Меню

Для измерения тесноты корреляционной связи между двумя количественны



Вопрос: Прямую связь между признаками показывают коэффициенты корреляции

Вопрос: Межгрупповая дисперсия составляет 61% от общей дисперсии.

Эмпирическое корреляционное отношение = . (с точностью до 0,01).

Вопрос: Для измерения тесноты корреляционной связи между двумя количественными признаками используются . .

*а) коэффициент корреляции знаков

б) коэффициент эластичности

*в) линейный коэффициент корреляции

*г) коэффициент корреляции рангов

Вопрос: Эмпирическое корреляционное отношение представляет собой корень квадратный из отношения . дисперсии(й).

а) средней из групповых дисперсий к общей

*б) межгрупповой дисперсии к общей

в) межгрупповой дисперсии к средней из групповых

г) средней из групповых дисперсий к межгрупповой

Вопрос: Корреляционный анализ используется для изучения . .

*а) взаимосвязи явлений

б) развития явления во времени

в) структуры явлений

Вопрос: Тесноту связи между двумя альтернативными признаками можно измерить с помощью коэффициентов . .

а) знаков Фехнера

б) корреляции рангов Спирмена

Вопрос: Парный коэффициент корреляции показывает тесноту . .

*а) линейной зависимости между двумя признаками на фоне действия остальных, входящих в модель

б) линейной зависимости между двумя признаками при исключении влияния остальных, входящих в модель

в) связи между результативным признаком и остальными, включенными в модель

г) нелинейной зависимости между двумя признаками

Вопрос: Частный коэффициент корреляции показывает тесноту . .

а) линейной зависимости между двумя признаками на фоне действия остальных, входящих в модель

*б) линейной зависимости между двумя признаками при исключении влияния остальных, входящих в модель

в) нелинейной зависимости

г) связи между результативным признаком и остальными, включенными в модель

Вопрос: Парный коэффициент корреляции может принимать значения . .

г) любые положительные

д) любые меньше нуля

вопрос: Частный коэффициент корреляции может принимать значения . .

г) любые положительные

д) любые меньше нуля

Вопрос: Множественный коэффициент корреляции может принимать значения . .

г) любые положительные

д) любые меньше нуля

Вопрос: Коэффициент детерминации может принимать значения . .

г) любые положительные

д) любые меньше нуля

Вопрос: В результате проведения регрессионного анализа получают функцию, описывающую . показателей

д) темпы прироста

Вопрос: Если результативный и факторный признаки являются количественными, то для анализа тесноты связи между ними могут применяться.

*а) корреляционное отношение

*б) линейный коэффициент корреляции

в) коэффициент ассоциации

*г) коэффициент корреляции рангов Спирмена

*д) коэффициент корреляции знаков Фехнера

Вопрос: Прямолинейная связь между факторами исследуется с помощью уравнения регрессии . .

*а)

б)

в)

г)

Вопрос: Для аналитического выражения нелинейной связи между факторами используются формулы . .

а)

*б)

*в)

Вопрос :Параметр ( = 0,016) линейного уравнения регрессии показывает, что:

а) с увеличением признака «х» на 1 признак «у» увеличивается на 0,694

*б) с увеличением признака «х» на 1 признак «у» увеличивается на 0,016

*в) связь между признаками «х» и «у» прямая

г) связь между признаками «х» и «у» обратная

Вопрос: Параметр ( = — 1,04) линейного уравнения регрессии: показывает, что:

*а) с увеличением признака «х» на 1 признак «у» уменьшается на 1,04

б) связь между признаками «х» и «у» прямая

*в) связь между признаками «х» и «у» обратная

г) с увеличением признака «х» на 1 признак «у» уменьшается на 36,5

Вопрос: Рабочему Давыдову при проведении ранжирования рабочих с целью исчисления коэффициента корреляции рангов следует присвоить ранг …. при наличии следующих данных о квалификации рабочих:

Фамилия Петров Иванов Сидоров Давыдов Федоров
Разряд 2-ой 4-ый 4-ый 4-ый 5-ый

Вопрос :Коэффициент детерминации представляет собой долю .

а) дисперсии теоретических значений в общей дисперсии

*б) межгрупповой дисперсии в общей

в) межгрупповой дисперсии в остаточной

г) дисперсии теоретических значений в остаточной дисперсии

Источник

Методы выявления и оценки корреляционной связи

Поможем написать любую работу на аналогичную тему

Для выявления наличия и характера корреляционной связи между двумя признаками в статистике используется ряд методов.

1. Рассмотрение параллельных данных (значений x и y в каждой из n единиц). Единицы наблюдения необходимо расположить по возрастанию значений факторного признака х (как в таблице справа) и затем сравнить с ним (визуально) поведение результативного признака у.

Читайте также:  Показатели количественного измерения социально экономических процессов

В нашей задаче в 6 случаях по мере увеличения значений x увеличиваются и значения y, а в 5 случаях этого не происходит, поэтому затруднительно говорить о прямой связи между х и у.

2. Графический метод – это графическое изображение корреляционной зависимости. Для этого, имея n взаимосвязанных пар значений x и y и пользуясь прямоугольной системой координат, каждую такую пару изображают в виде точки на плоскости с координатами x и y. Совокупность полученных точек представляет собой корреляционное поле (рис. 20), а соединяя последовательно нанесенные точки отрезками, получают ломаную линию, именуемую эмпирической линией регрессии (рис. 21).

Рис. 20. Корреляционное поле Рис. 21. Эмпирическая линия регрессии

Визуально анализируя график, можно предположить характер зависимости между признаками x и y. В нашей задаче эмпирическая линия регрессии (рис.21) похожа на восходящую прямую, что позволяет выдвинуть гипотезу о наличии прямой зависимости между величиной стоимостного внешнеторгового товарооборота и величиной таможенных платежей в федеральный бюджет.

3. Метод аналитических группировок используется при большом числе наблюдений для выявления корреляционной связи между двумя количественными признаками. Чтобы выявить наличие корреляционной связи между двумя признаками, проводится группировка единиц совокупности по факторному признаку х и для каждой выделенной группы рассчитывается среднее значение результативного признака . Если результативный признак у зависит от факторного х, то в изменении среднего значения будет прослеживаться определенная закономерность. Примером такой группировки могут служить данные об издержках обращения предприятий оптовой торговли с различным товарооборотом (см. табл. 40).

Таблица 40. Условные пример аналитической группировки

В последнем столбце табл. 40 приведены средние величины, рассчитанные на основе индивидуальных данных об издержках отдельных предприятий каждой группы. Данные таблицы 40 свидетельствуют, что чем крупнее товарооборот, тем меньше издержки обращения. Таким образом, с помощью простой аналитической группировки можно выявить наличие зависимости между рассматриваемыми показателями: объемом товарооборота как показателем размера предприятий и средним уровнем издержек обращения.

4. Метод корреляционных таблиц предполагает комбинационное распределение единиц совокупности по двум количественным признакам. Такая таблица строится по типу «шахматной», т.е. в подлежащем (строках) таблицы выделяются группы по факторному признаку х, а в сказуемом (столбцах) – по результативному у (или наоборот), а в клетках таблицы на пересечении х и у показано число случаев совпадения каждого значения х с соответствующим значением у. Общий вид такой таблицы показан на условном распределении 40 единиц по признакам х и у, где х – стаж работы, у – производительность труда (число изделий, вырабатываемых в час одним рабочим) – таблица 41. Среднее значение по группам определяется по средней арифметической взвешенной по серединам группировочных интервалов.

Таблица 41. Условные корреляционной таблицы

Значение признака уi

Как видно из таблицы 41, по мере увеличения значений х итоговые групповые средние тоже увеличиваются от группы к группе, что свидетельствует о том, что между х и у существует корреляционная связь. О наличии и направлении связи можно судить и по «внешнему виду» таблицы, т.е. по расположению в ней частот: если частоты расположены в клетках таблицы беспорядочно, то это чаще всего свидетельствует об отсутствии связи между группировочными признаками (или о незначительной зависимости); если частоты сконцентрированы ближе к одной из диагоналей и центру таблицы, образуя своего рода эллипс, то это почти всегда свидетельствует о наличии зависимости между х и у, близкой к линейной. Расположение по диагонали из верхнего левого угла в нижний правый свидетельствует о прямой линейной связи, а из нижнего левого угла в верхний правый – об обратной.

Читайте также:  Отрезок измерение длины отрезка конспект урока 1 класс

На основе аналитических группировок и корреляционных таблиц можно не только выявить наличие зависимости между двумя коррелируемыми показателями, но и измерить тесноту этой связи, в частности, с помощью эмпирического корреляционного отношения.

,

,

.

где m – число групп по факторному признаку х;

k – число групп по результативному признаку у;

– средние значения результативного признака по группам;

– общее среднее значение результативного признака;

– индивидуальные значения результативного признака;

– частота в j-й группе х;

– частота в i-й группе у.

Рассчитаем это отношение для нашего примера (таблица 41):

=(5*3+10*9+15*21+20*7)/40=14

=6,19599;

=16,5; =0,613.

Полученное значение =0,613 позволяет утверждать, что существует заметная связь между стажем работы и производительностью труда.

5. Коэффициент корреляции знаков (Фехнера) – простейший показатель тесноты связи, основанный на сравнении поведения отклонений индивидуальных значений каждого признака (x и y) от своей средней величины. При этом во внимание принимаются не величины отклонений () и (), а их знаки («+» или «–»). Определив знаки отклонений от средней величины в каждом ряду, рассматривают все пары знаков и подсчитывают число их совпадений (С) и несовпадений (Н). Тогда коэффициент Фехнера рассчитывается как отношение разности чисел пар совпадений и несовпадений знаков к их сумме, т.е. к общему числу наблюдаемых единиц:

. (121)

Очевидно, что если знаки всех отклонений по каждому признаку совпадут, то КФ=1, что характеризует наличие прямой связи. Если все знаки не совпадут, то КФ=–1 (обратная связь). Если же åС=åН, то КФ=0. Итак, как и любой показатель тесноты связи, коэффициент Фехнера может принимать значения от 0 до 1. Однако, если КФ=1, то это ни в коей мере нельзя воспринимать как свидетельство функциональной зависимости между х и у.

Средние значения факторного и результативного признаков определяем по формуле средней арифметической простой (10):

; .

В двух последних столбцах таблицы 42 приведены знаки отклонений каждого х и у от своей средней величины. Число совпадений знаков – 10, а несовпадений – 2, тогда определяем коэффициент корреляции знаков (Фехнера) по формуле (121):

КФ=

Таблица 42. Вспомогательная таблица для расчета коэффициента Фехнера

x –

y –

Обычно такое значение показателя тесноты связи характеризует заметную прямую зависимость между x и y, однако, следует иметь в виду, что поскольку КФ зависит только от знаков и не учитывает величину самих отклонений х и у от их средних величин, то он практически характеризует не столько тесноту связи, сколько ее наличие и направление.

6. Линейный коэффициент корреляции – самый популярный измеритель тесноты линейной связи между двумя количественными признаками x и y. Он основан на предположении, что при полной независимости[43] признаков x и у отклонения значений факторного признака от средней () носят случайный характер и должны случайно сочетаться с различными отклонениями (). При наличии значительного перевеса совпадений или несовпадений таких отклонений делается предположение о наличии связи между x и y.

В отличие от КФ в линейном коэффициенте корреляции учитываются не только знаки отклонений от средних величин, но и значения самих отклонений, выраженные для сопоставимости в единицах среднего квадратического отклонения t:

и .

Линейный коэффициент корреляции r представляет собой среднюю величину из произведений нормированных отклонений для x и у:

, (122) или . (123)

Числитель формулы (123), деленный на n, представляющий собой среднее произведение отклонений значений двух признаков от их средних значений, называется коэффициентом ковариации – это мера совместной вариации факторного x и результативного y признаков:

(124)

Недостатком коэффициента ковариации является то, что он не нормирован, в отличие от линейного коэффициента корреляции. Очевидно, что линейный коэффициент корреляции представляет собой частное от деления ковариации между х и у на произведение их средних квадратических отклонений:

Читайте также:  Характеристики механических колебаний единица измерения

. (125)

Путем несложных математических преобразований[44] можно получить и другие модификации формулы линейного коэффициента корреляции, например:

, (126) , (127)

, (128) . (129)

Линейный коэффициент корреляции может принимать значения от –1 до +1, причем знак определяется в ходе решения. Например, если , то r по формуле (126) будет положительным, что характеризует прямую зависимость между х и у, в противном случае (r 30), то σr рассчитывается по формуле (130):

. (130)

Обычно, если >3, то r считается значимым (существенным), а связь – реальной. Задавшись определенной вероятностью, можно определить доверительные пределы (границы) r = (), где t – коэффициент доверия, рассчитываемый по интегралу Лапласа (см. Приложение 1).

2. Если число наблюдений небольшое (n tТАБЛ , то r считается значимым, а связь между х и у – реальной. В противном случае (tРАСЧ tТАБЛ, что дает возможность считать линейный коэффициент корреляции r = 0,937 значимым.

7. Подбор уравнения регрессии[45] представляет собой математическое описание изменения взаимно коррелируемых величин по эмпирическим (фактическим) данным. Уравнение регрессии должно определить, каким будет среднее значение результативного признака у при том или ином значении факторного признака х, если остальные факторы, влияющие на у и не связанные с х, не учитывать, т.е. абстрагироваться от них. Другими словами, уравнение регрессии можно рассматривать как вероятностную гипотетическую функциональную связь величины результативного признака у со значениями факторного признака х.

Уравнение регрессии можно также назвать теоретической линией регрессии. Рассчитанные по уравнению регрессии значения результативного признака называются теоретическими. Они обычно обозначаются или (читается: «игрек, выравненный по х») и рассматриваются как функция от х, т.е. = f(x).

Найти в каждом конкретном случае тип функции, с помощью которой можно наиболее адекватно отразить ту или иную зависимость между признаками х и у, — одна из основных задач регрессионного анализа. Выбор теоретической линии регрессии часто обусловлен формой эмпирической линии регрессии; теоретическая линия как бы сглаживает изломы эмпирической линии регрессии. Кроме того, необходимо учитывать природу изучаемых показателей и специфику их взаимосвязей.

Для аналитической связи между х и у могут использоваться виды уравнений, приведенные в таблице 30 (при условии замены t на x). Обычно зависимость, выражаемую уравнением прямой, называют линейной (или прямолинейной), а все остальные — криволинейными зависимостями.

Выбрав тип функции (таблица 30), по эмпирическим данным определяют параметры уравнения. При этом отыскиваемые параметры должны быть такими, при которых рассчитанные по уравнению теоретические значения результативного признака были бы максимально близки к эмпирическим данным.

Существует несколько методов нахождения параметров уравнения регрессии. Наиболее часто используется метод наименьших квадратов (МНК). Его суть заключается в следующем требовании: искомые теоретические значения результативного признака должны быть такими, при которых бы обеспечивалась минимальная сумма квадратов их отклонений от эмпирических значений, т.е.

.

Поставив данное условие, легко определить, при каких значениях a0, a1 и т.д. для каждой аналитической кривой эта сумма квадратов отклонений будет минимальной. Данный метод уже использовался нами в теме 6 «Статистическое изучение динамики ВЭД», поэтому, воспользуемся формулой (100) для нахождения параметров теоретической линии регрессии, заменив параметр t на x:

(133)

Выразив из первого уравнения системы (133) a0, получим[46]:

. (134)

Подставив (134) во второе уравнение системы (133), затем разделив обе его части на n, получим:

. (135)

Применяя 3 раза формулу средней арифметической, получим:

. (136)

Раскрыв скобки и перенеся члены без a1 в правую часть уравнения, выразим a1:

. (137)

Параметр a1 в уравнении линейной регрессии называется коэффициентом регрессии, который показывает на сколько изменяется значение результативного признака y при изменении факторного признака x на единицу.

Исходные данные и расчеты для нашего примера представим в таблице 45.

Таблица 45. Вспомогательные расчеты для нахождения уравнения регрессии

Источник