоты вращения вала двигателя; определе­ние площади фигур или объема тел по прямым измерениям их гео­метрических размеров.

Источник

Измерения

Метод измерений – прием или совокупность приемов сравнения измеряемой величины с ее единицей или шкалой в соответствии с реализованным принципом измерений.

По общим приемам получения результатов измерений методы различают на:

  • прямой метод измерений – измерение, при котором искомое значение величины находят непосредственно из опытных данных. Прямые измерения не требуют методики проведения измерений и проводятся по эксплуатационной документации на применяемое средство измерений;
  • косвенный метод измерений – измерение, результат которого определяют на основании прямых измерений величин, связанных с измеряемой величиной известной зависимостью. Косвенные измерения применяются в случаях, когда невозможно выполнить прямые измерения, например при определении плотности твердого тела, вычисляемой по результатам измерений объема и массы.
Читайте также:  Прибор для измерения алкоголя у человека

По условиям измерения:

  • контактный метод измерений – основан на том, что чувствительный элемент прибора приводится в контакт с объектом измерения (измерение температуры тела термометром);
  • бесконтактный метод измерений – основан на том, что чувствительный элемент прибора не приводится в контакт с объектом измерения (измерение расстояния до объекта радиолокатором, измерение температуры в доменной печи пирометром).

Исходя из способа сравнения измеряемой величины с ее единицей, различают:

  • метод непосредственной оценки – метод при котором значение величины определяют непосредственно по отсчетному устройству показывающего СИ (термометр, вольтметр и пр.). Мера, отражающая единицу измерения, в измерении не участвует. Ее роль играет в СИ шкала, проградуированная при его производстве с помощью достаточно точных СИ.
  • метод сравнения с мерой – метод при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой (измерение массы на рычажных весах с уравновешиванием гирями). Существует три разновидности этого метода:
    • нулевой метод – метод сравнения с мерой, в котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля, например, измерения электрического сопротивления мостом с полным его уравновешиванием;
    • метод замещения – основан на сравнении с мерой, при котором измеряемую величину замещают измвестной величиной, воспроизводимой мерой, сохраняя все условия неизменными, например взвешивание c поочередным помещением измеряемой массы и гирь на одну и ту же чашку весов;
    • метод совпадений – метод сравнения с мерой, в котором разность между значениями искомой и воспроизводимой мерой величин измеряют, используя совпадения отметок шкал или периодических сигналов, например при измерении с использованием штангенциркуляс нониусом наблюдают совпадение меток на шкалах штангенциркуля и нониуса;
  • дифференциальный метод – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.
  • метод совпадений – метод измерений, при котором определяют разность между измеряемой величиной и величиной воспроизводимой мерой, используя совпадение отметок шкал или периодических сигналов. Примером этого метода является измерение длины при помощи штангенциркуля с нониусом. Метод совпадений часто применяется при измерениях параметров периодических процессов.

Поскольку погрешность определяется не только метрологическими характеристиками средств измерений, но и погрешностью отбора и приготовления проб, условиями проведения измерений, ошибкой оператора и другими причинами, это определение означает, что методики выполнения измерений могут разрабатываться и быть аттестованными только применительно к конкретным условиям проведения измерения с использованием конкретных средств.

Данное утверждение не означает, что для каждой измерительной или испытательной лаборатории должны разрабатываться собственные методики. Но если лаборатория использует тип средства измерения, приведенный в аттестованной методике, влияющие факторы (температура и влажность окружающего воздуха и измеряемой среды, напряжение и частота электрической сети, вибрация, внешнее магнитное поле и др.) находятся в определенном данной методикой диапазоне, а оператор соответствует установленной в ней квалификации, то физические величины будут измеряться в этой лаборатории с известной погрешностью.

Читайте также:  Манипуляция техника измерение артериального давления

Источник

Метрология. Прямые и косвенные измерения.

Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств. Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.

Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.

Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.

Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.

Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины : .

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах %.

25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.

Информация — от латинского слова «information», что означает сведения, разъяснения, изложение.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Алгоритм — последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.

Программа — последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.

Команда — это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда — это указание некоему интерфейсу командной строки.

Данные — информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи.

Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.

Все технические средства информатизации в зависимости от выполняемых функций можно разделить на шесть групп : устройства ввода информации, устройства вывода информации, устройства обработки информации, устройства передачи и приема информации, устройства хранения информации, многофункциональные устройства.

Источник