Параллелепипед
Параллелепи́пед (др.-греч. παραλληλ-επίπεδον [1] от др.-греч. παρ-άλληλος — «параллельный» и др.-греч. ἐπί-πεδον — «плоскость») — призма, основанием которой служит параллелограмм, или (равносильно) многогранник, у которого шесть граней и каждая из них — параллелограмм.
Содержание
Типы параллелепипеда
Различается несколько типов параллелепипедов:
- Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники.
- Прямой параллелепипед — это параллелепипед, у которого 4 боковые грани прямоугольники.
- Наклонный параллелепипед — это параллелепипед, боковые грани которого не перпендикулярны основаниям.
- Ромбоэдр — параллелепипед, грани которого являются равными ромбами.
- Куб — параллелепипед, грани которого являются квадратами.
Основные элементы
Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.
Свойства
- Параллелепипед симметричен относительно середины его диагонали.
- Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
- Противолежащие грани параллелепипеда параллельны и равны.
- Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Основные формулы
Прямой параллелепипед
Площадь боковой поверхности Sб=Ро*h, где Ро — периметр основания, h — высота
Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания
Прямоугольный параллелепипед
Площадь боковой поверхности Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда
Площадь полной поверхности Sп=2(ab+bc+ac)
Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.
Площадь поверхности: S = 6 a 2 <\displaystyle S=6a^<2>>
Объём: V = a 3 <\displaystyle V=a^<3>> , где a <\displaystyle a>
— ребро куба.
Произвольный параллелепипед
Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения [2] :215 .
В математическом анализе
В математическом анализе под n-мерным прямоугольным параллелепипедом B <\displaystyle B> понимают множество точек x = ( x 1 , … , x n ) <\displaystyle x=(x_<1>,\ldots ,x_
вида B = < x | a 1 ⩽ x 1 ⩽ b 1 , … , a n ⩽ x n ⩽ b n ><\displaystyle B=\
Источник
Параллелепипед
Параллелепи́пед (др.-греч. παραλληλ-επίπεδον [1] от др.-греч. παρ-άλληλος — «параллельный» и др.-греч. ἐπί-πεδον — «плоскость») — призма, основанием которой служит параллелограмм, или (равносильно) многогранник, у которого шесть граней и каждая из них — параллелограмм.
Содержание
Типы параллелепипеда
Различается несколько типов параллелепипедов:
- Прямоугольный параллелепипед — это параллелепипед, у которого все грани — прямоугольники.
- Прямой параллелепипед — это параллелепипед, у которого 4 боковые грани прямоугольники.
- Наклонный параллелепипед — это параллелепипед, боковые грани которого не перпендикулярны основаниям.
- Ромбоэдр — параллелепипед, грани которого являются равными ромбами.
- Куб — параллелепипед, грани которого являются квадратами.
Основные элементы
Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро — смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.
Свойства
- Параллелепипед симметричен относительно середины его диагонали.
- Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
- Противолежащие грани параллелепипеда параллельны и равны.
- Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Основные формулы
Прямой параллелепипед
Площадь боковой поверхности Sб=Ро*h, где Ро — периметр основания, h — высота
Площадь полной поверхности Sп=Sб+2Sо, где Sо — площадь основания
Прямоугольный параллелепипед
Площадь боковой поверхности Sб=2c(a+b), где a, b — стороны основания, c — боковое ребро прямоугольного параллелепипеда
Площадь полной поверхности Sп=2(ab+bc+ac)
Объём V=abc, где a, b, c — измерения прямоугольного параллелепипеда.
Площадь поверхности: S = 6 a 2 <\displaystyle S=6a^<2>>
Объём: V = a 3 <\displaystyle V=a^<3>> , где a <\displaystyle a>
— ребро куба.
Произвольный параллелепипед
Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения [2] :215 .
В математическом анализе
В математическом анализе под n-мерным прямоугольным параллелепипедом B <\displaystyle B> понимают множество точек x = ( x 1 , … , x n ) <\displaystyle x=(x_<1>,\ldots ,x_
вида B = < x | a 1 ⩽ x 1 ⩽ b 1 , … , a n ⩽ x n ⩽ b n ><\displaystyle B=\
Источник
Объем параллелепипеда
О чем эта статья:
Понятие объема
Чтобы без труда вычислить объём любой фигуры, нужно разобраться с определениями.
Объём — это количественная характеристика пространства, занимаемого телом или веществом.
Другими словами, это то, сколько места занимает предмет.
Объём измеряется в единицах измерения объема (единицах измерения размера пространства, занимаемого телом), то есть в кубических метрах, сантиметрах, миллиметрах.
За единицу измерения объёма можно принять куб с ребром 1 см, то есть, кубический сантиметр (см3), кубический миллиметр (1 мм3), кубический метр (1 м3).
Объём всегда выражается в положительных числах. Это число показывает, какое именно количество единиц измерения есть в теле. Например, сколько воды в бассейне, вина в бочке, земли в клумбе.
Два свойства объёма
- У равных тел равные объёмы. Если два тела одинаковы, и имеют равное количество единиц измерения — их объёмы равны. Например, у двух одинаковых пакетов сока равные объемы.
- Если геометрическое тело состоит из нескольких геометрических тел, то его объём равен сумме объёмов этих тел.