Меню

Дайте определение импульса тела укажите единицы измерения



Импульс тела

Импульс (количество движения) — аддитивный интеграл движения механической системы; соответствующий закон сохранения связан с фундаментальной симметрией — однородностью пространства.

Содержание

История появления термина

Ещё в первой половине XVII века понятие импульса введено Рене Декартом. Так как физическое понятие массы в то время отсутствовало, он определил импульс как произведение «величины тела на скорость его движения». Позже такое определение было уточнено Исааком Ньютоном. Согласно Ньютону, «количество движения есть мера такового, устанавливаемая пропорционально скорости и массе».

«Школьное» определение импульса

В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорость

(отсюда следует закон сохранения импульса)

соответственно величина называется импульсом одной материальной точки. Это векторная величина, направленная в ту же сторону, что и скорость частицы. Единицей измерения импульса в Международной системе единиц (СИ) является килограмм-метр в секунду (кг·м/с)

Если мы имеем дело с телом конечного размера, для определения его импульса необходимо разбить тело на малые части, которые можно считать материальными точками и просуммировать по ним, в результате получим:

Импульс системы, на которую не действуют никакие внешние силы (или они скомпенсированы) сохраняется во времени:

. (*)

Сохранение импульса в этом случае следует из второго и третьего закона Ньютона: написав второй закон Ньютона для каждой из составляющих систему материальных точек и просуммировав по всем материальным точкам, составляющим систему, в силу третьего закона Ньютона получим равенство (*).

В релятивистской механике трёхмерным импульсом системы невзаимодействующих материальных точек называется величина

,

Для замкнутой системы не взаимодействующих материальных точек эта величина сохраняется. Однако трёхмерный импульс не есть релятивистски инвариантная величина, так как он зависит от системы отсчёта. Более осмысленной величиной будет четырёхмерный импульс, который для одной материальной точки определяется как

В принципе, для системы невзаимодействующих материальных точек их 4-импульсы суммируются. Однако для взаимодействующих частиц в релятивистской механике следует учитывать импульсы не только составляющих систему частиц, но и импульс поля взаимодействия между ними. Поэтому гораздо более осмысленной величиной в релятивистской механике является тензор энергии-импульса, который в полной мере удовлетворяет законам сохранения.

Обобщённый импульс в аналитической механике

В теоретической механике обобщённым импульсом называется частная производная лагранжиана системы по обобщённой скорости . В случае, если лагранжиан системы не зависит от некоторой обобщённой координаты, то в силу уравнений Лагранжа .

Для свободной частицы функция Лагранжа имеет вид: , отсюда:

Независимость лагранжиана замкнутой системы от её положения в пространстве следует из свойства однородности пространства: для хорошо изолированной системы её поведение не зависит от того, в какое место пространства мы её поместим. По теореме Нётер из этой однородности следует сохранение некоторой физической величины. Эту величину и называют импульсом (обычным, не обобщённым).

Формальное определение импульса

Импульсом называется сохраняющаяся физическая величина, связанная с однородностью пространства (инвариант относительно трансляций).

Импульс в нерелятивистской квантовой механике

Формальное определение

В квантовой механике импульсом частицы называют оператор — генератор группы трансляций. Это эрмитов оператор, собственные значения которого отождествляются с импульсом системы частиц. В координатном представлении для системы нерелятивистских частиц он имеет вид

где — оператор набла, соответствующий дифференцированию по координатам j -ой частицы. Гамильтониан системы выражается через оператор импульса:

Для замкнутой системы ( U = 0 ) оператор импульса коммутирует с гамильтонианом и импульс сохраняется.

Определение через волны де Бройля

Формула де Бройля связывает длину волны с импульсом. Длина волны обратно пропорциональна импульсу частицы.

Литература

  • Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М .: Едиториал УРСС, 2003. — 416 с. — 1500 экз. — ISBN 5-354-00341-5
  • Ландау, Л. Д., Лифшиц, Е. М. Механика. — Издание 4-е, исправленное. — М .: Наука, 1988. — 215 с. — («Теоретическая физика», том I). — ISBN 5-02-013850-9
  • Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 7-е, исправленное. — М .: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7
  • Сивухин Д. В. Общий курс физики. — Издание 4-е. — М .: Физматлит, 2002. — Т. I. Механика. — 792 с. — ISBN 5-9221-0225-7

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое «Импульс тела» в других словарях:

ИМПУЛЬС ЭЛЕКТРОМАГНИТНОГО ПОЛЯ — динамич. характеристика поляг количество движения, к рым обладает эл. магн. поле в данном объёме. Тела, помещённые в эл. магн. поле, испытывают действие механич. сил, к рое связано с поглощением эл. магн. волн или изменением направления их… … Физическая энциклопедия

Читайте также:  Единица измерения вибрации двигателя

Импульс — У этого термина существуют и другие значения, см. Импульс (значения). Импульс Размерность LMT−1 Единицы измерения СИ … Википедия

Импульс электромагнитного поля — динамическая характеристика поля Количество движения, которым обладает электромагнитное поле в данном объёме. Тела, помещенные в электромагнитное поле, испытывают действие механических сил. Воздействие поля на тело при этом связано с… … Большая советская энциклопедия

ИМПУЛЬС — (лат., от impellere толкать). Внушение, побуждение, понуждение, толчок к чему либо. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИМПУЛЬС 1) толчок, побуждающий к движению; 2) сильное нравственное побуждение.… … Словарь иностранных слов русского языка

Импульс (механика) — Импульс (количество движения) аддитивный интеграл движения механической системы; соответствующий закон сохранения связан с фундаментальной симметрией однородностью пространства. Содержание 1 История появления термина 2 «Школьное» определение… … Википедия

Импульс — нервный выражение, употребляемое в физиологии дляобозначения процесса нервного возбуждения, пробегающего или вцентробежном направлении от мозга по центробежным нервам и различнымрабочим аппаратам тела мышцам, железам и т.д., или… … Энциклопедия Брокгауза и Ефрона

ИМПУЛЬС — в физике, 1) мера механического движения (то же, что количество движения). Импульсом обладают все формы материи, в том числе электромагнитные, гравитационные и другие поля (смотри Поля физические). В простейшем случае механического движения… … Современная энциклопедия

ИМПУЛЬС — внезапное и быстроисчезающее повышение какого либо параметра в системе (давления, температуры, освещённости и др.), а также единичный сигнал конечной энергии, существенно отличный от нуля в течение ограниченного времени; характеризуется фазой и… … Большая политехническая энциклопедия

ИМПУЛЬС — (лат.) побуждение, толчок; импульсивный – побудительный, определенный импульсом, совершаемый без (долгого) размышления; см. также Спонтанный. В физике импульс (произведение силы на время, в течение которого действует сила [k t]) есть увеличение… … Философская энциклопедия

импульс нервный — быстро распространяющаяся по волокну нервному волна возбуждения, возникающая при раздражении окончания чувствительного волокна нервного, самого волокна или тела клетки нервной (нейрона). Сопровождается быстрым изменением возбудимости,… … Большая психологическая энциклопедия

Источник

Импульс тела. Импульс силы. Закон сохранения импульса

Импульс тела. Что это такое? Зачем это нужно? Очень и очень даже справедливые вопросы. Действительно, зачем нужен этот импульс тела ? У нас и так достаточно величин, которые описывают движение тела:

  • начальная скорость
  • равнодействующая всех сил, приложенных к телу
  • ускорение тела, связанное с равнодействующей.

Все верно. Но оказывается, что с помощью импульса тела иногда удобнее описывать движение тела. Сейчас мы рассмотрим пример, из которого вам станет ясно, что такое импульс тела и чем он хорош.

В обыденной жизни нам привычно характеризовать движение тела скоростью. Чем больше скорость у, допустим, велосипедиста — тем больше в нем сосредоточено «движения». Если бы велосипедист врезался в небольшой забор на садовом участке, забор бы пострадал. Чем больше была бы скорость велосипедиста, тем сильнее пострадал бы забор. Но не все определяется скоростью.

Отличаются ли друг от друга два этих случая: движение велосипедиста и движение грузовика? Ведь они едут с одинаковой скоростью. Будут ли отличаться последствия, если велосипедист врежется в забор или грузовик врежется в забор? Да, конечно. В случае грузовика последствия будут более разрушительными для забора.

Что это значит? Что только скоростью характеризовать движение тела не очень удобно. Очень логично в свете приведенного примера с грузовиком и велосипедистом выглядит величина импульс тела :

Импульс тела — это векторная величина, равная произведению массы тела на скорость тела.

Ну ооочень логичное определение. Чем больше скорость и чем больше масса тела, тем более «разрушительные» последствия могут быть от действий этого тела. Это объяснение «на пальцах».

Примечательно то, что ранее, в советское время, импульс тела называли количеством движения . Очень сочное и яркое определение. То есть импульс (количество движения) показывает, как много движения «запасено» в теле. Получается, что одинаковое количество движения запасено в легкой пуле, летящей с огромной скоростью, и в тяжеленном вагоне трамвая, плетущегося с мизерной скоростью.

Хочется отметить, что импульс тела — это векторная величина. И импульс тела p ⃗ \vec

Читайте также:  Измерение глазного давления единицы измерения

p ⃗ ​ сонаправлен со скоростью тела V ⃗ \vec V ⃗ :

Для импульса нет специальной единицы измерения (вакантное место — можете предложить свою фамилию в качестве кандидата на роль единицы измерения импульса). Импульс по-простому измеряется в к г ⋅ м с кг\cdot\frac<м> <с>к г ⋅ с м ​ :

Источник

Импульс тела, закон сохранения импульса

теория по физике 🧲 законы сохранения

Импульс тела — векторная физическая величина, обозначаемая как p и равная произведению массы тела на его скорость:

Единица измерения импульса — килограмм на метр в секунду (кг∙м/с).

Направление импульса всегда совпадает с направлением скорости ( p ↑↓ v ), так как масса — всегда положительная величина (m > 0).

Пример №1. Определить импульс пули массой 10 г, вылетевшей со скоростью 300 м/с. Сопротивлением воздуха пренебречь.

Импульс пули есть произведение массы на ускорение. Прежде чем выполнить вычисления, нужно перевести единицы измерения в СИ:

p = mv = 0,01∙300 = 3 (кг∙м/с)

Относительный импульс

Относительный импульс — векторная физическая величина, равная произведению массы тела на относительную скорость:

p 1отн2 — импульс первого тела относительно второго, m1 — масса первого тела, v 1отн2 — скорость первого тела относительно второго, v 1 и v 2 — скорости первого и второго тела соответственно в одной и той же системе отсчета.

Пример №2. Два автомобиля одинаковой массы (15 т) едут друг за другом по одной прямой. Первый — со скоростью 20 м/с, второй — со скоростью 15 м/с относительно Земли. Вычислите импульс первого автомобиля в системе отсчета, связанной со вторым автомобилем.

Сначала переведем единицы измерения в СИ:

Изменение импульса тела

p — изменение импульса тела, p — конечный импульс тела, p — начальный импульс тела

Частные случаи определения изменения импульса тела

Абсолютно неупругий удар

Конечный импульс тела:

Модуль изменения импульса тела равен модулю его начального импульса:

Абсолютно упругий удар

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Пуля пробила стенку

Модуль изменения импульса тела равен разности модулей начального и конечного импульсов:

Радиус-вектор тела повернул на 180 градусов

Модуль изменения импульса тела равен удвоенному модулю начального (конечного) импульса:

Абсолютно упругое отражение от горизонтальной поверхности под углом α к нормали

Модули конечной и начальной скоростей равны:

Модули конечного и начального импульсов равны:

Угол падения равен углу отражения:

Модуль изменения импульса в этом случае определяется формулой:

Пример №3. Шайба абсолютно упруго ударилась о неподвижную стену. При этом направление движения шайбы изменилось на 90 градусов. Импульс шайбы перед ударом равен 1 кг∙м/с. Чему равен модуль изменения импульса шайбы в результате удара? Ответ округлите до десятых.

В данном случае 90 градусов и есть 2α (угол между векторами начального и конечного импульсов), в то время как α — это угол между вектором импульса и нормалью. Учтем, что при абсолютно упругом отражении модули конечного и начального импульсов равны.

Вычисляем:

Второй закон Ньютона в импульсном виде

Второй закон Ньютона говорит о том, что ускорение тела прямо пропорционально силе, действующей на него. Записывается он так:

Но ускорение определяется отношением разности конечной и начальной скоростей ко времени, в течение которого менялась скорость:

Подставим это выражение во второй закон Ньютона и получим:

F ∆t — импульс силы, ∆ p — изменение импульса тела

Пример №4. Тело движется по прямой в одном направлении. Под действием постоянной силы за 3 с импульс тела изменился на 6 кг∙м/с. Каков модуль силы?

Из формулы импульса силы выразим модуль силы:

Реактивное движение

Реактивное движение — это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-либо его части. В отличие от других видов движения реактивное движение позволяет телу двигаться и тормозить в безвоздушном пространстве, достигать первой космической скорости.

Ракета представляет собой систему двух тел: оболочки массой M и топлива массой m. v — скорость выброса раскаленных газов. ∆m/∆t — расход реактивного топлива, V — скорость ракеты.

Второй закон Ньютона в импульсном виде:

Второй закон Ньютона для ракеты:

Пример №5. Космический корабль массой 3000 кг начал разгон в межпланетном пространстве, включив реактивный двигатель. Из сопла двигателя каждую секунду выбрасывается 3 кг горючего газа со скоростью 600 м/с. Какой будет скорость корабля через 20 секунд после разгона? Изменением массы корабля во время разгона пренебречь. Принять, что поле тяготения, в котором движется корабль, пренебрежимо мало.

Читайте также:  Международные шкалы измерения температур

Корабль начинает движение из состояния покоя. Поэтому скорость будет равна:

Выразим ускорение из второго закона Ньютона для ракеты:

Изменение импульса определяется произведением суммарной массы выброшенного горючего на скорость его выброса. Так как мы знаем, сколько выбрасывалось горючего каждую секунду, формула примет вид:

Отсюда ускорение равно:

Выразим формулу для скорости и сделаем вычисления:

Суммарный импульс системы тел

Суммарный импульс системы тел называется полным импульсом системы. Он равен векторной сумме импульсов всех тел, которые входят в эту систему:

Пример №6. Найти импульс системы, состоящей из двух тел. Векторы импульсов этих тел указаны на рисунке.

Между векторами прямой угол (его косинус равен нулю). Модуль первого вектора равен 4 кг∙м/с (т.к. занимает 2 клетки), а второго — 6 кг∙м/с (т.к. занимает 3 клетки). Отсюда:

Закон сохранения импульса

Левая часть выражения показывает векторную сумму импульсов системы, состоящей из двух тел, до их взаимодействия. Правая часть выражения показывает векторную сумму этой системы после взаимодействия тел, которые в нее входят.

Закон сохранения импульса в проекции на горизонтальную ось

Если до и после столкновения скорости тел направлены вдоль горизонтальной оси, то закон сохранения импульса следует записывать в проекциях на ось ОХ. Нельзя забывать, что знак проекции вектора:

  • положителен, если его направление совпадает с направлением оси ОХ;
  • отрицателен, если он направлен противоположно направлению оси ОХ.

При неупругом столкновении двух тел, движущихся навстречу друг другу, скорость совместного движения будет направлена в ту сторону, куда до столкновения двигалось тело с большим импульсом.

Частные случаи закона сохранения импульса (в проекциях на горизонтальную ось)

Неупругое столкновение с неподвижным телом m1v1 = (m1 + m2)v
Неупругое столкновение движущихся тел ± m1v1 ± m2v2 = ±(m1 + m2)v
В начальный момент система тел неподвижна 0 = m1v’1 – m2v’2
До взаимодействия тела двигались с одинаковой скоростью (m1 + m2)v = ± m1v’1 ± m2v’2

Сохранение проекции импульса

В незамкнутых системах закон сохранения импульса выполняется частично. Например, если из пушки под некоторым углом α к горизонту вылетает снаряд, то влияние силы реакции опоры не позволит орудию «уйти под землю». В момент отдачи оно будет откатываться от поверхности земли.

Пример №7. На полу лежит шар массой 2 кг. С ним сталкивается шарик массой 1 кг со скоростью 2 м/с. Определить скорость первого шара при условии, что столкновение было неупругим.

Если столкновение было неупругим, скорости первого и второго тел после столкновения будут одинаковыми, так как они продолжат двигаться совместно. Используем для вычислений следующую формулу:

Отсюда скорость равна:

Импульс частицы до столкновения равен − p 1, а после столкновения равен − p 2, причём p1 = p, p2 = 2p, − p 1⊥ − p 2. Изменение импульса частицы при столкновении Δ − p равняется по модулю:

Алгоритм решения

Решение

Запишем исходные данные:

Так как угол α = 90 о , вектор изменения импульса представляет собой гипотенузу треугольника, катами которого являются вектора начального и конечного импульсов. Поэтому изменение импульса можно вычислить по теореме Пифагора:

Δ p = √ p 2 1 + p 2 2

Подставим известные данные:

Δ p = √ p 2 + ( 2 p ) 2 = √ 5 p 2 = p √ 5

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке приведён график зависимости проекции импульса на ось Ox тела, движущегося по прямой, от времени. Как двигалось тело в интервалах времени 0–1 и 1–2?

а) в интервале 0–1 не двигалось, а в интервале 1–2 двигалось равномерно

б) в интервале 0–1 двигалось равномерно, а в интервале 1–2 двигалось равноускорено

в) в интервалах 0–1 и 1–2 двигалось равномерно

г) в интервалах 0–1 и 1–2 двигалось равноускорено

Алгоритм решения

Решение

Импульс тела есть произведение массы тела на его скорость:

Следовательно, импульс и скорость тела — прямо пропорциональные величины. Если импульс с течением времени не меняется, то скорость тоже. Значит, движение равномерное. Если импульс растет линейно, то и скорость увеличивается линейно. В таком случае движение будет равноускоренным.

На участке 0–1 импульс тела не менялся. Следовательно, на этом участке тело двигалось равномерно. На участке 1–2 импульс тела увеличивался по линейной функции, следовательно, на этом участке тело двигалось равноускорено.

pазбирался: Алиса Никитина | обсудить разбор | оценить

Источник