Меню

Что такое медиана измерений



Медиана (статистика)

Медиа́на (от лат. mediāna — середина) в математической статистике — число, характеризующее выборку (например, набор чисел). Если все элементы выборки различны, то медиана — это такое число выборки, что ровно половина из элементов выборки больше него, а другая половина меньше него. В более общем случае медиану можно найти, упорядочив элементы выборки по возрастанию или убыванию и взяв средний элемент. Например, выборка <11, 9, 3, 5, 5>после упорядочивания превращается в <3, 5, 5, 9, 11>и её медианой является число 5. Если в выборке чётное число элементов, медиана может быть не определена однозначно: для числовых данных чаще всего используют полусумму двух соседних значений (то есть медиану набора <1, 3, 5, 7>принимают равной 4), подробнее см. ниже.

Также медиану можно определить для случайных величин: в этом случае она делит пополам распределение. Грубо говоря, медианой случайной величины является такое число, что вероятность получить значение случайной величины справа от него равна вероятности получить значение слева от него (и они обе равны 1/2); более точное определение см. ниже.

Можно также сказать, что медиана является 50-м персентилем, 0,5-квантилем или вторым квартилем выборки или распределения.

Содержание

Свойства медианы для случайных величин

Если распределение непрерывно, то медиана является одним из решений уравнения

F ( x ) = 0.5 <\displaystyle F(x)=0.5>

Если распределение является непрерывной строго возрастающей функцией, то решение уравнения однозначно. Если распределение имеет разрывы, то медиана может совпадать с минимальным или максимальным (крайним) возможным значением случайной величины, что противоречит «геометрическому» пониманию этого термина.

Медиана является важной характеристикой распределения случайной величины и, так же как математическое ожидание, может быть использована для центрирования распределения. Поскольку оценки медианы более робастны, её оценивание может быть более предпочтительным для распределений с т. н. тяжёлыми хвостами. Однако о преимуществах оценивания медианы по сравнению с математическим ожиданием можно говорить только в случае, если эти характеристики у распределения совпадают, в частности, для симметричных функций плотности распределения вероятностей.

Медиана определяется для всех распределений, а в случае неоднозначности, естественным образом доопределяется, в то время как математическое ожидание может быть не определено (например, у распределения Коши).

Пример использования

Предположим, что в одной комнате оказалось 19 бедняков и один миллионер. У каждого бедняка есть $5, а у миллионера — $1 млн (10 6 ). В сумме получается $1 000 095. Если мы разделим деньги равными долями на 20 человек, то получим $50 004,75. Это будет среднее арифметическое значение суммы денег, которая была у всех 20 человек в этой комнате.

Медиана в этом случае будет равна $5 (полусумма десятого и одиннадцатого, срединных значений ранжированного ряда). Можно интерпретировать это следующим образом. Разделив нашу компанию на две равные группы по 10 человек, мы можем утверждать, что в первой группе у каждого не больше $5, во второй же не меньше $5. В общем случае можно сказать, что медиана это то, сколько принёс с собой «средний» человек. Наоборот, среднее арифметическое — неподходящая характеристика, так как оно значительно превышает сумму наличных, имеющуюся у среднего человека.

Неуникальность значения

Если имеется чётное количество случаев и два средних значения различаются, то медианой, по определению, может служить любое число между ними (например, в выборке <1, 3, 5, 7>медианой может служить любое число из интервала (3,5)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений (в примере выше это число (3+5)/2=4). Для выборок с чётным числом элементов можно также ввести понятие «нижней медианы» (элемент с номером n/2 в упорядоченном ряду из n <\displaystyle n> элементов; в примере выше это число 3) и «верхней медианы» (элемент с номером (n+2)/2; в примере выше это число 5) [1] . Эти понятия определены не только для числовых данных, но и для любой порядковой шкалы.

Источник

Медиана

В статистических исследованиях довольно широко применяются средние величины. Их нахождение позволяет выявить типичное значение признака исследуемой совокупности. Например, типичный уровень доходов покупателей или возраст большинства клиентов компании. При этом вычисление, к примеру, среднего арифметического не всегда уместно.

Читайте также:  Каким прибором можно измерит

Представим такую ситуацию: мы опросили 10 человек на предмет их уровня доходов. У 9-х доходы оказались примерно одинаковыми и составили 10 тыс. руб. Что касается 10-ого опрошенного, то оказалось, что его доход равняется 410 тыс. руб. в месяц. Если мы вычислим простое среднее арифметическое, то типичный доход будет равняться 50 тыс. руб.! Но это явно не так. В таких ситуациях более объективную и правдоподобную картину дает вычисление моды или медианы, которые относятся к структурным средним показателям.

Понятие медианы

Медиана (Me) — значение признака в исследуемом ряду величин, которое делит этот ряд на две равные части.

То есть половина (50%) всех значений в исследуемом ряду будет меньше медианы, а другая половина — больше ее. Поэтому медиану еще называют 50-й перцентиль или квантиль 0,5.

Формула для расчета медианы

Если значений немного, то медиану можно определить «на глазок». Для этого достаточно расположить все значения в порядке возрастания и найти середину.

Если число случаев четное и в центре ряда находятся два разных числа, то медианой будет среднее между ними (даже если такого значения нет в самом ряду исследуемых случаев). Например, в ряду 1 2 3 4 5 6, медианой будет 3,5.

Для нахождения медианы в более сложных случаях (по интервальным рядам) используется специальная формула:

Xme — нижняя граница медианного интервала (того интервала, накопленная частота которого превышает полусумму всех частот);

ime — величина медианного интервала;

f — частота (сколько раз в ряду встречается то или иное значение);

Sme-1 — сумма частот интервалов предшествующих медианному интервалу;

fme — число значений в медианном интервале (его частота).

Пример вычисления медианы

Был проведен опрос среди покупателей с целью выяснить их типичный возраст. По результатам опроса было установлено, что: 25 покупателей имеют возраст до 20 лет; 32 покупателя — 20-40 лет; 18 покупателей — 40-60 лет; 15 покупателей — свыше 60 лет. Найдем медиану.

Сначала находим медианный интервал. Для этого вычисляем сумму частот: 25 + 32 + 18 + 15 = 90. Половина этой суммы — 45. Это соответствует возрастной группе 20-40 лет (т. к. полученная полусумма частот — 45, и накопленная частота 1-й группы меньше ее, а 3-ей — больше). Тогда нижняя граница медианного интервала — 20 (лет), а величина медианного интервала — 20 (40 лет за вычетом 20). Сумма частот интервалов предшествующих медианному интервалу — 25. Число значений в медианном интервале — 32 (количество покупателей в возрасте 20-40 лет).

Расчетное значение медианы — 32,5. Округив его, получим средний возраст покупателя — 33 года.

Область применения медианы

При вычислении типичного признака неоднородных рядов, имеющих «выбросы» — значения во много раз отличающиеся от других значений ряда.

Особенности медианы

  • Медиана обладает высокой робастностью, то есть нечувствительностью к неоднородностям и ошибкам выборки;
  • Сумма разностей между членами ряда выборки и медианой меньше, чем сумма этих разностей с любой другой величиной. В том числе с арифметическим средним.
  1. Медиана // Википедия. URL: http://ru.wikipedia.org/wiki/Медиана_(статистика) (дата обращения: 23.10.2013)
  2. Минашкин В. Г. и др. Курс лекций по теории статистики. – М.: МЭСИ, 2001.

© Копирование любых материалов статьи допустимо только при указании прямой индексируемой ссылки на источник: Галяутдинов Р.Р.

Источник

Медиана (статистика)

В этой статье не хватает ссылок на источники информации.

Медиа́на (50-й процентиль, квантиль 0,5) — возможное значение признака, которое делит ранжированную совокупность (вариационный ряд выборки) на две равные части: 50 % «нижних» единиц ряда данных будут иметь значение признака не больше, чем медиана, а «верхние» 50 % — значения признака не меньше, чем медиана.

Медиана является важной характеристикой распределения случайной величины и так же, как математическое ожидание, может быть использовано для центрирования распределения. Однако, медиана более робастна и поэтому может быть более предпочтительной для распределений с т.н. тяжёлыми хвостами.

Медиана определяется для широкого класса распределений (например, для всех непрерывных), а в случае неопределённости, естественным образом доопределяется (см. ниже), в то время как математическое ожидание может быть не определено (например, у распределения Коши).

Читайте также:  Автоматическое измерение рефракции глаза

Пример использования

Предположим, что в одной комнате оказалось 19 бедняков и один миллиардер. Каждый кладёт на стол деньги — бедняки из кармана, а миллиардер — из чемодана. По $5 кладёт каждый бедняк, а миллиардер — $1 млрд (10 9 ). В сумме получается $1 000 000 095. Если мы разделим деньги равными долями на 20 человек, то получим $50 000 004,75. Это будет среднее арифметическое значение суммы наличных, которая была у всех 20 человек в этой комнате.

Медиана в этом случае будет равна $5 (полусумма десятого и одиннадцатого, срединных значений ранжированного ряда). Можно интерпретировать это следующим образом. Разделив нашу компанию на две равные группы по 10 человек, мы можем утверждать, что в первой группе каждый положил на стол не больше $5, во второй же не меньше $5. В общем случае можно сказать, что медиана это то, сколько принёс с собой средний человек. Наоборот, среднее арифметическое — неподходящая характеристика, так как оно значительно превышает сумму наличных, имеющуюся у среднего человека.

Неуникальность значения

Если имеется чётное количество случаев и два средних значения различаются, то медианой, по определению, может служить любое число между ними (например, в выборке <1, 2, 3, 4>медианой, по определению, может служить любое число из интервала (2,3)). На практике в этом случае чаще всего используют среднее арифметическое двух средних значений.

См. также

  • Мода (статистика)
  • Показатели центра распределения
Статистические показатели
Описательная
статистика
Непрерывные
данные
Коэффициент сдвига Среднее (Арифметическое, Геометрическое, Гармоническое) · Медиана · Мода · Размах
Вариация Ранг · Среднеквадратическое отклонение · Коэффициент вариации · Квантиль (Дециль, Процентиль/Перцентиль/Центиль)
Моменты Математическое ожидание · Дисперсия · Асимметрия · Эксцесс
Дискретные
данные
Частота · Таблица контингентности
Статистический
вывод и
проверка
гипотез
Статистический
вывод
Доверительный интервал (Частотная вероятность) · Достоверный интервал (Байесовский вывод) · Статистическая значимость · Мета-анализ
Планирование
эксперимента
Генеральная совокупность · Планирование выборки · Районированная выборка · Репликация · Группировка · Чувствительность и специфичность
Объём выборки Статистическая мощность · Мера эффекта · Стандартная ошибка
Общая оценка Байесовская оценка решения · Метод максимального правдоподобия · Метод моментов нахождения оценок · Оценка минимального расстояния · Оценка максимального интервала
Статистические
критерии
Z-тест · t-критерий Стьюдента · Критерий Фишера · Критерий Пирсона (Хи-квадрат) · Критерий согласия Колмогорова · Тест Вальда · U-критерий Манна — Уитни · Критерий Уилкоксона · Критерий Краскела — Уоллиса · Критерий Кохрена · Критерий Лиллиефорса
Анализ выживания Функция выживания · Оценка Каплана — Мейера · Логранк-тест · Интенсивность отказов · Пропорциональная модель опасностей
Корреляция Коэффициент корреляции Пирсона · Ранг корреляций (Коэффициент Спирмана для ранга корреляций, Коэффициент тау Кендалла для ранга корреляций) · Переменная смешивания
Линейные модели Основная линейная модель · Обобщённая линейная модель · Анализ вариаций · Ковариационный анализ
Регрессия Линейная · Нелинейная · Непараметрическая регрессия · Полупараметрическая регрессия · Логистическая регрессия
Столбчатая диаграмма · Совмещённая диаграмма · Диаграмма управления · Лесная диаграмма · Гистограмма · Q-Q диаграмма · Диаграмма выполнения · Диаграмма разброса · Стебель-листья · Ящик с усами

Wikimedia Foundation . 2010 .

Смотреть что такое «Медиана (статистика)» в других словарях:

Медиана (значения) — Медиана: Медиана треугольника в планиметрии, отрезок соединяющий вершину треугольника с серединой противоположной стороны в статистике медианой называется значение совокупности, делящее ранжированный ряд данных пополам Медиана (статистика) … … Википедия

Медиана — Медиана: Медиана треугольника в планиметрии, отрезок, соединяющий вершину треугольника с серединой противоположной стороны Медиана (статистика) квантиль 0.5 Медиана (трасса) средняя линия трассы, проведённая между правым и левым … Википедия

Медиана (община) — Медиана Медиана Страна Сербия Статус община Входит в Нишавский округ Включает 2 населённых пункта … Википедия

Медиана (муниципалитет) — Медиана Медиана Страна Сербия Статус община Входит в Нишавский округ Включает 2 населённых пунктов Административный центр Медиана Население (2007 год) 88 602 чел … Википедия

СТАТИСТИКА — СТАТИСТИКА. 1. Краткая история, предмет и основные понятия общей статистики. Предметом С. являет ся изучение совокупностей внутренне связанных хотя и внешне обособленных элементов. Внутренняя закономерность последних находит свое проявление… … Большая медицинская энциклопедия

Статистика (функция выборки) — У этого термина существуют и другие значения, см. Статистика (значения). Статистика (в узком смысле) это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения. В широком смысле термин (математическая)… … Википедия

Статистика в психологии (statistics in psychology) — Первое применение С. в психологии часто связывают с именем сэра Фрэнсиса Гальтона. В психологии под «статистикой» понимается применение количественных мер и методов для описания и анализа результатов психол. исслед. Психологии как науке С.… … Психологическая энциклопедия

Статистика — (Statistics) Статистика это общетеоретическая наука, изучающая количественные изменения в явлениях и процессах. Государственная статистика, службы статистики, Росстат (Госкомстат), статистические данные, статистика запросов, статистика продаж,… … Энциклопедия инвестора

Статистика — Гистограмма (метод графических изображений) У этого термина существуют и другие значения, с … Википедия

статистика — ▲ измерение ↑ масса, явление статистика измерение массовых явлений. выборка группа испытуемых представителей. на выборку (взять #). дисперсия. рассеяние. вариация разброс значений. варианта. | закон распределения. медиана. | биометрия: ковариация … Идеографический словарь русского языка

Источник

Медиана в статистике: понятие, свойства и расчет

Для того чтобы иметь представление о том или ином явлении, мы часто используем средние величины. Их применяют для того, чтобы сравнивать уровень зарплат в различных отраслях экономики, температуру и уровень осадков на одной и той же территории за сопоставимые периоды времени, урожайность выращиваемых культур в разных географических регионах и т. д. Впрочем, средняя является отнюдь не единственным обобщающим показателем – в ряде случае для более точной оценки подходит такая величина как медиана. В статистике она широко применяется в качестве вспомогательной описательной характеристики распределения какого-либо признака в отдельно взятой совокупности. Давайте разберемся, чем она отличается от средней, а также чем вызвана необходимость ее использования.

Медиана в статистике: определение и свойства

Представьте себе следующую ситуацию: на фирме вместе с директором работают 10 человек. Простые работники получают по 1000 грн., а их руководитель, который, к тому же, является собственником, — 10000 грн. Если вычислить среднее арифметическое, то получится, что в среднем зарплата на данном предприятии равна 1900 грн. Будет ли справедливым данное утверждение? Или возьмем такой пример, в одной и той же больничной палате находится девять человек с температурой 36,6 °С, и один человек, у которого она равна 41 °С. Арифметическое среднее в этом случае равно: (36,6*9+41)/10 = 37,04 °С. Но это вовсе не означает, что каждый из присутствующих болен. Все это наталкивает на мысль, что одной средней часто бывает недостаточно, и именно поэтому в дополнение к ней используется медиана. В статистике этим показателем называют вариант, который расположен ровно посередине упорядоченного вариационного ряда. Если посчитать ее для наших примеров, то получится соответственно 1000 грн. и 36,6 °С. Другими словами, медианой в статистике называется значение, которое делит ряд пополам таким образом, что по обе стороны от нее (вниз или вверх) расположено одинаковое число единиц данной совокупности. Из-за этого свойства данный показатель имеет еще несколько названий: 50-й перцентиль или квантиль 0,5.

Как найти медиану в статистике

Способ расчета данной величины во многом зависит от того, какой тип вариационного ряда мы имеем: дискретный или интервальный. В первом случае, медиана в статистике находится довольно просто. Все, что нужно сделать, это найти сумму частот, разделить ее на 2 и затем прибавить к результату ½. Лучше всего будет пояснить принцип расчета на следующем примере. Предположим, у нас есть сгруппированные данные по рождаемости, и требуется выяснить, чему равна медиана.

Источник