Что такое шкалы измерений какие типы шкал существуют приведите примеры

Шкала измерений

Высокое качество продукции любого предприятия напрямую зависит от точности и общего качества измерений. Мы не можем решить, соответствует ли конкретный образец продукции требованиям заказчика, если не выразим эти требования количественно или качественно. Для сравнения какого-либо параметра с его заданным значением служат шкалы измерений.

Виды шкал измерений

Суть измерения состоит в том, что текущему состоянию объекта ставится в соответствие некоторое число, порядковый номер или символ.

Что такое шкала

Совокупность таких чисел, номеров или символов и называется шкалой измерений

По своему типу выделяют следующие виды шкал:

  • номинальная (наименований);
  • порядковая;
  • интервальная;
  • отношений;
  • абсолютная.

Шкалы также относят к одной из двух групп:

  • качественные, для которых не существует единиц измерений;
    • номинальная;
    • порядковая;
  • количественные, выражающие значения в определенных единицах;.
    • интервалов;
    • отношений;
    • абсолютная .

Шкалы также делятся по их силе. Чем больше сведений об объекте измерений можно извлечь из результатов измерений по ней. Самыми сильными считаются абсолютные шкалы, самыми слабыми — номинальные. Иногда исследователи усиливают шкалу, характерным примером является «оцифровка» номинальных шкал. Качественным признакам присваивают некое их числовое выражение. Это облегчает обработку результатов, особенно компьютерную. Важно помнить, что оцифровка не придает качественным признакам всех свойств, которыми обладают числа. К такой шкале можно применять операции сравнения, но нельзя — сложения, вычитания и т.п.

Шкалы измерения по Стивенсу

Шкалы измерений

Рассмотрим шкалы измерений подробнее.

Номинальная

Самые простые измерительные шкалы – номинальные. Они относятся к качественным и отражают те или иные свойства объекта, выраженные словесно. Их элементы могут только совпадать или не совпадать друг другом, Их нельзя сопоставлять по принципу «больше-меньше». Недопустимы также и арифметические действия.

Характерным примером может служить группа крови. Первая группа не больше третьей и не может быть сложена с четвертой. У человека может быть только одна группа крови, и измерение

Порядковая

По ней можно ранжировать и сравнивать объекты, по какому — либо признаку, например, расположить людей в строю по росту. Иванов больше Сидорова, а Сидоров больше Кузнецова.

Из этих данных можно сделать вывод о том, что Иванов выше Кузнецова, но нельзя определить, насколько именно.

Интервалов

Она состоит из заранее определенных и равных между собой интервалов. И является намного более информативной. Свойство объекта соотносится с одним из таких интервалов.

Характерным примером такой шкалы измерений может служить принятое у людей исчисление времени. Период оборота Земли вокруг Солнца делится на 365 дней, дни делятся на часы, далее на минуты и секунды. Мы можем соотнести событие с одним из таких интервалов: «эта статья была написана в 2018 году» или «Дождь начнется в 14 часов»

Значения в этом случае можно сравнивать друг с другом не только качественно, но и количественно, становятся доступны операции сложения и вычитания. «Заход солнца произойдет на 12 часов позже восхода». «Фильм А длиннее фильма В на 25 минут»

Однако поскольку начало отсчета не установлено, невозможно определить, во сколько раз одно значение больше другого.

Отношений

Точкой начала отсчета является точка, в которой значение параметра равно нулю. Появляется возможность отсчитывать от нее абсолютное значение параметра, определять разницы значений и во сколько раз одно больше другого. Характерный пример — температурная шкала Кельвина. За начало отчета взята точка «абсолютного нуля», при которой прекращается тепловое движение материи. Второй опорной точкой выбрана температура таяния льда при нормальном давлении. Разница между этими точками по Цельсию составляет 273 °C, и один градус Кельвина равен одному градусу Цельсия. Таким образом, можно сказать, что лед тает при 273К.

Отношений – наиболее информативная. На ней возможны все арифметические операции-

Деление, умножение сложение и вычитание значений параметра будет иметь физический смысл. Мы можем вычислить не только насколько одно значение больше другого, но и во сколько раз.

Разностей

Представляет собой частный случай интервальных. Для них значение не меняется при произвольном числе сдвигов на определенный параметр. Другими характерными признаками являются

  • единицы измерений и точка отсчета определяется по соглашению;
  • существует понятие размерности;
  • доступны операции линейных преобразований;
  • осуществляется путем создания системы эталонов.

В качестве примера можно привести циферблат часов – каждые сутки значение времени будет, например, «7 часов», хотя это разные дни.

Другим примером может служить компас, показывающий направление из одной точки. Сама эта точка может иметь различные координаты.

Важно помнить, что в этом случае при измерении мы можем вычислять разницу между двумя значениями, но должны все время помнить о том, что начальное значении задано произвольно. Например, при переходе на летнее время придется задать новое начальное значение.

Абсолютная

Абсолютная шкала занимает высшую ступень в шкальной иерархии. Единицы их естественные и не основаны на соглашениях и допущениях. Кроме того, эти единицы не имеют размерности, не служат производными системы СИ или какой-либо другой. Они всегда безразмерны:

Абсолютные подразделяют на

  • ограниченные. Диапазон от 0 до 1. Сюда относятся КПД, оптические коэффициенты поглощения т.д.
  • неограниченные – предел упругости, коэффициент усиления в радиотехнике и т.д. Все они нелинейные и не имеют единиц измерений.

Иерархия шкал измерений

Условная иерархия составляется по признаку силы.

  • Количественные:
    • абсолютная;
    • разностей;
    • отношений;
    • интервалов;
  • Качественные:
    • порядковая;
    • наименований.

По мере возрастания силы увеличивается конкретность информации об объекте.

Источник

Характеристики и примеры шкал измерений

Шкала Характеристики Математические методы Примеры
Наименований Объекты сгруппированы, а группы обозначены номерами. То, что номер одной группы больше или меньше другой, еще ничего не говорит об их свойствах, за исключением того, что они различаются Число случаев. Мода. Тетрахорические и полихорические коэффициенты корреляции Номер спортсмена, амплуа и т.д.
Порядка Числа, присвоенные объектам, отражают количество свойства, принадлежащего им. Возможно установление соотношения «больше» или «меньше» Медиана. Ранговая корреляция. Ранговые критерии. Проверка гипотез непараметрической статистикой Результаты ранжирования спортсменов в тесте
Интервалов Существует единица измерений, при помощи которой объекты можно не только упорядочить, но и приписать им числа так, чтобы равные разности отражали разные различия в количестве измеряемого свойства. Нулевая точка произвольна и не указывает на отсутствие свойства Все методы статистики, кроме определения отношений Температура тела, суставные углы и т.д.
Отношений Числа, присвоенные предметам, обладают всеми свойствами интервальной шкалы. На шкале существует абсолютный нуль, который указывает на полное отсутствие данного свойства у объекта. Отношение чисел, присвоенных объектам после измерении, отражает количественные отношения измеряемого свойства Все методы статистики Длина и масса тела, сила движений, ускорение и т. п.

Количественной характеристикой измеряемой величины служит ее размер. Получение информации о размере физической или нефизической величины является содержанием любого измерения. Простейший способ получения такой информации, позволяющий составить некоторое представление о размере измеряемой величины, состоит в сравнении его с другим по принципу «что больше (меньше)?» или «что лучше (хуже)?» Более подробной информации о том, на сколько больше (меньше) или во сколько раз лучше (хуже), иногда даже не требуется. Подобным образом решаются многие задачи выбора: кто сильнее? что нагляднее? как проще? и т.п. При этом число сравниваемых между собой размеров может быть достаточно большим. Расположенные в порядке возрастания или убывания размеры измеряемых величин образуют шкалу порядка. Так, например, на многих конкурсах и соревнованиях мастерство исполнителей и спортсменов (или целых команд) определяется их местом, занятым в итоговой таблице. Эта таблица является шкалой порядка — формой представления измерительной информации, отражающей тот факт, что мастерство одних выше мастерства других, хотя и неизвестно, в какой степени (на сколько, или во сколько раз). Построив людей по росту, можно, пользуясь шкалой порядка, сделать вывод о том, кто выше кого, однако сказать на сколько выше, или во сколько раз — нельзя. Расстановка размеров в порядке их возрастания или убывания с целью получения измерительной информации по шкале порядка называется ранжированием.

Для облегчения измерений по шкале порядка некоторые точки на ней можнозафиксировать в качестве опорных (реперных). Знания, например, измеряют пореперной шкале порядка, имеющей следующий вид: неудовлетворительно, удовлетворительно, хорошо, отлично. Точками реперной шкалы могут быть цифры, называемые баллами.

Особенно широкое распространение реперные шкалы получили в гуманитарных науках, спорте, искусстве и других областях, где измерения еще не достигли высокого совершенства. В спорте шкала порядка чаще всего используется в художественной гимнастике, фигурном катании, единоборствах и т.п. Так, в художественной гимнастике артистизм спортсменок устанавливается в виде рангов: ранг победителя — 1, второе место — 2 и т.д.

Недостаток реперных шкал — неопределенность интервалов между реперными точками. Поэтому баллы нельзя складывать, вычитать, перемножать, делить и т.д. Более совершенными в этом отношении являются шкалы, составленные из строго определенных интервалов. Общепринято, например, измерение времени по шкале, разбитой на интервалы, равные периоду обращения Земли вокруг Солнца (летоисчисление). Эти интервалы (годы) делятся на более мелкие (сутки), равные периоду обращения Земли вокруг своей оси. Сутки, в свою очередь, делятся на часы, часы — на минуты, минуты — на секунды. Такая шкала называется шкалой интервалов (разностей). По шкале интервалов можно уже судить не только о том, что один размер больше другого, но и о том, на сколько больше, т.е. на шкале интервалов определены такие математические действия, как сложение и вычитание. Данные шкалы интервалов дают ответ на вопрос «на сколько больше?», но не позволяют утверждать, что одно значение измеренной величины во столько-то раз больше или меньше другого. Например, если температура повысилась с 10 до 20°С, то нельзя сказать, что стало в два раза теплее; если в соревнованиях по художественной гимнастике при определении артистичности между второй и четвертой спортсменками — два ранга, то это вовсе не означает, что вторая вдвое артистичнее четвертой. Это объясняется тем, что на шкале интервалов известен масштаб, а начало отсчета может быть выбрано произвольно.

Если в качестве одной из двух реперных точек выбрать такую, в которой размер не принимается равным нулю (что приводит к появлению отрицательных значений), а равен нулю на самом деле, то по такой шкале уже можно отсчитывать абсолютное значение размера и определять не только на сколько один размер больше или меньше другого, но и во сколько раз он больше или меньше. Эта шкала называется шкалой отношений.

Шкала отношений является наиболее совершенной из всех рассматриваемых шкал. Но, к сожалению, построение шкалы отношений возможно не всегда. Время, например, может измеряться только по шкале интервалов. В спорте по шкале отношений измеряют расстояние, силу, скорость и десятки других переменных.

В зависимости от того, на какие интервалы разбита шкала, один и тот же размер представляется по-разному. Например, 0,001 км; 1 м; 100 см; 1000 мм — четыре варианта представления одного и того же размера. Их называют значениями измеряемой величины. Таким образом, значение измеряемой величины — это выражение ее размера в определенных единицах измерения. Входящее в него отвлеченное число называется числовым значением. Оно показывает, на сколько единиц измеряемый размер больше нуля или во сколько раз он больше единицы (измерения). Так, измеряя длину прыжка, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в частном случае); взвешивая штангу, определяем отношение ее массы к массе другого тела — единичной гири «килограмма» и т.п.

Самой простой из всех шкал является шкала наименований, или номинальная шкала (от латинского слова «номе» — имя). В этой шкале нет отношений типа «больше — меньше». Здесь речь идет о группировке объектов, идентичных по определенному признаку, и о присвоении им обозначений в виде цифр, которые служат для обнаружения и различения изучаемых объектов (например, нумерация игроков в командах). При использовании шкалы наименований могут проводиться только некоторые математические операции. Например, можно подсчитывать, сколько раз (как часто) встречается то или иное число.

Вопрос 3. Для определения эффективности разработанной методики в педагогических исследованиях проводят сравнительный эксперимент с выделением экспериментальных и контрольных групп, результаты которых подвергают статистической обработке выявляя достоверность различий между ними.

Определение достоверности различий проводятся по многим критериям, наиболее распространённым является t — критерий Стьюдента.

При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух независимых, несвязанных выборок (так называемый двухвыборочный t-критерий). В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно.Во втором случае, когда одна и та же группа объектов порождает числовой матери­ал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными.

Исследователя нередко интересует, как связаны между собой две или большее количество переменных в одной или нескольких изучаемых выборках. Например, могут ли учащиеся с высоким уровнем тревожности демонстрировать стабильные академические достижения, или связана ли продолжительность работы учителя в школе с размером его заработной платы, или с чем больше связан уровень умственного развития учащихся — с их успеваемостью по математике или по литературе и т.п.? Такого рода зависимость между переменными величинами называется корреляционной, или корреляцией. Корреляционная связь — это согласованное изменение двух признаков, отражающее тот факт, что изменчивость одного признака находится в соответствии с изменчивостью другого.

Известно, например, что в среднем между ростом людей и их весом наблюдается положительная связь, и такая, что чем больше рост, тем больше вес человека. Однако из этого правила имеются исключения, когда относительно низкие люди имеют избыточный вес, и, наоборот, астеники, при высоком росте имеют малый вес. Причиной подобных исключений является то, что каждый биологический, физиологический или психологический признак определяется воздействием многих факторов: средовых, генетических, социальных, экологических и т.д.

Корреляционные связи — это вероятностные изменения, которые можно изучать только на представительных выборках методами математической статистики. «Оба термина, — пишет Е.В. Сидоренко, — корреляционная связь и корреляционная зависимость — часто используются как синонимы. Зависимость подразумевает влияние, связь — любые согласованные изменения, которые могут объясняться сотнями причин. Корреляционные связи не могут рассматриваться как свидетельство причинно-следственной зависимости, они свидетельствуют лишь о том, что изменениям одного признака, как правило, сопутствуют определенные изменения другого.

Корреляционная зависимостьэто изменения, которые вносят значения одного признака в вероятность появления разных значений другого признака (Е.В. Сидоренко, 2000).

Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.

Корреляционные связи различаютсяпо форме, направлению и степени (силе). По форме корреляционная связь может быть прямолинейной или криволинейной. Прямолинейной может быть, например, связь между количеством тренировок на тренажере и количеством правильно решаемых задач в контрольной сессии. Криволинейной может быть, например, связь между уровнем мотивации и эффективностью выполнения задачи. При повышении мотивации эффективность выполнения задачи сначала возрастает, затем достигается оптимальный уровень мотивации, которому соответствует максимальная эффективность выполнения задачи; дальнейшему повышению мотивации сопутствует уже снижение эффективности. По направлению корреляционная связь может быть положительной («прямой») и отрицательной («обратной»). При положительной прямолинейной корреляции более высоким значениям одного признака соответствуют более высокие значения другого, а более низким значениям одного признака — низкие значения другого. При отрицательной корреляции соотношения обратные. При положительной корреляции коэффициент корреляции имеет положительный знак, например r=+0,207, при отрицательной корреляции — отрицательный знак, например r=—0,207.

Степень, сила или теснота корреляционной связи определяется по величине коэффициента корреляции.

Сила связи не зависит от ее направленности и определяется по абсолютному значению коэффициента корреляции.

Максимальное возможное абсолютное значение коэффициента корреляции r=1,00; минимальное r=0,00.

Общая классификация корреляционных связей (по Ивантер Э.В., Коросову А.В., 1992):

сильная, или тесная при коэффициенте корреляции r>0,70;

Источник

Виды шкал и их особенности

Проблема обеспечения высокого качества продукции тесным образом связана с проблемой качества измерений. Между ними явно прослеживается непосредственная связь: там, где качество измерений не соответствует требованиям технологического процесса, невозможно достичь высокого уровня качества продукции. Поэтому качество продукции в значительной степени зависит от успешного решения вопросов, связанных с точностью измерений параметров качества материалов и комплектующих изделий и поддержания заданных технологических режимов. Иными словами, технический контроль качества осуществляется путем замеров параметров технологических процессов, результаты измерений которых необходимы для регулирования процессом.

Следовательно, качество измерений представляет собой совокупность свойств состояния измерений, обеспечивающих результаты измерений с требуемыми точностными характеристиками, получаемые в необходимом виде за определенный отрезок времени.

Основные свойства состояния измерений:

• точность результатов измерений;

• воспроизводимость результатов измерений;

• сходимость результатов измерений;

• быстрота получения результатов;

При этом под воспроизводимостью результатов измерений понимается близость результатов измерений одной и той же величины, полученные в разных местах, разными методами, разными средствами, разными операторами, в разное время, однако в одних и тех же условиях измерений (температуре, давлении, влажности и т.д.).

Сходимость результатов измерений — это близость результатов измерений одной и той же величины, проведенных повторно с применением одних и тех же средств, одним и тем же методом в одинаковых условиях и с той же тщательностью.

Любое измерение или количественное оценивание чего-либо осуществляется, используя соответствующие шкалы.

Шкала — это упорядоченный ряд отметок, соответствующий соотношению последовательных значений измеряемых величин. Шкалой измерений называется принятая по соглашению последовательность значений одноименных величин различного размера.

В метрологии шкала измерений является средством адекватного сопоставления и определения численных значений отдельных свойств и качеств различных объектов. Практически используют пять видов шкал: шкалу наименований, шкалу порядка, шкалу интервалов, шкалу отношений и шкалу абсолютных значений.

Шкала наименований (номинальная шкала). Это самая простая из всех шкал. В ней числа выполняют роль ярлыков и служат для обнаружения и различения изучаемых объектов. Числа, составляющие шкалу наименований, разрешается менять местами. В этой шкале нет отношений типа «больше—меньше», поэтому некоторые полагают, что применение шкалы наименований не стоит считать измерением. При использовании шкалы наименований могут проводится только некоторые математические операции. Например, ее числа нельзя складывать и вычитать, но можно подсчитывать, сколько раз (как часто) встречается то или иное число.

Шкала порядка. Места, занимаемые величинами в шкале порядка, называются рангами, а сама шкала называется ранговой, или неметрической. В такой шкале составляющие ее числа упорядочены по рангам (т.е. занимаемым местам), но интервалы между ними точно измерить нельзя. В отличие от шкалы наименований шкала порядка позволяет не только установить факт равенства или неравенства измеряемых объектов, но и определить характер неравенства в виде суждений: «больше—меньше», «лучше—хуже» и т.п.

С помощью шкал порядка можно измерять качественные, не имеющие строгой количественной меры, показатели. Особенно широко эти шкалы используются в гуманитарных науках: педагогике, психологии, социологии. К рангам шкалы порядка можно применять большее число математических операций, чем к числам шкалы наименований.

Шкала интервалов. Это такая шкала, в которой числа не только упорядочены по рангам, но и разделены определенными интервалами. Особенность, отличающая ее от описываемой дальше шкалы отношений, состоит в том, что нулевая точка выбирается произвольно. Примерами могут быть календарное время (начало летоисчисления в разных календарях устанавливалось по случайным причинам, температура, потенциальная энергия поднятого груза, потенциал электрического поля и др.).

Результаты измерений по шкале интервалов можно обрабатывать всеми математическими методами, кроме вычисления отношений. Данные шкалы интервалов дают ответ на вопрос «на сколько больше?», но не позволяют утверждать, что одно значение измеренной величины во столько-то раз больше или меньше другого. Например, если температура повысилась с 10 до 20°С, то нельзя сказать, что стало в два раза теплее.

Шкала отношений. Эта шкала отличается от шкалы интервалов только тем, что в ней строго определено положение нулевой точки. Благодаря этому шкала отношений не накладывает никаких ограничений на математический аппарат, используемый для обработки результатов наблюдений.

По шкале отношений измеряют и те величины, которые образуются как разности чисел, отсчитанных по шкале интервалов. Так, календарное время отсчитывается по шкале интервалов, а интервалы времени — по шкале отношений.

При использовании шкалы отношений (и только в этом случае!) измерение какой-либо величины сводится к экспериментальному определению отношения этой величины к другой подобной, принятой за единицу. Измеряя длину объекта, мы узнаем, во сколько раз эта длина больше длины другого тела, принятого за единицу длины (метровой линейки в данном случае) и т.п. Если ограничиться только применением шкал отношений, то можно дать другое (более узкое, частное) определение измерения: измерить какую-либо величину — значит найти опытным путем ее отношение к соответствующей единице измерения.

Шкала абсолютных величин. Во многих случаях напрямую измеряется величина чего-либо. Например, непосредственно подсчитывается число дефектов в изделии, количество единиц произведенной продукции, сколько студентов присутствует на лекции, количество прожитых лет и т.д. и т.п. При таких измерениях на измерительной шкале отмечаются

абсолютные количественные значения измеряемого. Такая шкала абсолютных значений обладает и теми же свойствами, что и шкала отношений, с той лишь разницей, что величины, обозначенные на этой шкале, имеют абсолютные, а не относительные значения.

Результаты измерений по шкале абсолютных величин имеют наибольшую достоверность, информативность и чувствительность к неточностям измерений.

Шкалы интервалов, отношений и абсолютных величин называются метрическими, так как при их построении используются некоторые меры, т.е. размеры, принятые в качестве единиц измерений.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector