Меню

Что такое невоспроизводимые косвенные измерения



НЕВОСПРОИЗВОДИМЫЕ КОСВЕННЫЕ ИЗМЕРЕНИЯ

Иногда при выполнении косвенных измерений невозможно повторить наблюдения в тождественных условиях относительно одного или нескольких аргументов измеряемой функции. Например, при измерении коэффициента вязкости жидкости в нее бросают металлические шарики (дробинки). Каждый из брошенных в жидкость шариков сразу же достать нельзя. Условия опытов, повторенных с разными шариками, не будут одинаковыми из-за различия размеров и формы шариков, различного состояния их поверхностей и т.д. В этом случае говорят, что косвенные измерения невоспроизводимы. Тем не менее коэффициент вязкости характеризует одну и ту же исследуемую жидкость, и расчет должен давать близкие значения этого коэффициента для всех шариков.

Для невоспроизводимых косвенных измерений рекомендуется следующий порядок обработки их результатов.

1) Определить значение искомой функции для каждого ого невоспроизводимого наблюдения, исходя из найденных экспериментальных значений аргументов ,

2) Каждое из определенных таким образом значений рассматривается затем как случайная величина с нормальным законом распределения погрешностей . Иначе говоря, значения рассматриваются как результаты прямых многократных измерений физической величины . В соответствии с этим в качестве наиболее вероятного значения берется среднее арифметическое

,

а погрешность вычисляется по формуле (как случайная погрешность)

,

т.е. по правилам обработки результатов прямых многократных измерений.

Источник

Метрология. Прямые и косвенные измерения.

Метрологией называется наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

Измерением называется нахождение значения физической величины опытным путем с помощью специальных технических средств. Результатом измерения является количественная характеристика физической величины в виде числа единиц измеряемой величины и погрешность, с которой получено данное число.

Виды измерений. В зависимости от способа получения числового значения измеряемой величины измерения делятся на прямые, косвенные и совокупные измерения.

Прямыми называются измерения, при которых искомое значение величины получают из опытных данных. При прямых измерениях экспериментальные операции производятся над самой измеряемой величиной. Числовое значение измеряемой величины получают в экспериментальном сравнении с мерой или по показаниям приборов. Например, измерение тока амперметром, напряжения вольтметром, температуры термометром, массы на весах.

Косвенными называют такие измерения, при которых числовое значение измеряемой величины определяется по известной функциональной зависимости через другие величины, которые можно прямо измерить. При косвенных измерениях числовое значение измеряемой величины получают с участием оператора на основе прямых измерений – решением одного уравнения. К косвенным измерениям прибегают в тех случаях, когда неудобно или невозможно осуществить автоматическое вычисление известной зависимости между одной или несколькими входными величинами и измеряемой величиной. Например, мощность в цепях постоянного тока определяет оператор, умножая напряжение на ток, измеренные прямым измерением с помощью амперметра и вольтметра.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.

Абсолютная погрешность измерения равна разности между результатом измерения и истинным значением измеряемой величины : .

Относительная погрешность измерения представляет собой отношение абсолютной погрешности измерения к истинному значению измеряемой величины. Обычно относительная погрешность выражается в процентах %.

25. Основные понятия и определения: информация, алгоритм, программа, команда, данные, технические устройства.

Информация — от латинского слова «information», что означает сведения, разъяснения, изложение.

Применительно к компьютерной обработке данных под информацией понимают некоторую последовательность символических обозначений (букв, цифр, закодированных графических образов и звуков и т.п.), несущую смысловую нагрузку и представленную в понятном компьютеру виде. Каждый новый символ в такой последовательности символов увеличивает информационный объём сообщения.

Алгоритм — последовательность чётко определенных действий, выполнение которых ведёт к решению задачи. Алгоритм, записанный на языке машины, есть программа решения задачи.

Свойства алгоритмов: дискретность, понятность, результативность, определенность, массовость.

Программа — последовательность действий, инструкций, предписаний для некоторого вычислительного устройства; файл, содержащий эту последовательность действий.

Команда — это указание компьютерной программе действовать как некий интерпретатор для решения задачи. В более общем случае, команда — это указание некоему интерфейсу командной строки.

Данные — информация, представленная в формализованном виде, что обеспечивает возможность ее хранения, обработки и передачи.

Технические устройства (средства информатизации) – это совокупность систем, машин, приборов, механизмов, устройств и прочих видов оборудования, предназначенных для автоматизации различных технологических процессов информатики, причем таких, выходным продуктом которых является именно информация (сведения, знания) или данные, используемые для удовлетворения информационных потребностей в разных областях предметной деятельности общества.

Все технические средства информатизации в зависимости от выполняемых функций можно разделить на шесть групп : устройства ввода информации, устройства вывода информации, устройства обработки информации, устройства передачи и приема информации, устройства хранения информации, многофункциональные устройства.

Читайте также:  Косвенный способ измерения это

Источник

Погрешности прямых и косвенных измерений

Измерение, определение, составляющие, классификация

Средства измерений – технические средства, используемые при измерениях и имеющие нормированные метрологические свойства.

По техническому назначению:

Мера – средство измерений, предназначенное для воспроизведения физической величины заданного размера;

Измерительный преобразователь – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем;

Устройства сравнения (компаратор) – электронная схема, принимающая на свои входы два аналоговых сигнала и выдающая логический «0» или «1» в зависимости от того, какой из сигналов больше;

Измерительный прибор – средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем;

Измерительная установка – совокупность функционально объединённых средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств (которые отслеживают величины, влияющие на метрологические свойства другого средства измерения при его применении), предназначенная для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенная в одном месте;

Измерительная система – совокупность средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, соединённых между собой каналом связи, предназначенная для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и использования в автоматических системах управления.

По роли, выполняемой в системе обеспечения единства средств измерения:

Эталон – средство измерений (или комплекс средств измерений), обеспечивающее воспроизведение и/или хранение единицы, а так же передачу её размера нижестоящим по поверочной схеме средствам измерений и утверждённое в качестве эталона в установленном порядке;

Вторичный эталон – часть подчинённых средств хранения единиц и передачи их размера, значения которых устанавливаются по первичным эталонам; создаются и утверждаются для уменьшения износа государственного эталона;

Рабочий эталон – применяют для передач размера единицы образцовым средствам измерений высшей точности, а в отдельных случаях – наиболее точным рабочим средствам измерений;

Рабочее средство измерений – применяют для измерений, не связанных с передачей размеров единиц.

Погрешности грубая, систематическая, случайная

По закономерностям проявления:

Систематическая погрешность (Δс)– составляющая погрешности, величина и знак которой постоянны или изменяются закономерно (при усилении постоянного напряжения неполная компенсация смещения нуля приводит к постоянной для данного СИ погрешности, которую пытаются до определённого предела компенсировать при изготовлении прибора) (пример: разряд аккумулятора);

Случайная погрешность (Δ°)– погрешность, значение которой изменяется случайным образом (при повторном измерение в одних и тех же условиях); является следствием любых случайных процессов (хаотичное движение электронов) или наложения большого количества детерминированных процессов, так что выяснить закономерность невозможно; можно уменьшить случайную погрешность проведением большого числа испытаний;

Грубая погрешность– существенное превышение ожидаемой погрешности, то есть такой, которая оправдана классом точности, методом и условиями измерения и квалификацией оператора; может возникнуть при резком изменении измеряемой величины (пример: скачок напряжения);

Закон распределения Стьюдента, его численные характеристики

Для уменьшения влияния случайной погрешности используют статистическую обработку

результатов многократных наблюдений.

— точечная оценка математического ожидания истинной измеряемой величины

] –>min=>ближе к математическому ожиданию)

Закон распределения Стьюдента:

Погрешности прямых и косвенных измерений

Прямыминазывают измерения, при которых искомое значение величины находят непосредственно из опытных данных. При этом измеряемую величину сравнивают с мерой измерительными приборами, градуированными в требуемых единицах (пример: измерение напряжение вольтметром).

Косвенныеизмерения – искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям (пример: измерение затухания четырёхполюсника по значениям входных и выходных напряжений).

§ Погрешность косвенных воспроизводимых измерений — погрешность вычисляемой (не измеряемой непосредственно) величины:

§ Погрешность косвенных невоспроизводимых измерений — вычисляется по принципу прямой погрешности, но вместо xi ставится значение полученное в процессе расчётов.

§ Погрешность прямых измерений — вычисляются по формуле

где : t = SxαsSx — средняя квадратическая погрешность, а αs — коэффициент Стьюдента, а А — число, численно равное половине цены деления измерительного прибора.

Дата добавления: 2018-05-12 ; просмотров: 3759 ; Мы поможем в написании вашей работы!

Источник

Косвенное измерение

Измерения как экспериментальные процессы весьма разнообразны. Это объясняется множеством экспериментальных величин, различным характером измерения величин, различными требованиями точности измерения и другие.

Читайте также:  Чем измерить толщину цинкового покрытия

Наиболее распространена классификация видов измерений в зависимости от способа обработки экспериментальных данных. В соответствии с этой классификацией измерения делятся на прямые, косвенные, совместные и совокупные.

Содержание

Прямое измерение

Прямое измерение — это измерение, при котором искомое значение физической величины находится непосредственно из опытных данных в результате сравнения измеряемой величины с эталонами.

Косвенное измерение

Косвенное измерение — измерение, при котором искомое значение величины находится на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

  • сопротивлениерезистора находим на основании закона Ома подстановкой значений силы тока и напряжения, получаемых в результате прямых измерений.

Совместное измерение

Совместное измерение — одновременное измерение нескольких неодноименных величин, для нахождения зависимости между ними. При этом решается система уравнений.

  • определение зависимости сопротивления от температуры. При этом измеряются неодноименные величины, по результатам измерений определяется зависимость.

Совокупное измерение

Совокупное измерение — одновременное измерение нескольких одноименных величин, при котором искомые значения величин находятся решением системы уравнений, состоящих из результирующих прямых измерений различных сочетаний этих величин.

  • измерение сопротивления резисторов, соединённых треугольником. При этом измеряется значение сопротивления между вершинами. По результатам определяются сопротивления резисторов.

Wikimedia Foundation . 2010 .

Смотреть что такое «Косвенное измерение» в других словарях:

косвенное измерение — Определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Пример. Определение плотности D тела цилиндрической формы по результатам прямых… … Справочник технического переводчика

косвенное измерение — 3.6 косвенное измерение (indirect measurement): Измерение, посредством которого отдельные компоненты и/или группы компонентов, которые не присутствуют в рабочей эталонной газовой смеси, определяются, используя относительные коэффициенты… … Словарь-справочник терминов нормативно-технической документации

косвенное измерение — netiesioginis matavimas statusas T sritis automatika atitikmenys: angl. indirect measurement vok. indirekte Messung, f; mittelbare Messung, f rus. косвенное измерение, n pranc. mesurage indirect, m; mesure indirecte, f … Automatikos terminų žodynas

косвенное измерение — netiesioginis matavimas statusas T sritis Standartizacija ir metrologija apibrėžtis Dydžio vertės radimas netiesioginiu būdu, kai ieškomoji vertė randama naudojant kitų dydžių tiesioginių matavimų rezultatus. pavyzdys( iai) Vienalytės medžiagos… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

косвенное измерение — netiesioginis matavimas statusas T sritis fizika atitikmenys: angl. indirect measurement vok. indirekte Messung, f rus. косвенное измерение, n pranc. mesure indirecte, f … Fizikos terminų žodynas

Косвенное измерение — 1. Измерение, при котором искомое значение величины определяют, исходя из результатов прямых измерений других величин, связанных с искомой величиной известной функциональной зависимостью Употребляется в документе: ОСТ 45.159 2000 Отраслевая… … Телекоммуникационный словарь

Косвенное измерение (вычисление) отдельных комплексных показателей функционирования ТОУ — Косвенное автоматическое измерение (вычисление) выполняется путем преобразования совокупности частных измеряемых величин в результирующую (комплексную) измеряемую величину с помощью функциональных преобразований и последующего прямого измерения… … Словарь-справочник терминов нормативно-технической документации

Косвенное измерение (вычисление) отдельных комплексных показателей Функционирования ТОУ — Кос во см ос автоматическое измерение (вычисление) выполняется путем преобразования совокупности частных измеряемых величии в результирукчцук» (комплексную) измеряем)» величину с помощью функциональных преобразований и последующего прямого… … Словарь-справочник терминов нормативно-технической документации

Измерение (физика) — Измерение совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением… … Википедия

Измерение — У этого термина существуют и другие значения, см. Измерение (значения). Измерение совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом… … Википедия

Источник

27.2. Виды измерений

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения — это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой.

Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью, Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех названных величин можно рассчитать мощность электрической цепи.

Читайте также:  Дискретность средства измерения это

Совокупные измерения сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения — это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.

Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.

По отношению к основным единицам измерения делят на абсолютные и относительные.

Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=тс 2 масса (m) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (c) — физическая константа.

Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.

С измерениями связаны такие понятия, как «шкала измерений», «принцип измерений», «метод измерений».

Шкала измерений — это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения. Поясним это понятие на примере температурных шкал.

В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия). В температурной шкале Фаренгейта за начало отсчета принята температура таяния смеси льда и нашатырного спирта (либо поваренной соли), а в качестве опорной точки взята нормальная температура тела здорового человека. За единицу температуры (градус Фаренгейта) принята одна девяносто шестая часть основного интервала. По этой шкале температура таяния льда равна + 32°F, а температура кипения воды + 212°F. Таким образом, если по шкале Цельсия разность между температурой кипения воды и таяния льда составляет 100°С, то по Фаренгейту она равна 180°F. На этом примере мы видим роль принятой шкалы как в количественном значении измеряемой величины, так и в аспекте обеспечения единства измерений. В данном случае требуется находить отношение размеров единиц, чтобы можно было сравнить результаты измерений, т.е. t o F/t°C.

В метрологической практике известны несколько разновидностей шкал: шкала наименований, шкала порядка, шкала интервалов, шкала отношений и др.

Шкала наименований — это своего рода качественная, а не количественная шкала, она не содержит нуля и единиц измерений. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа

цветов). Поскольку каждый цвет имеет немало вариантов, такое сравнение под силу опытному эксперту, который обладает не только практическим опытом, но и соответствующими особыми характеристиками зрительных возможностей

Шкала порядка характеризует значение измеряемой величины в баллах (шкала землетрясений, силы ветра, твердости физических тел и т.п.).

Шкала интервалов (разностей) имеет условные нулевые значения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.

Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы (обычно мы говорим «веса»), начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания. Сравните бытовые и аналитические весы.

Источник