Что значит измерить объем предмета геометрической фигуры

Содержание
  1. Формулы объема геометрических фигур
  2. Объем куба
  3. Объем призмы
  4. Объем параллелепипеда
  5. Объем прямоугольного параллелепипеда
  6. Объем пирамиды
  7. Объем правильного тетраэдра
  8. Объем цилиндра
  9. Объем конуса
  10. Объем шара
  11. Все формулы объемов геометрических тел
  12. 1. Расчет объема куба
  13. 2. Найти по формуле, объем прямоугольного параллелепипеда
  14. 3. Формула для вычисления объема шара, сферы
  15. 4. Как вычислить объем цилиндра ?
  16. 5. Как найти объем конуса ?
  17. 7. Формула объема усеченного конуса
  18. 8. Объем правильного тетраэдра
  19. 9. Объем правильной четырехугольной пирамиды
  20. 10. Объем правильной треугольной пирамиды
  21. 11. Найти объем правильной пирамиды
  22. Формулы вычисления объема всех геометрических фигур
  23. Все формулы объема геометрических тел
  24. Объем куба
  25. Объем призмы
  26. Объем параллелепипеда
  27. Объем пирамиды
  28. Объем усеченной пирамиды
  29. Объем цилиндра
  30. Объем правильной треугольной пирамиды
  31. Объем конуса
  32. Объем усеченного конуса
  33. Объем тетраэдра
  34. Объем шара
  35. Объем шарового сегмента и сектора
  36. Объем прямоугольного параллелепипеда
  37. Объемы геометрических тел
  38. Объемы геометрических тел
  39. Определение объема
  40. Примеры
  41. Объем призмы
  42. Объем пирамиды
  43. Объем цилиндра
  44. Объем конуса
  45. Объем шара
  46. Лекция 13. Объем геометрического тела и его измерение.

Формулы объема геометрических фигур

Объем куба

Объем куба равен кубу длины его грани.

Формула объема куба:

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

Объем пирамиды

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Формула объема пирамиды:

Объем правильного тетраэдра

Формула объема правильного тетраэдра:

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра:

Объем конуса

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса:

Объем шара

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Источник

Все формулы объемов геометрических тел

1. Расчет объема куба

a — сторона куба

Формула объема куба, (V):

2. Найти по формуле, объем прямоугольного параллелепипеда

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V):

3. Формула для вычисления объема шара, сферы

R радиус шара

По формуле, если дан радиус, можно найти объема шара, (V):

4. Как вычислить объем цилиндра ?

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V):

5. Как найти объем конуса ?

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V):

7. Формула объема усеченного конуса

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V):

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):

Источник

Формулы вычисления объема всех геометрических фигур

Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства. Первые точные определения были даны Пеано (1887) и Жорданом (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.

Для определения объёма существует несколько существенно различных подходов, которые дополняют друг друга и согласованы по конечному результату на «хороших множествах». Обычно под понятием объёма понимается мера Жордана, но иногда мера Лебега. Для римановых многообразий понятие объёма вводится аналогично понятию площади поверхности.

Все формулы объема геометрических тел

Объем куба

Объем куба равен кубу длины его грани.

Формула объема куба:

V — объем куба,
a — длина грани куба.

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

V- объем призмы,
So — площадь основания призмы,
h — высота призмы.

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

V- объем параллелепипеда,
So — площадь основания,
h — длина высоты.

Объем пирамиды

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

V — объем пирамиды,
So — площадь основания пирамиды,
h — длина высоты пирамиды.

Объем усеченной пирамиды

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Формула объема усеченной пирамиды:

S1 — площадь верхнего основания усеченной пирамиды,
S2 — площадь нижнего основания усеченной пирамиды,
h — высота усеченной пирамиды.

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

V — объем цилиндра,
So — площадь основания цилиндра,
R — радиус цилиндра,
h — высота цилиндра,
π = 3.141592

Объем правильной треугольной пирамиды

Формула объема правильной треугольной пирамиды:

V — объем пирамиды;
h — высота пирамиды;
a — сторона основания пирамиды.

Объем конуса

Объем круглого конуса равен трети произведения площади основания S на высоту H.

V — объем конуса;
R — радиус основания;
H — высота конуса;
I — длина образующей;
S — площадь боковой поверхности конуса.

Объем усеченного конуса

Объем усеченного конуса равен разности объемов двух полных конусов.

Формула объема усеченного конуса:

V — объем усеченного конуса;
H — высота усеченного конуса;
R и R 2 — радиусы нижнего и верхнего оснований.

Объем тетраэдра

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

V — объем тетраэдра;
a — ребро тетраэдра.

Объем шара

Объем шара равен четырем третьим от его радиуса в кубе перемноженного на число пи.

V — объем шара;
R — радиус шара;
S — площадь сферы.

Объем шарового сегмента и сектора

Шаровый сегмент — это часть шара отсеченная плоскостью. В данном примере, плоскостью ABCD.

Формула объема шарового сегмента:

R — радиус шара
H — высота сегмента
π ≈ 3,14

Формула объема шарового сектора:

h — высота сегмента
R — радиус шара
π ≈ 3,14

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

V — объем прямоугольного параллелепипеда,
a — длина,
b — ширина,
h — высота.

Источник

Объемы геометрических тел

Объемы геометрических тел

Раньше для определения объемов геометрических тел традиционно использовались интегралы. Сегодня есть и другие подходы, которые подробно представлены в учебниках нашей корпорации. В одном из вебинаров «Российского учебника» учитель высшей категории Алексей Доронин рассказал о методах определения объема разных геометрических тел с помощью принципа Кавальери и других аксиом.

Определение объема

Объем можно определить как функцию V на множестве многогранников, удовлетворяющую следующим аксиомам:

  • V сохраняется при движениях.
  • V удовлетворяет принципу Кавальери.
  • Если внутренности многогранников M и N не пересекаются, то V(M ∪ N) = V(M) + V(N).
  • Объем прямоугольного параллелепипеда V = abc.

Принцип Кавальери (итальянского математика, ученика Галилея). Если при пересечении двух тел плоскостями, параллельными одной и той же плоскости, в сечениях этих тел любой из плоскостей получаются фигуры, площади которых относятся как m : n, то объемы данных тел относятся как m : n.

В открытом банке заданий ЕГЭ есть много задач для отработки этого способа определения объема.

Примеры

Задача 1. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.

Задача 2. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Задача 3. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Разберем, как можно вычислять объемы изучаемых в школе фигур.

Объем призмы

В представленном случае известны площадь основания и высота призмы. Чтобы найти объем, используем принцип Кавальери. Рядом с призмой (Ф2) поместим прямоугольный параллелепипед (Ф1), в основании которого — прямоугольник с такой же площадью, как у основания призмы. Высота у параллелепипеда такая же, как у наклонного ребра призмы. Обозначим третью плоскость (α) и рассмотрим сечение. В сечении виден прямоугольник с площадью S и, во втором случае, многоугольник тоже с площадью S. Далее вычисляем по формуле:

Объем пирамиды

Лемма: две треугольные пирамиды с равновеликими основаниями и равными высотами равновелики. Докажем это, используя принцип Кавальери.

Возьмем две пирамиды одинаковой высоты и заключим их между двумя параллельными плоскостями α и β. Обозначим также секущую плоскость и треугольники в сечениях. Заметим, что отношения площадей этих треугольников связаны непосредственно с отношением оснований.

Известно, что объем любой пирамиды равен одной трети произведения площади основания на высоту. Данной теоремой апеллируют довольно часто. Однако откуда в формуле объема пирамиды появляется коэффициент 1/3? Чтобы понять это, возьмем призму и разобьем ее на 3 треугольные пирамиды:

Объем цилиндра

Возьмем прямой круговой цилиндр, в котором известны радиус основания и высота. Рядом поместим прямоугольный параллелепипед, в основании которого лежит квадрат. Рассмотрим:

Объем конуса

Конус лучше всего сравнивать с пирамидой. Например, с правильной четырехугольной пирамидой с квадратом в основании. Две фигуры с равными высотами заключаем в две параллельные плоскости. Обозначив третью плоскость, в сечении получаем круг и квадрат. Представления о подобиях приводят к числу π.

Объем шара

Объем шара — одна из наиболее сложных тем. Если предыдущие фигуры можно продуктивно разобрать за один урок, то шар лучше отложить на последующее занятие.

Чтобы найти объем шара, шар часто предлагается сравнить со сложным геометрическим телом, которое связано с конусом и цилиндром. Но не стоит строить цилиндр, из которого вырезан конус, или вроде того. Возьмем половину шара с высотой R и радиусом R, а также конус и цилиндр с аналогичными высотами и радиусами оснований. Обратимся к полезным материалам на сайте «Математические этюды» , где объем шара рассматривается с использованием весов Архимеда. Цилиндр располагается на одной стороне уравновешенных весов, конус и половина шара — на другой.

Заключаем геометрические фигуры в две параллельные плоскости и смотрим, что получается в сечении. У цилиндра — круг с площадью πR 2 . Как известно, если внутренности геометрических тел не пересекаются, то объем их объединения равен сумме объемов. Пусть в конусе и в половине шара расстояние до плоскости сечения будет x. Радиус — тоже x. Тогда площадь сечения конуса — π ∙ x 2 . Расстояние от середины верха половины шара к краю сечения — R. Площадь сечения половины шара: π(R 2 — x 2 ).

Итак, чтобы найти объем нового, не изученного геометрического тела, нужно сравнить его с тем телом, которое наиболее на него похоже. Многочисленные примеры заданий из открытого банка задач показывают, что в работе с фигурами имеет смысл использовать представленные формулы и аксиомы.

Источник

Лекция 13. Объем геометрического тела и его измерение.

Лекция 13. Объем геометрического тела и его измерение.

Объем– это положительная скалярная величина, характеризующая размер геометрического тела.

Объемом тела называется положительная скалярная величина, определенная для каждого геометрического тела так, что:

1. равные тела имеют равные объемы;

2. если тело составлено из нескольких тел, то его объем равен сумме их объемов.

Будем объем тела Q обозначать V(Q).

Чтобы измерить объем тела, нужно выбрать единицу объема. Таковой является куб со стороной, равной единице длины, его объем равен е 3 . Измерение объема состоит в сравнении объема данного тела с объемом единичного куба. Результатом этого сравнения является такое число х такое, что V(Q) = х ∙ е 3 , которое называют численным значением объема при данной единице объема.

Свойства численных значений объема

1. Если тела равны, то равны и численные значения их объемов:

2. Если тело Q состоит из тел Q 1 , Q 2 ,…, Q n , то численное значение объема тела равно сумме численных значений объемов этих тел.

3. При замене единицы измерения объема численное значение объема увеличивается (уменьшается) во столько раз, во сколько раз уменьшается (увеличивается) единица объема.

Выразим, например, 9 дм 3 в кубических сантиметрах. Известно, что 1 дм 3 = 1000 см 3 , и, следовательно, 9 дм 3 = 9 ∙ 1 дм 3 = 9 ∙ (1000 см 3 ) = (9 ∙ 1000) ∙ см 3 = = 9000 см 3 .

Для измерения объемов площадей используют стандартные единицы площади: м 3 , дм 3 , см 3 , мм 3 . Основная единица измерения объема – кубический метр. Соотношения между единицами объема: 10 -9 км 3 = 1 м 3 = 10 3 дм 3 = 10 6 см 3 = 10 9 мм 3 .

Объем прямоугольного параллелепипеда равен произведению трех его измерений.

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Объем прямой призмы равен произведению площади основания на высоту.

Объем наклонной призмы равен произведению площади основания на высоту.

Объем пирамиды равен одной трети произведения площади основания на высоту.

Объем прямого цилиндра равен произведению площади основания на высоту.

Объем конуса равен одной трети произведения площади основания на высоту.

Объем усеченного конуса, высота которого равна , а площади оснований и , вычисляется по формуле .

Объем шара радиуса равен.

Задания для самостоятельной работы по теме:

Ребро данного куба равно 1/3 ребра единичного куба. Чему равен объем данного куба?

Найдите объем правильной четырехугольной пирамиды, сторона которого 5см., а высота 8 см.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector