Меню

Дайте определение потенциала поля единицы измерения потенциала



Потенциал электрического поля

Потенциал. Эквипотенциальные поверхности.

В механике взаимодействие тел характеризует силой или потенциальной энергией. Электрическое поле, которое обеспечивает взаимодействие между электрически заряженными телами, также характеризуют двумя величинами. Напряженность электрического поля — это силовая характеристика. Теперь введем энергетическую характеристику — потенциал. С помощью этой величины можно будет сравнивать между собой любые точки электрического поля. Таким образом, потенциал как характеристика поля должен зависеть от значения заряда, содержащегося в этих точках. Поделим обе части формулы A = W1 — W2 на заряд q, получим

Отношение W/q не зависит от значения заряда и принимается за энергетическую характеристику, которую называют потенциалом поля в данной точке. Обозначают потенциал буквой φ.

Потенциал электрического поля φскалярная энергетическая характеристика поля, которая определяется отношением потенциальной энергии W положительного заряда q в данной точке поля к величине этого заряда:

Единица потенциала — вольт:

Подобно потенциальной энергии значения потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Чаще всего в электродинамике за нулевой уровень берут потенциал точки, лежащей в бесконечности, а в электротехнике — на поверхности Земли.

С введением потенциала формулу для определения работы по перемещению заряда между точками 1 и 2 можно записать в виде

Поскольку при перемещении положительного заряда в направлении вектора напряженности электрическое поле выполняет положительную работу A = q (φ1 — φ2 )> 0, то потенциал φ1 больше чем потенциал φ2 . Таким образом, напряженность электрического поля направлена в сторону уменьшения потенциала.

Если заряд перемещать с определенной точки поля в бесконечность, то работа A = q (φ — φ ). Поскольку φ = 0, то A = qφ. Таким образом, величина потенциала φ определенной точки поля определяется работой, которую выполняет электрическое поле, перемещая единичный положительный заряд из этой точки в бесконечность,

Если электрическое поле создается точечным зарядом q, то в точке, лежащей на расстоянии r от него, потенциал вычисляют по формуле

По этой формуле рассчитывают и потенциал поля заряженного шара. В таком случае r — это расстояние от центра шара до выбранной точки поля. С этой формулы видно, что на одинаковых расстояниях от точечного заряда, который создает поле, потенциал одинаков. Все эти точки лежат на поверхности сферы, описанной радиусом r вокруг точечного заряда. Такую сферу называют эквипотенциальной поверхностью.

Эквипотенциальные поверхности — геометрическое место точек в электрическом поле, которые имеют одинаковый потенциал, — один из методов наглядного изображения электрических полей.

Эквипотенциальные поверхности электрических полей, созданных точечными зарядами разных знаков

Силовые линии всегда перпендикулярны эквипотенциальных поверхностей. Это означает, что работа сил поля по перемещению заряда по эквипотенциальной поверхности равна нулю.

В случае наложения электрических полей, созданных несколькими зарядами, потенциал электрического поля равен алгебраической сумме потенциалов полей, созданных отдельными зарядами, φ = φ1 + φ2 + φ3 . Эквипотенциальные поверхности таких систем имеют сложную форму. Например, для системы из двух одинаковых по значению одноименных зарядов эквипотенциальные поверхности имеют вид, изображенный на рисунке. Эквипотенциальные поверхности однородного поля явлются плоскостями.

Эквипотенциальные поверхности: а — поля двух одинаковых зарядов б — однородного поля

Разность потенциалов

Практическое значение имеет не сам потенциал в точке, а изменение (разница) потенциала φ1 — φ2 , которое не зависит от выбора нулевого уровня отсчета потенциала. Разность потенциалов φ1 — φ2 еще называют напряжением и обозначают латинской буквой U. Тогда формула для работы по перемещению заряда приобретает вид

Напряжение Uэто физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля,

Единица разности потенциалов (напряжения), как и потенциала, — вольт,

Поскольку работа сил поля по перемещению заряда зависит только от разности потенциалов, то в случае перемещения заряда с первой эквипотенциальной поверхности на другую (потенциалы которых соответственно φ1 и φ2 ) выполненная полем работа не зависит от траектории этого движения.

Связь напряженности электрического поля с напряжением

Из формул A = Eqd и A = qU можно установить связь между напряженностью и напряжением электрического поля: Ed = U. С этой формулы следует:

  • чем меньше меняется потенциал на расстоянии d, тем меньше есть напряженность электрического поля;
  • если потенциал не меняется, то напряженность равна нулю;
  • напряженность электрического поля направлена ​​в сторону уменьшения потенциала.

то именно из этой формулы и выводится еще одна единица напряженности — вольт на метр,

Источник

Потенциал электрического поля — формулы определения, характеристика и единицы измерения

Вещественное значение электрического поля

Учёные длительное время изучали секрет электроэнергии. Главная награда в ее исследовании дана Эрстеду. Его основное открытие — впервые экспериментально установлена связь между электрическими и магнитными явлениями в 1819—1820 гг.

Стало ясно, что колебания предполагают суперпозицию изменяющихся во времени электрических и магнитных полей. Вектор магнитной интенсивности перпендикулярен электрическому вектору, связанному через длинную среду (некоторая физическая величина). Электростатическое воздействие — это действие через поле.

Особенности воздействия:

  • Каждый электрический заряд создаёт вокруг себя электростатическое поле.
  • Электрополем называется пространство, в котором действуют силы напряжения.
  • Величины, характеризующие поле в этой точке, — это интенсивность и потенциал.
Читайте также:  Планиметр для измерения площади

Напряжённостью электростатического явления в этой точке называется отношение электросилы, действующей на помещённый в этой точке пробный заряд (положительный) к значению этого заряда:

  • E =F /q (над E и F вектор).
  • Единица напряжённости электростатического поля — 1 N/C.

Напряжённость электрополя в этой точке всегда имеет отдачу в соответствии с направлением силы, действующей на положительный пробный заряд.

Значение напряжённости электростатического поля на расстоянии R от источника Q может обозначаться простой формулой: E=k |Q|/R2.

Для графического представления поля используются линии — кривые, для которых вектор напряжённости в каждой точке имеет касательную часть. Поле со сферической симметрией называется центральным. Если линии расположены параллельно друг другу, а интенсивность имеет в каждой точке одинаковое значение, то поле называется однородным.

Разность потенциалов в физике в данный момент — это отношение энергии точечного положительного пробного груза, помещённого в этой точке к значению этого заряда: V=Ep/q.

Единицей измерения потенциала точки электрического поля является 1 В (вольт).

Потенциал электрического поля, формула на расстоянии R от источника Q можно рассчитать: V=k Q/r.

Заряд вокруг объекта

Конечно, можно говорить о поле, если есть какой-либо его источник. Каждое электрическое тело создаёт вокруг себя градиент потенциала электрического поля. По сравнению с гравитационными полями, есть важное отличие:

  • Гравитационные силы являются силами притяжения и могут измеряться.
  • Силы электричества могут быть как силами притяжения, так и отталкивания.

Известно, что линии поля относятся к векторам силы, действующим на тело в этой точке. Учёные сошлись во мнении, что стрелки линии поля будут выставлять обратный вектор силы, действующей на отрицательный заряд. Следовательно, силовые линии «выходят» из зарядов положительных и «бегут» к отрицательным энергетическим зарядам.

Напряжённость электрополя

В электрическом поле, так же как и в гравитационном, возникает понятие напряжённости. Это говорит о том, какая сила будет действовать, а известно, что эта сила зависит от источника и от расстояния. Именно интенсивность — характеристика этого поля, которое можно зарядить. По определению, напряжённость электрополя — это отношение силы, действующей на его значение.

Если поле не вызвано одним источником, а, например, двумя положительными зарядами, то для вычисления интенсивности в этой точке пространства есть смысл применить принцип суперпозиции.

Например, есть данные центрального поля, создаваемые зарядом Q. Следует разместить на расстоянии R1 пробный заряд q. Делается работа по перемещению этого испытательного заряда на расстояние R2 от источника поля.

Для того чтобы система заряда двигалась с одинаковой скоростью, нужно постоянно действовать на него с усилием, уравновешивающем величину Куломба. Но вместе с изменением расстояния от источника эта сила меняется обратно пропорционально квадрату расстояния. Использовать нужно среднюю величину, действующую на пробный заряд.

Чтобы определить, является ли работа положительной или отрицательной, нужно подумать, каков угол между вектором приложенного усилия и вектором перемещения. Если пробный заряд притягивается источником поля, и работа, которую выполняют, перемещает этот заряд ближе к источнику, тогда нужно сбалансировать притяжение.

Одним словом, прилагают усилие, которое создаёт с вектором смещение на угол 180°. Если cos (α)= -1, то работа отрицательная. Но если источник имеет взаимодействие с грузом так, чтобы уравновесить силу, параллельную цепи смещения, так что условие α=0°, т. е. cos (α) = 1 — работа положительная.

Потенциальная энергия

Вычисляя потенциальную энергию испытательного заряда в этой точке поля, используют свойство, при котором разница потенциальной энергии в двух точках равна работе, выполняемой при перемещении этого значения из одной точки в другую (то же самое делали, включая энергию в гравитационном поле).

Для того чтобы вычислить потенциальную энергию в этой точке, нужно переместить пробный заряд в место, где потенциал равен нулю. Такое место находится в точке, бесконечно отдалённой от источника. Положительный или отрицательный знак потенциала выбирают в зависимости от того, отталкивают груз с источником или притягивают. Если заряд источника является отрицательным, то нахождение электростатического потенциала является таким же. Когда источник является положительным, потенциал — тоже.

Эквипотенциальные поверхности

Если предположить, что источником электрополя является точечно заряженная частица (т. е. поле центральное), из этого следует, что все точки пространства, которые находятся от него одинаково далеко, имеют равный потенциал. В пространстве совокупность таких точек образует поверхность шара, а заряд-источник находится в центре сферы.

Однако, если электрополе не имеет централизованного характера, всё равно можно назначить такие поверхности, что пробный заряд, размещённый в любой точке этой поверхности, будет иметь тот же потенциал. Например, в случае однородного поля такой поверхностью является любая плоскость, перпендикулярная линии поля.

Диэлектрики в электростатике

Кроме того, у направляющих есть ещё одна группа тел — это диэлектрики. Для начала необходимо уточнить разницу между диэлектриком и проводником. Проводники — это тела, в которых заряды могут свободно перемещаться. Примером проводника является медный провод. Если положить на него груз, а затем дотронуться до него рукой, то этот груз будет «всплывать» из проводника и, следовательно, разгрузит его.

Читайте также:  Чем можно измерить скорость лодки

Но если положительно электрифицировать стекло, которое является диэлектриком, то прикосновение через руку не приведёт к его разрядке. Электроны от конечности будут течь только в точке контакта, но это стекло будет по-прежнему наэлектризовано в местах, где к нему прикасаются.

Электроны в диэлектрике не могут свободно двигаться. Они ограничены атомами и молекулами, которые не могут покинуть. Но если поместить диэлектрик в поле разрядов между положительным и отрицательным зарядом, это расположение электронов и атомных ядер изменится. Эти частицы ведут себя как диполи. Такая позиция показывает все молекулы в диэлектрике.

Образуется цепочка диполей с зарядами, положительными с одной стороны, и отрицательными — с другой. Это явление называется диэлектрической поляризацией. Поляризованный диэлектрик создаёт своё поле, внутреннее, и у него вектор напряжённости всегда направлен противоположно полю, в котором расположен диэлектрик. Таким образом, вред от аварий при напряжении поля уменьшается.

Источник

Потенциал электростатического поля — характеристика, формула и примеры определения

Общие сведения

Существует несколько видов взаимодействий. Например, гравитация определяется силой тяжести, а трение и упругость имеют электромагнитную природу. Изучает их электродинамика, одним из разделов которой является электростатика. Суть этой науки заключается в изучении взаимодействия зарядов, находящихся в неподвижном состоянии.

С физической точки зрения, любые тела влияют друг на друга. Между ними всегда действует сила притяжения. Но это явление незаметно из-за слабости существующих сил, связанной с массой тела. В 1600 году физик Уильям Гильберт, проводя эксперименты с янтарём, обнаружил, что если его потереть об шерсть, он начинает притягивать к себе лёгкие предметы. Им было обнаружено, что существует некая субстанция, с помощью которой можно описать новый вид взаимодействия. Получила она название «электростатическое поле».

Этот термин произошёл от слова «электрон», которое с греческого обозначает «янтарь». Было установлено, что в природе существуют силы, вызванные электрическим зарядом. Под ним решили понимать то, присутствие чего на телах вызывает их электростатическое взаимодействие. Сам же этот процесс назвали электризацией. Тела, способные взаимодействовать между собой, стали считать наэлектризованными.

В 1729 году член Парижской Академии наук Шарль Дюфе, изучая силы взаимодействия разных тел, установил, что существует два вида энергии. Один он получал при трении стекла о шёлк (стеклянный), а другой — смолы о шерсть (смоляной). В результате было установлено ключевое отличие возникающих сил от гравитационных. Первые обладали не только притяжением, но и отталкиванием.

Бенджамин Франклин предложил разделять существующие заряды по знаку на положительные и отрицательные. Таким образом, были сформулированы следующие природные свойства:

  • каждые тела состоят из элементарных носителей энергии;
  • электрический заряд является численной характеристикой;
  • частицы с одинаковым знаком отталкиваются друг от друга, а с одноимённым — притягиваются;
  • в мире количество положительных зарядов совпадает с числом отрицательных.

То есть при определённом действии, например, трении можно создать условия, при котором в телах произойдёт разделение зарядов, при этом величина их будет одинакова. Этот эффект назвали суперпозицией. Причём между разделёнными частицами возникает электростатическое поле, за энергетическую характеристику которой приняли потенциал.

Работа электростатического поля

Пусть имеется заряд, находящийся в электрическом поле. На него действует постоянная сила. Если носитель энергии перемещается из одной точки пространства в другую, то говорят о выполнении им работы. В простейшем случае можно рассмотреть однородное поле. В качестве него можно использовать конденсатор. В нём правая пластина пусть будет заряжена положительно, а левая — отрицательно.

Считается, что линии электрического поля будут направлены от плюса к минусу. В некоторой точке этого однородного состояния находится заряд. Для конкретики его можно принять положительным и обозначить буквой A. Под действием сил он перемещается в точку Б. Задача состоит в нахождении работы, совершаемой полем для изменения положения заряженной частицы.

Из механики известно, что такое действие может быть определенно произведением действующей на заряд силы и модуля перемещения, умноженным на косинус угла между ними: A = F * S * cos (a). Так как заряд положительный, то его направление будет совпадать с линиями электрического поля (напряжённостью E). Сила находится по формуле: F = q * E. Тогда, подставляя модуль этого вектора в выражение для работы, можно записать: A = q * E * S * cos (a).

Произведение S * cos (a) представляет собой проекцию отрезка перемещения на направление электрического поля. Изобразить её можно как перпендикуляр, опущенный на E. В результате получится прямоугольный треугольник. Обозначить прилежащий катет (проекцию) можно буквой d. В итоге формула для работы примет вид: A = q * E * d, где:

  • q — заряд;
  • E — напряжённость;
  • d — проекция перемещения.

Пусть заряд перемещается по кривой. Например, проходит путь А-С-В. Значит, будет существовать два вектора S1 и S2. Тогда работа будет определяться как сумма A = Σ ΔAi. То есть если поле однородное (электростатическое), то работа по перемещению заряда не зависит от траектории, а определяется только начальным и конечным положением носителя заряда.

Таким свойством обладают силы тяжести и упругости. Называются они потенциальными. Следовательно, работа по перемещению электричества является такой же. Происходит она за счёт потенциальной энергии заряда, находящего в поле. Поэтому работа равняется уменьшению её значения. Выполненное действие пропорционально заряду, то есть отношению: W / q. Эта величина и получила название «электрический потенциал».

Читайте также:  Цифровой преобразователь для измерения давления

Свойства потенциала

Между находящимися частицами в электрическом поле существует напряжение. Оно равно отношению работы к числу заряда. Находят его по формуле: U = A / q. За единицу измерения напряжения принимают вольт. Обозначают его буквой В, характеризуется эта величина отношением джоуль на кулон. Так как разность потенциалов фактически является напряжением, то и измеряют её тоже в этих величинах.

Обозначают электрический потенциал буквой φ (фи). Он позволяет описывать электрическое поле, поэтому его называют энергетической характеристикой. Это скалярная величина. Определяется она как отношение потенциальной энергии заряда к его значению. В то же время напряжённость является силовой характеристикой. Так как эти два явления описывают одно и то же, то между ними существует связь.

Напряжённость позволяет определить силу, действующую на носитель энергии: E = F /q. Если вектор во всех точках пространства имеет одинаковое направление, то поле однородное. В нём на заряд действует сила F, определяемая как произведение заряда на вектор напряжённости. Пусть частица переместилась из А в В. Тогда она пройдёт расстояние d.

Совершённая работа будет определяться как A = q * E * d. Это то же, что A = U * q. Записанные выражения можно приравнять, причём сократить левую и правую часть на q. В результате получится связь между величинами: U = E * d. Так как напряжение — это разность потенциальности начальной и конечной точек, то формулу можно переписать так: φ1 — φ2 = E * d.

Отсюда можно сделать выводы:

  1. Если в определённой области пространства поля нет (E = 0), значит, φ 1 = φ 2, то есть потенциал равняется константе. Другими словами, φ во всех точках будет одинаковой. Например, во всех точках проводника потенциал будет одним и тем же.
  2. По сути, потенциальная энергия — это материя, определяющая электрическое взаимодействие тел. Поэтому, чтобы её определить, нужно знать значение φ в начальном положении и после перемещения заряда. Для удобства исходное состояние принимают за ноль. В электротехнике за нулевой уровень потенциал берут величину Земного шара. В теоретической же физике считается, что φ = 0 в бесконечности. Там, где нет электрического поля.
  3. Эквипотенциальные поверхности и силовые линии взаимно перпендикулярны.

Для понимания следует дать определение эквипотенциальной поверхности. За неё принимают пространство, во всех точках которого потенциал одинаков.

Решение задач

Для успешного решения заданий, связанных с электрическим потенциалом, нужно не только знать несколько формул, но и понимать суть явления. Кроме этого, часто приходится пользоваться справочником по электрофизике. Например, для выяснения массы зарядов.

Вот несколько типовых задач, рассчитанных на самостоятельную проработку учащимися в рамках школьной программы:

  1. В проводнике на удалении друг от друга находятся два точечных заряда q1 = 100 нКл и q2 = 10 нКл. Расстояние между ними равно 10 сантиметров. Найти их потенциальную энергию. Для решения задачи нужно использовать то, что сила взаимодействия зарядов определяется законом Кулона: F = k * q / r, где k — справочная величина (электрическая постоянная). Учитывая, что φ = q / (4 * p * E0 * r), для рассматриваемого случая можно записать: E = (q1 * q2) / (4 * p * E0 * r) = (10 -7 * 10 -8 ) / (4 * 3,14 * 8,85 * 10 -12 * 0,1) = 9 * 10 -5 Дж.
  2. Электрический заряд из точки А переместился в В. При этом появилось напряжение, равное 1 кВ. Работа, затраченная на перемещение, составила 40 мкДж. Определить значение заряда. Используя то, что напряжение — это разность потенциалов, находимая как отношение работы к величине энергии: Δ φ = A / q, решить пример можно в одно действие: q = A / U = 400 * 10 -6 Дж / 1 * 10 3 В = 40 * 10 -9 Кл.
  3. Сферу из металла радиусом в один метр положили на пол. Её заряд составляет 10 -6 Кл. Определить, во сколько раз снизится потенциал поля сферы на расстоянии 60 см от центра шара, если его радиус увеличится в 3 раза. Исследуемая точка находится внутри тела. Так как в этом случае потенциал точки в середине и на поверхности одинаков, то он зависит от радиуса сферы: φ1 = K * q / r. В итоге он станет втрое меньше, чем вначале: φ2 = K * q / 3r.
  4. При перемещении точечного заряда q =10 нКл из бесконечности в точку, находящуюся на расстоянии r = 10 см от поверхности заряженной сферы, была выполнена работа А = 0,5 мкДж. Радиус шара составляет 4 см. Вычислить поверхностный потенциал. Решение примера будет выглядеть так: φ = A * (R + r) / q0 * R = 0,5 *10 -6 Дж * (0,2 м + 0,0 4 м) / 10 * 10 -9 Кл * 0, 2 м = 3 *10 2 В = 0,3 кВ.

Таким образом, решать задачи, связанные с потенциалом, просто. Но при этом важно следить, в чём должны измеряться подставляемые величины. Все вычисления выполняют в Международной системе единиц (СИ).

Источник