Меню

Что такое орган сравнения фаз



ДИФФЕРЕНЦИАЛЬНО-ФАЗНАЯ ВЫСОКОЧАСТОТНАЯ ЗАЩИТА

а) Принцип действия

Дифференциально-фазная высокочастотная защита основана на сравнении фаз тока по концам защищаемой линии.

Считая положительными токи, направленные от шин в линию, находим, что при внешних к. з. в точке К1 (рис. 12-16, а) токи Iт и IП по концам защищаемой линии имеют различные знаки и, следовательно2 их можно считать сдвинутыми по фазе на 180°.

В случае же к. з. на защищаемой линии (рис. 12-16, б) токи на ее концах имеют одинаковые знаки и их можно принять совпадаю­щими по фазе, если пренебречь сдвигом векторов э. д. с. т и п поконцам электропереда­чи и различием углов полных сопротивлений zт и zn.

Таким образом, сравнивая фазы токов по концам линии, можно установить местополо­жение к. з. В обычных схемах дифференциаль­ных защит сравнение фаз токов осуществляет­ся в

дифференциальных реле путем непосредственного сравнения токов, проходящих в начале и конце линии; в дифференциально-фазовой в. ч. защите сравнение фаз осуществляется косвенным путем посредством токов высокой частоты.

Упрощенная схема, иллюстрирующая работу дифференци­ально-фазной защиты, и диаграмма, поясняющая принцип ее дей­ствия, приведены на рис. 12-17 и 12-18.

Защита состоит из приемопередатчика, включающего в себя в. ч. генератор ГВЧ, приемник ПВЧ, реле отключения РО, питаю­щегося током приемника, и двух пусковых реле П1 и П2, одно из которых пускает ГВЧ, а второе контролирует цепь отключения защиты.

Токи высокой частоты передаются по каналу, образован­ному проводом линии высокого напряжения и землей. Выход токов в. ч. за пределы линии ограничивается заградителями 1, подклю­чение в, ч. постов 2 осуществляется через конденсаторы связи 3.

Особенность защиты заключается в том, что в. ч. генератор управляется (манипулируется) непосредственно токами промышленной частоты при помощи специального транс­форматора Ум. Генератор включен так, что при положительной полуволне промышленного тока он работает, посылая в линию ток высокой частоты, а при отрицательной — запирается и ток высокой частоты прекращается. В то же время приемник выполнен таким образом, что при наличии токов высокой частоты, поступающих в его входной контур, выходной ток, питающий реле РО, равен нулю, а при отсутствии в. ч. сигнала появляется выходной ток, который поступает в реле РО. Таким образом, генератор высокой частоты работает только в течение положительных полуцериодов тока промышленной частоты, а приемник — при отсутствии в. ч. сигналов.

При внешнем к. з. (рис. 12-18, а), когда фазы первичных токов по.концам линии противоположны, генератор на конце линии т работает в течение первого полупериода промышленного тока, а на конце п — в течение следующего полупериода. Ток высокой частоты протекает по линии непрерывно и питает приемники на обеих сторонах линии. В результате этого выходной ток в цепи приемника и реле РО отсутствует, и реле (защита) не работает.

При к. з. в зоне (рис. 12-18, б) генераторы на обоих концах линии работают одновременно, поскольку фазы токов по концам линии совпадают. Высокочастотный ток, поступающий при этом в приемники, будет иметь прерывистый характер с интервалами времени, равными полупериоду промышленного тока. В этом слу­чае приемник работает в промежутки времени, когда ток высокой частоты отсутствует, и заперт (не работает) во время его прохож­дения. В выходной цепи приемника появляется прерывистый ток, который сглаживается специальным устройством и подается в реле РО. Последнее срабатывает и отключает линию.

Таким образом, сдвиг фаз между токами, проходящими по обоим концам линии, определяется по характеру в. ч. сигналов (сплош­ные или прерывистые), на которые при помощи прием­ника реагирует реле РО.

По принципу своего действия дифференциально-фазная защита не реагирует на нагрузку и качания, так как в этих режимах токи на обоих концах линии имеют разные знаки.

б) Основные органы дифференциально-фазной защиты и осо­бенности их выполнения

Дифференциально-фазная защита состоит (рис. 12-17) из трех основных элементов: пускового органа 1 и П2, пускаю­щего передатчик и разрешающего действовать защите при к. з.; органа манипуляции, управляющего (с помощью Ты) передатчиком токов высокой частоты в зависимости от знака срав­ниваемых токов, и органа сравнения фаз токов, дейст­вующего на отключение при совпадении фаз токов, проходящих по концам линии.

Дифференциально-фазная защита не реагирует на нагрузку, поэтому пусковой орган в схемах этой защиты не является обяза­тельным. Однако при его отсутствии любое нарушение непрерыв­ной циркуляции токов высокой частоты будет приводить к сраба­тыванию реле РО и ложному отключению линии. Поэтому во всех схемах, дифференциально-фазной защиты применяются пусковые реле, отстроенные от токов нагрузки.

К особенностям выполнения органов защиты относятся:

1) одновременный пуск в. ч. передатчиков на обоих концах защищаемой линии при внешних к. з.

При удаленных внешних к. з., когда пусковые реле, пускаю­щие в. ч. передатчик, работают на пределе своей чувствительности, возможна работа пускового органа только с одной стороны линии. Тогда ток высокой частоты будет прерывистым и защита подейст­вует ложно. Для исключения этого пусковой орган защиты выпол­няется из двух комплектов: одного — чувствительного, пускающего высокочастотный передатчик, и второго — более гру­бого (в 1,5—2 раза), управляющего цепью отключения.

2) Нарушение непрерывности высокочастотного сигнала при внешних к. з. и качаниях может возникнуть также вследствие неод­новременного действия реле, пускающих передатчики, установлен­ных на противоположных концах линии. Поэтому пуск в. ч. пере­датчиков при внешних к. з. должен осуществляться несколько раньше, чем срабатывает реле РО, замыкающее цепь отключения защиты, а останов их должен происходить несколько позже возврата пусковых реле, управляющих цепью отключения 1 .

3) Выполнение дифференциально-фазных защит, сравнивающих токи в каждой фазе, получается весьма сложным и дорогим.

Защита значительно упрощается и становится более надежной, если вместо токов фаз сравнивать их симметричные составляющие, получаемые от фильтров, преобразующих трехфазную систему токов в однофазную. В качестве фильтра в защитах этого типа ис­пользуются комбинированные фильтры, на выходе которых полу­чается ток ф, пропорциональный 1 + к 2 или 1 + к .

Подобные фильтры обеспечивают действие защиты при всех видах к. з.

В случае симметричных к. з. ток фильтра обусловливается со­ставляющей I1, а при несимметричных к. з. — составляющими I1 и I2 или I1 и I.

1 При к. з. в зоне передатчик на отключившемся конце линии должен немедленно останавливаться для предупреждения блокировки защиты про­тивоположной стороны.

в) Искажение фаз сравниваемых токов (фазовые погрешности)

При рассмотрении принципа действия защиты предполага­лось, что при внешних к. з. токи 1т и In по концам защищаемой линии сдвинуты по фазе на угол φ= 180, а при к. з. в зоне — совпадают по фазе, т. е. ψ = 0 (рис. 12-16 и 12-18).

Читайте также:  Сравнение подшипников nsk skf

В действительности из-за погрешности трансформаторов тока и ряда других причин (отмечаемых дальше) фазы вторичных токов искажаются, и поэтому сдвиг фаз ψ между токами на обоих концах линии отличается от указанных выше значений. При больших искажениях фаз токов 1т и 1п возможны неправильные действия защиты при внешних к. з. и отказ в работе — при к. з. в зоне. В связи с этим параметры защиты выбираются так, чтобы она блокировалась в условиях внешнего к. з. при ψ = 180 — β иработала при к. з. в зоне при ψ> 0. Предельное значение угла β, при котором защита должна блокироваться, называется углом блокировки защиты (см. рис., 12-26). Для уменьшения искажений фаз Im и In трансформаторы тока, питающие дифферен­циально-фазную защиту, должны выбираться по 10%-ным харак­теристикам, при этом угловая погрешность каждого трансформатора тока не будет превышать 7%.

При к. з. в зоне кроме погрешности трансформаторов тока, искажающих фазы токов, имеется расхождение фаз первичных токов т и п вследствие различия фаз между э. д. с. т и п эквивалентных генераторов (рис. 12-19, а); разницы углов полных сопротивлений zт и zп в схемах замещения прямой, обратной инулевой последовательностей (рис. 12-19, а, б, в) и наложения токов нагрузки на токи к. з.

Токи прямой последовательности (рис. 12-19, а)

m1= , а In1= Их фазы зависят от фаз э. д.с. т и п.

С учетом их различия, а также влияния нагрузки и несовпадения углов z и zп1 сдвиг фаз ψ1 между 1 и 11п отличается от нуля ψ1≠0.

Фазы токов обратной и нулевой последо­вательности на обоих концах линии определяются одним и тем же напряжением в месте к. з. ( К2 или ко), расхождение фаз т и п на эти составляющие не влияет.

Искажение, обусловленное различием углов сопротивлений, не велико, поэтому практически токи I2m и I2n, а также 1 и 10п можно считать совпадающими по фазе.

Таким образом, сдвиг фаз между сравниваемыми токами 1 + k 2 или 1 + к на каждом конце линии определяется в основ ном различием фаз токов прямой последовательности 1 и /1п. Учитывая это, коэффициент к выбирается возможно большим с тем, чтобы при несимметричных к. з. влияние тока I1 на фазу суммар­ного тока было наименьшим. Искажение фаз токов Im и In при внешних к. з. рассмотрено в § 12-8.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Дифференциально-фазная защита

Это основная быстродействующая защита от всех видов коротких замыканий – высокочастотная дифференциально-фазная защита. ДФЗ есть трех больших серий – это ДФЗ-2 и ДФЗ-201; ДФЗ-401, 402; ДФЗ-503, 504. Обычно ДФЗ двухсотой серии устанавливаются на линиях 110-330кВ, серии четырехсотой и пятисотой – линиях 500кВ и выше. Самая надежная и при этом не слишком сложная защита – ДФЗ-504, которая и получила сейчас наибольшее распространение.

Защита ДФЗ — двухсторонняя, поэтому полноценная работа ее возможна лишь при установке двух одинаковых комплектов на двух концах линии. Структурная схема одного полукомплекта:

Пусковой орган 1 реагирует на любое нарушение нормальной работы в сети, получая информацию от трансформаторов тока и напряжения, установленных на линии. Пусковой орган выполняет следующие функции:

— пускает орган сравнения фаз 3;

— пускает высокочастотный передатчик 4;

— готовит цепи отключения выключателя и сигнализирует о пуске защиты (двух последних функций рисунок не отражает).

Орган манипуляции 2, получая также токи с трансформатора тока линии, преобразует трехфазный ток сети в однофазное напряжение со строгим соблюдением полярности (т.е. когда ток был положительным, и напряжение будет положительным). Манипулированный сигнал подводится к передатчику, который формирует в соответствии с подводимой полярностью пачки высокочастотных импульсов (во время положительной полуволны – пачка, во время отрицательной полуволны – пауза). С высокочастотного тракта приходит от чужого передатчика точно такой же сигнал, который вместе с сигналом нашего передатчика поступает на приемник 5, в котором сигналы складываются. В результате на выходе приемника либо нуль (если КЗ внешнее), либо прерывистые сигналы (если КЗ на линии). Орган сравнения фаз 3 при наличии прерывистого сигнала на его входе срабатывает и дает команду на отключение выключателя.

Как ДФЗ определяет свое или внешнее КЗ?

Защита срабатывает только при коротких замыканиях в пределах защищаемой линии, когда на обоих концах её ток короткого замыкания направлен от шин в линию. Фазу тока на противоположном конце линии каждый полукомплект защиты определяет с помощью высокочастотной части защиты. Если на любом конце линии направление тока короткого замыкания будет от линии на шины, то ДФЗ блокируется на обеих сторонах линии.

Из рисунка видно, как ДФЗ определяет какое короткое – свое или внешнее. Теперь нам надо понять, за счет чего ДФЗ реагирует на все виды коротких. У ДФЗ сигнал на отключение линии – результат суммирования двух сигналов – сигнала с вч приемника, который мы с Вами уже посмотрели и сигнала с пусковых органов. Так вот – пусковых органов у ДФЗ несколько. Во-первых, это пусковой орган по току обратной последовательности, во-вторых, реле сопротивления и два токовых реле, которые все вместе действуют при симметричных КЗ. У некоторых типов ДФЗ есть блокировка при неисправности цепей напряжения, у некоторых – только сигнализация. Однако неисправность цепей напряжения (кратковременно) в общем случае нам нестрашна, т.к. ложной работы ДФЗ при отсутствии вч сигналов не будет.

Из всего вышесказанного, а также помня об ее быстродействии, можно сделать вывод об идеальности ДФЗ. Однако ДФЗ считается не абсолютно надежной защитой, поскольку зависит от состояния ВЧ канала. Из чего состоит ВЧ канал?

Это сама линия от высокочастотного заградителя на одной подстанции до заградителя на другой подстанции. Функция заградителя – не пропускать на подстанцию частоту нашего приемопередатчика, чтобы та частота, на которой мы работаем оставалась в пределах линии. Полосу пропускания частот определяет элемент настройки. Далее в нашем ВЧ канале стоит конденсатор связи, который состоит из нескольких набранных последовательно конденсаторов. Конденсатор связи включен прямо в фазу линии, поэтому на его верхней обкладке первичное напряжение, а нижняя обкладка конденсатора связи заземлена через фильтр присоединения. Функция конденсатора связи – соединение первичной сети с высокочастотной аппаратурой. Благодаря чему это происходит? Свойства конденсатора связи в том, что он имеет высокое сопротивление токам промышленной частоты (т.е. токам нагрузки) и низкое сопротивление токам высокой частоты, которые и нужны нам для передачи сигналов на разные концы линии. К нижней обкладке конденсатора присоединяется фильтр присоединения, имеющий дополнительный заземляющий нож для безопасности обслуживающего персонала. Этот нож нужно включать при работах на фильтре присоединения, когда приходится отсоединять первичный вывод фильтра, являющийся одновременно точкой присоединения к конденсатору связи. Почему эта точка опасна? Конденсатор связи – это по сути делитель фазного напряжения линии. Если посчитать этот делитель, то получится напряжение на нижней обкладке конденсатора связи порядка 6-12 кВ, несомненно опасное напряжение для работающего человека. Функция фильтра присоединения – согласование ВЧ канала и приемопередатчика. Как работает аппаратура?

Читайте также:  Кредиты малому бизнесу сравнение банков

Передатчик имеет какую-то мощность выходного сигнала, который он отправляет своему приемнику на другой конец линии. Но сигнал это доходит в ослабленном виде изи-за затухания в канале. Понятно, что мощность передатчика ограничена возможностями аппаратуры и не может быть бесконечной. Затухание в канале определяется степенью несогласованности аппаратуры и канала, потому что идеальной настройки не бывает и затуханием в линии, определяющееся параметрами линии.

А= Анес +Авч тракта,

где А – затухание сигнала

Анес – затухание несогласованности

Авч тракта – затухание в вч тракте линии

На линиях сверхдлинных аппаратура работать не будет. Сигнал просто не дойдет до адресата.

Затухание несогласованности можно убрать, настроив при наладке аппаратуру в канале максимально качественно.

Затухание в вч тракте линии происходит из-за наличия волнового сопротивления самой линии и из-за помех, которые постоянны и их невозможно убрать.

Помехи бывают трех видов:

— Помехи от короны;

— Помехи от разрядов в искровых промежутках грозотросов линии;

— Помехи от другой аппаратуры в этом канале.

В общем случае, когда канал хорошо настроен запас по затуханию, т.е. превышение мощности нашего сигнала над мощностью суммарной помехи достаточно большой:

Однако в процессе эксплуатации параметры ВЧ канала могут ухудшится – могут быть плохо отрегулированы искровые промежутки, может сгореть элемент настройки на ВЧ заградителе, может повредиться ВЧ кабель и т.д. и помеха вырастет до больших размеров. ВЧ приемники перестанут слышать друг друга. Самое же страшное для ВЧ канал – это гололед. При образовании гололеда на тросе линии ВЧ канал может пропасть в течение нескольких часов, даже десятков минут. Поэтому для гололедных районов, во-первых, увеличен запас по затуханию, во-вторых при угрозе гололеда все приемопередатчики переводятся на ускоренный автоконтроль (на некоторых устройствах – до 15 минут).

Чем нам страшна потеря ВЧ канала при введенной в работу ДФЗ?

При внешнем КЗ оба комплекта ДФЗ пускаются от пусковых органов, ВЧ передатчики отправляют друг другу пачки импульсов, но из-за гололеда не получают их. Приемники принимают только свой сигнал и воспринимают это как свое КЗ, защита работает ложно на отключение.

Автоконтроль ВЧ канала (либо ручной обмен импульсами) нужен именно для проверки исправности ВЧ канала.

ДФЗ нормально действует на отключение линии через панель ОАПВ. Если ОАПВ выводится в ремонт, или неисправно, тогда переводим накладку на действие через ТАПВ.

ВЧ постов существует великое множество. В рамках данной лекции охватить их невозможно. Функция у них общая – уплотнение импульсов высокой частоты, передача их в канал, прием из канала, автоматических контроль канала. Поговорим только об их оперативном обслуживании.

Нормально питание постоянного тока должно быть подано. Сетевые тумблеры на всех блоках включены. Должны гореть светодиоды на блоках питания. Даже не зная должен гореть какой-либо светодиод или нет, легко это определить по цвету – все аварийные диоды красного цвета, все нормальные диоды – зеленые. Если на посту есть табло или ЖК экран, на них должны быть написаны шифры нормальной работы. На приборе-индикаторе, при отжатой кнопке мы видим ток приема, при нажатой кнопке – ток выхода передатчика. На блоке приемника могут загораться или мигать зеленые светодиоды «ПРМ ОСН» или «ПРМ ГРУБ» это означает, что в канале сильные помехи. В такой ситуации желательно провести дополнительный автоконтроль или ручной обмен и убедится, что приемники слышат друг друга.

Нормально ВЧ посты введены с автоконтролем. Если автоконтроль выявил неисправность, необходимо запустить автоконтроль, если он опять показывает неисправность, провести ручной обмен импульсами. Если ручной обмен прошел удачно, блок автоконтроля надо считать неисправным и вывести его из работы.

Кроме того, автоконтроль может выдавать неисправность, если на противоположенном конце линии не сброшена сигнализация неисправности или снято питание с поста. Если же результаты ручной проверки свидетельствуют о неисправности в ВЧ канале, необходимо вывести защиту накладками и сообщить об этом вышестоящему диспетчеру и релейному персоналу.

Итак, при наличии автоконтроля ничего делать с постами не требуется. При отсутствии автоконтроля ручной обмен производится в следующем порядке:

— Посмотреть нагрузку на линии (по щитовым приборам), ток покоя приемников по приборам постов (около 18-20мА для линии 500кВ);

— На первом конце канала связи диспетчер пускает передатчик, при этом должны гореть светодиоды «ПРМ. ОСН.», «ПРМ. ГРУБ.», ток приема должен быть 7-9 мА. На другом конце канала связи диспетчер контролирует ток приема, который также должен быть 7-9 мА, при этом должны гореть светодиоды «ПРМ. ОСН.», «ПРМ. ГРУБ.» На первом конце канала связи диспетчер определяет ток выхода передатчика, сравнивает его с табличкой и отпускает кнопку «ПУСК»;

— На втором конце канала связи диспетчер делает все аналогичные действия;

— Диспетчера на обеих концах ВЛ одновременно нажимают кнопки «ПУСК». При этом с каждой стороны ток приема должен быть равен 0 мА. При этом должны гореть светодиоды «ПРМ. ОСН.», «ПРМ. ГРУБ.». Если ток приема более 0 мА хотя бы на одном из концов ВЛ, то защита считается неисправной и должна быть выведена со всех сторон.

— При малых нагрузках на линии токи приема по концам ВЛ могут быть от 0 до 5-7 мА, причем они могут быть разной величины по концам ВЛ при пуске одного из передатчиков;

— При отключенной линии или очень малых нагрузках ток приема может быть равен «0»мА даже при пуске только одного передатчика. В этом случае диспетчер обязан проверить значение тока приема на всех концах линии при пуске только одного передатчика. При этом ток приема с каждой стороны должен быть «0» мА , если при этом на одной из сторон прибор покажет значение больше нуля, то защита считается неисправной и должна быть выведена со всех сторон.

Читайте также:  Все степени сравнения прилагательного clean

Оперативные указания по обслуживанию ДФЗ:

— ДФЗ должна отключаться с двух сторон линии одновременно.

— Перед отключением по любой причине ДФЗ необходимо проверить, что устройства АНКА-АВПА, передающие команды ТО и ТУ резервных защит данной линии в обоих направлениях, исправны, находятся в работе. При выполнении этого условия никакие операции с другими устройствами РЗА выполнять не требуется.

— Перед отключением ДФЗ, если отключён хотя бы один из двух комплектов АНКА-АВПА, по которым передаются команды ТО и ТУ резервных защит, необходимо включить с двух сторон линии оперативное ускорение II ступени дистанционной защиты этой линии и вывести ОАПВ с двух сторон линии.

— Проверка ВЧ каналов ДФЗ должна производиться ежесуточно вручную, либо на автоконтроле; после каждого автоматического отключения ВЛ; перед вводом ДФЗ в работу; перед включением ВЛ после ремонта.

Защита выводится на сигнал на обоих концах линии:

— при неисправности релейной или ВЧ части защиты;

— при неисправности токовых цепей или при работах в токовых

— при работах на релейной или ВЧ части защиты по оперативным заявкам;

— при работах на конденсаторах связи или фильтрах присоединения фазы, используемой для ВЧ канала ДФЗ;

— при неисправностях ВЧ канала, обнаруженных при периодической проверке ВЧ канала.

Вопрос

Максимальные реле тока РТ40

Максимальные реле тока РТ40 предназначены для использования в схемах релейной защиты и автоматики. Эти реле реагируют на повышение тока в контролируемой цепи и являются реле косвенного действия. Конструкция реле максимального тока РТ40 показана ни рис. 1.

Реле состоит из следующих основных элементов: П – образного стального сердечника 1 с установленными на нем катушками тока 2, подвижной системы, состоящей из якоря 3, подвижного контакта 5 и гасителя колебаний (вибрации) 22, алюминиевой стойки 23, упоров левого 6 и правого (на рис. 2.4, а не показан), изоляционной колодки 9 с расположенными на ней двумя парами неподвижных контактов (рис. 1, б) 7 и 8, регулировочного узла (рис. 1, в), состоящего из пружинодержателя 10, фасонного винта 11 с насаженной на него разрезной шестигранной втулкой 12, противодействующей спиральной пружины 14 и пружинящей шайбы 18, шкалы уставок 13 и указателя уставки 14, контактный узел (рис.1, г), состоящий из неподвижного пружинящего контакта 19, на одном из концов которого приварена серебряная полоска, переднего упора 20 и заднего гибкого упора 21.

Рис. 1. Электромагнитное реле максимального тока серии РТ40: а — конструкция реле, б — изоляционная колодка с неподвижными контактами, в — регулировочный узел, г — контактный узел.

Реле тока РТ40 смонтировано в корпусе, состоящем из пластмассового цоколя и кожуха из прозрачного материала. Для снижения потерь в стали, возникающих из-за вихревых токов, сердечник набирается из пластин электротехнической стали, изолированных друг от друга.

Когда электромагнитная сила реле превышает механическую силу пружины, якорь притягивается к электромагниту. При этом подвижный контактный мост замыкает одну пару неподвижных контактов и размыкает вторую пару.

Реле предназначено для крепления в вертикальной плоскости, отклонение от вертикального положения из-за неуравновешенности подвижной системы реле приводит к дополнительной погрешности.

С осью якоря связан гаситель вибрации 22 (гаситель колебаний) в виде тороида, заполненного кварцевым песком. При любом ускорении якоря и связанной с ним подвижной системы часть кинетической энергии тратится на преодоление сил трения между песчинка ми. С помощью гасителя вибрации уменьшаются вибрации как всей подвижной системы, так и контактов при их включении.

Ток срабатывания регулируется за счет изменения натяга спиральной противодействующей пружины 4, которая прикреплена к якорю с помощью хвостовика 16. Натяг пружины фиксируется указателем 14.

Обмотка реле 2 разбита на две секции, которые при необходимости могут быть соединены последовательно или параллельно.

Уставка срабатывания реле серии РТ40 плавно регулируется натяжением пружины и ступенчато — переключением катушек обмотки с последовательной схемы на параллельную.

При переключении последовательного соединения секций обмоток на параллельное ток срабатывания увеличивается в два раза. Шкала уставок отградуирована для последовательного соединения секций катушек.

Реле выпускаются на токи от 0,1 до 200 А. Пределы уставок токов срабатывания реле при последовательном соединении катушек составляют 0,1 — 100 А, при параллельном соединении — 0,2 — 200 А. Технические характеристики реле тока серии РТ40 приведены в табл. 1

Время срабатывния не более 0,1 с при токе 1,2Iсраб и не более 0,03 с при 3Iсраб. Время возврата – не более 0,035 с. Масса реле не более 3,5 кг. Потребляемая мощность зависит от исполнения реле.

Контакты реле предназначены для коммутации в цепи постоянного тока мощностью 60 Вт, в цепи переменного тока нагрузки мощностью 300 ВА при напряжении от 24 до 250 В и токе до 2 А.

Рис. 2. Схемы соединения обмоток реле

В тех случаях, когда через реле может длительно протекать ток, многократно превышающий уставку срабатывания, применяют реле РТ40/1Д, в котором обмотка реле включается в контролируемую цепь через промежуточный трансформатор и выпрями тельный мост, смонтированные в общем корпусе. При опасных по термической стойкости токах сердечник трансформатора насыщается. Вследствие этого ток в обмотке реле остается неизменным, хотя в первичной обмотке трансформатора ток может продолжать расти.

В качестве органа, реагирующего на повышение тока в контролируемой цепи сверх допустимой величины при отстройке от внешних гармоник тока применяют реле РТ40Ф. В практике отклонение формы кривой переменного тока от синусоидальной может происходить как из-за искажения формы кривой э.д.с. генераторов, так и из-за наличия в цепях переменного тока нелинейных элементов. В реле РТ40Ф содержится специальный фильтр, не пропускающий в обмотку реле ток третьей и кратных ей гармоник. Фильтр подключен к вторичной обмотке промежуточного транс форматора.

На базе реле серии РТ40 выпускаются реле напряжения серии РН50. Конструктивно реле напряжения серии РН50 отличается от реле тока РТ40 тем, что в их конструкции отсутствует гаситель вибрации и другая схема включения обмоток. Сечение витков обмотки реле напряжения РН50 меньше чем у РТ40, т.к. реле РН50 включается параллельно контролируемой цепи и постоянно находится под напряжением, а реле тока — последовательно. Число витков одной катушки реле тока находится в пределах от единиц до сотен, а реле напряжения — от тысяч до нескольких тысяч.

Таблица 1. Технические характеристики реле тока серии РТ40

Источник