Для измерения угловых размеров небесных тел используют

«Ручное» определение угловых размеров

Выехали вы в поле для проведения экскурсии по звёздному небу для любителей астрономии, а вас спрашивают: «Какое угловое расстояние между двумя яркими звёздами А и Б?» или «Какой угловой размер созвездия Орион?», что вы на это скажете? Полезете гуглить в интернет или придумаете любое число, всё равно никто не проверит? На самом деле есть не очень точный, но уж наверняка точнее чем наугад способ определения угловых размеров на небе с помощью пальцев .

Тут недавно Московский планетарий опубликовал и социальные сети быстро подхватили памятку «быстрое определение угловых размеров на небе с помощью пальцев вытянутой руки». Начнём с неё:

(по клику изображение откроется в новой вкладке)

На примере астеризма Ковш созвездия Большая Медведица показаны угловые расстояния между звёздами, а также схематически вытянутая рука и расстояние между пальцами. Например, «ширина» мизинца равна 1°, кулак — 10°, «коза» с большим пальцем — 20°.

Ещё один вариант с пальцами руки и дополнительными «позами»:

Здесь добавились 3 пальца от указательного до безымянного — итого 5°. А также 25° — расстояние от большого пальца до мизинца в максимальной растянутости пальцев.

Кстати, обратите внимание, 1″ (одна секунда) — это примерно диаметр 5-копеечной монеты с расстояния в 4 километра. А теперь вспомните, например, Туманность Сатурн (NGC 7009) в созвездии Водолей имеет видимый размер 0,58′ или 34″. Без телескопа никак…

На просторах интернета нашёл ещё один интересный вариант определения размеров. Смотрим ниже:

Вариант с 3 — 4 — 6° выглядит очень любопытно. Во-первых, позволяет определить расстояние между объектами, которые лежат не на одной линии, а во-вторых, косточки указательного пальца так же могут выступать в качестве линейки.

Напоследок добавлю картинку для сравнения размеров большого пальца и диаметра полной Луны:

0,5° или 30′ — угловой диаметр полной Луны. Для сравнения диаметры планет Солнечной системы (1′ = 60″):

Меркурий 5″ — 13″
Венера 10 ″ — 66″
Марс 4″ — 25″
Юпитер 30 ″ — 50″
Сатурн 1 5″ — 20″
Уран 3, 5″ — 5″
Нептун 2,2 ″ — 3″

Ну что, теперь, думается мне, вы не растеряетесь и сможете с лёгкостью определить расстояние между удалёнными пунктами на небесной сфере или размеры крупных объектов. А зная угловой размер и удалённость от наблюдателя, можно определить и линейный размер (онлайн-калькулятор).

Источник

Для измерения угловых размеров небесных тел используют

В астрономии нет единого универсального способа определения расстояний. По мере перехода от близких небесных тел к более далеким одни методы определения расстояний сменяют другие, служащие, как правило, основой для последующих. Точность оценки расстояний ограничивается либо точностью самого грубого из методов, либо точностью измерения астрономической единицы длины (а. е.).

1-й способ: (известен) По третьему закону Кеплера можно определить расстояние до тел СС, зная периоды обращений и одно из расстояний.
Приближённый метод.

2-й способ: Определение расстояний до Меркурия и Венеры в моменты элонгации (из прямоугольного треугольника по углу элонгации).



3-й способ: Геометрический (параллактический).

Пусть К — местонахождение наблюдателя, из которого светило видно на горизонте. Из рисунка видно, что из прямоугольного треугольника гипотенуза, расстояние D равно: , так как при малом значении угла если выражать величину угла в радианах и учитывать, что угол выражен в секундах дуги, а 1рад =57,3 0 =3438’=206265″, то и получается вторая формула.

Угол (ρ) под которым со светила, находящегося на горизонте (┴ R — перпендикулярно лучу зрения) был бы виден экваториальный радиус Земли называется горизонтальным экваториальным параллаксом светила.
Т.к. со светила никто наблюдать не будет в силу объективных причин, то горизонтальный параллакс определяют так: измеряем высоту светила в момент верхней кульминации из двух точек земной поверхности, находящихся на одном географическом меридиане и имеющем известные географические широты. И з полученного четырехугольника вычисляют все углы (в т. ч. параллакс).

Впервые расстояния до небесных тел (Луны, Солнца, планет) оценивает Аристотель (384-322, Др. Греция) в 360г до НЭ в книге «О небе» →слишком не точно, например радиус Земли в 10000 км.
В 265г до НЭ Аристарх Самосский (310-230, Др. Греция) в работе «О величине и расстоянии Солнца и Луны» определяет расстояние через лунные фазы. Так расстояния у него до Солнца (по фазе Луны в 1 четверти из прямоугольного треугольника, т. е. впервые использует базисный метод: ЗС=ЗЛ/cos 87º≈19*ЗЛ). Радиус Луны определил в 7/19 радиуса Земли, а Солнца в 6,3 радиусов Земли (на самом деле в 109 раз). На самом деле угол не 87º а 89º52′ и поэтому Солнце дальше Луны в 400 раз. Предложенные расстояния использовались многие столетия астрономами.

В 240г до НЭ ЭРАТОСФЕН (276-194, Египет) произведя измерения 22 июня в Александрии угла между вертикалью и направлением на Солнце в полдень (считал, что раз Солнце очень далеко, то лучи параллельны) и используя записи наблюдений в тот же день падения лучей света в глубокий колодец в Сиене (Асуан) (в 5000 стадий = 1/50 доли земной окружности (около 800км) т. е. Солнце находилось в зените) получает разность углов в 7º12′ и определяет размер земного шара, получив длину окружности шара 39690 км (радиус=6311км). Так была решена задача определения размера Земли, используя астрогеодезический способ. Результат не был произведён до 17 века, лишь астрономы Багдадской обсерватории в 827г немного поправили его ошибку.

В 125г до НЭ Гиппарх довольно точно определяет (в радиусах Земли) радиус Луны (3/11 R ) и расстояние до Луны (59 R ).
Точно определил расстояние до планет, приняв расстояние от Земли до Солнца за 1а.е., Н. Коперник.
Наибольший горизонтальный параллакс имеет ближайшее тело к Земле — Луна. Р =57’02 » ; а для Солнца Р ¤ =8,794 «

Задача 1. Найти расстояние от Земли до Луны, зная параллакс Луны и радиус Земли.
Задача 2. На каком расстоянии от Земли находится Сатурн, если его параллакс 0,9″. [из формулы D=(206265/0,9)*6378= 1461731300км = 1461731300/149600000≈9,77а.е.]

4-й способ Радиолокационный: импульс→объект →отраженный сигнал→время. Предложен советскими физиками Л.И. Мандельштамом и Н.Д. Папалекси. Быстрое развитие радиотехники дало астрономам возможность определять расстояния до тел Солнечной системы радиолокационными методами. В 1946г была произведена первая радиолокация Луны Баем в Венгрии и в США, а в 1957-1963гг — радиолокация Солнца (исследования солнечной короны проводятся с 1959г), Меркурия (с 1962г на ll = 3.8, 12, 43 и 70 см), Венеры, Марса и Юпитера (в 1964 г. на волнах l = 12 и 70 см), Сатурн (в 1973 г. на волне l = 12.5 см) в Великобритании, СССР и США. Первые эхо-сигналы от солнечной короны были получены в 1959 (США), а от Венеры в 1961 (СССР, США, Великобритания). По скорости распространения радиоволн с = 3 × 10 5 км/с и по промежутку времени t (с) прохождения радиосигнала с Земли до небесного тела и обратно легко вычислить расстояние до небесного тела.
VЭМВ=С=299792458м/с≈3*10 8 м/с.
Основная трудность в исследовании небесных тел методами радиолокации связана с тем, что интенсивность радиоволн при радиолокации ослабляется обратно пропорционально четвертой степени расстояния до исследуемого объекта. Поэтому радиолокаторы, используемые для исследования небесных тел, имеют антенны больших размеров и мощные передатчики. Например, радиолокационная установка центра дальней космической связи в Крыму имеет антенну с диаметром главного зеркала 70 м и оборудована передатчиком мощностью несколько сотен кВт на волне 39 см. Энергия, направляемая к цели, концентрируется в луче с углом раскрыва 25′.
Из радиолокации Венеры, уточнено значение астрономической единицы: 1 а. е.=149 597 870 691 ± 6м ≈149,6 млн.км., что соответствует Р ¤ =8,7940″. Так проведенная в Советском Союзе обработка данных радиолокационных измерений расстояния до Венеры в 1962-75гг (один из первых удачных экспериментов по радиолокации Венеры провели сотрудники Института радиотехники и электроники АН СССР в апреле 1961г антенной дальней космической связи в Крыму, l = 39 см) дала значение 1 а.е. =149597867,9 ±0,9 км. XVI Генеральная ассамблея Международного астрономического союза приняла в 1976г значение 1 а.е.=149597870±2 км. Путем радиолокации с КА определяется рельеф поверхности планет и их спутников, составляются их карты.
Основные антенны, используемые для радиолокации планет:
= Евпатория, Крым, диаметр 70 м, l = 39 см;
= Аресибо, Пуэрто Рико, диаметр 305 м, l = 12.6 см;
= Голдстоун, Калифорния, диаметр 64 м, l = 3.5 и 12.6 см, в бистатическом режиме прием осуществляется на системе апертурного синтеза VLA.

С изобретением Квантовых генераторов (лазера) в 1969г произведена первая лазерная локация Луны (зеркало для отражения лазерного луча на Луне установили астронавты США «Ароllо — 11» 20.07.69г), точность измерения составили ±30 см. На рисунке показано расположение лазерных уголковых отражателей на Луне, установленных при полете КА «Луна-17, 21» и «Аполлон — 11, 14, 15». Все, за исключением отражателя Лунохода-1 (L1), работают и сейчас.
Лазерная (оптическая) локация нужна для:
-решение задач космических исследований.
-решение задач космической геодезии.
-выяснения вопроса о движении земных материков и т.д.

2) Определение размеров небесных тел.

а) Определение радиуса Земли.

АОВ=n=φА-φВ(разность географических широт)
е=АВ — длина дуги вдоль меридиана
т.к. е1 0 =е/n=2πR/360 0 ,то

Аналогичным способом в 240г до НЭ (рисунок выше) определяет радиус Земли географ Эратосфен . L/800=360 0 /7,2 0

б) Определение размера небесных тел.

p-параллакс.
ρ — угловой радиус светила
Из прямоугольных треугольников дважды используя формулу R=r . sin ρ (чертёж) получим
R=D sin ρ

  1. Задача 3. Во сколько раз линейный радиус Солнца превышает радиус земли, если угловой радиус Солнца 16′?
  2. CD- «Red Shift 5.1» — Определить на данный момент удаленность нижних (планет земной группы, верхних планет, планет гигантов) от Земли и Солнца в а.е.
  3. Угловой радиус Марса 9,6″, а горизонтальный параллакс 18″. Чему равен линейный радиус Марса?
  4. Каково расстояние между лазерным отражателем на Луне и телескопом на Земле, если импульс возвратился через 2,43545с?
  5. Расстояние от Земли до Луны в перигее 363000км, а в апогее 405000км. Определите горизонтальный параллакс Луны в этих положениях.
  6. Тест. Определение расстояний
  7. Дополнительно, для тех кто сделал — кроссворд.

  1. Планета СС
  2. Ближайшая к Земле точка орбиты ИСЗ
  3. Ученый, создатель гелиоцентрической системы мира
  4. Угол под которым со светила виден R Земли
  5. Ученый, направивший первым в 1609г телескоп на небо
  6. Сторона горизонта

1) Что такое параллакс?

2) Какими способами можно определить расстояние до тел СС?

3) Что такое базис? Что принимается за базис для определения расстояния до тел СС?

4) Как зависит параллакс от удаленности небесного тела?

5) Как зависит размер тела от угла?

Практическая работа «Определение размера Луны».
В период полнолуния, используя две соединенные под прямым углом линейки, определяются видимые размеры лунного диска: поскольку треугольники KCD и КАВ подобны, из теоремы о подобии треугольников следует, что: АВ/СD=KB/KD. Диаметр Луны АВ = (CD . KB)/KD. Расстояние от Земли до Луны берёте из справочных таблиц (но лучше, если сумеете вычислить его сами).

Источник

Угломерные астрономические инструменты

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона. — С.-Пб.: Брокгауз-Ефрон . 1890—1907 .

Смотреть что такое «Угломерные астрономические инструменты» в других словарях:

Инструменты — получить на Академике действующий промокод МИФ издательство или выгодно инструменты купить со скидкой на распродаже в МИФ издательство

МОРЕХОДНЫЕ ИНСТРУМЕНТЫ — инструменты, употребляемые в морском деле в целях обеспечения кораблевождения. К мореходным инструментам относятся: навигационные инструменты (см.) и астрономические инструменты (морские угломерные инструменты, хронометры и часы, вспомогательные… … Морской словарь

Переносные инструменты — (астр.) так называются малые пассажные инструменты и вертикальные круги, универсальные инструменты, теодолиты и прочие астрономические инструменты, употребляемые при определении географического положения мест, при триангуляциях, точных съемках и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Визарная ось зрительной трубы — в астрономических, геодезических и физических угломерных снарядах линия, проходящая через оптический центр объектива и через точку пересечения нитей (паутиновых), помещенных внутри трубы вблизи окуляра; эта ось совпадает с лучом зрения, идущим от … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Практическая астрономия — учит наиболее целесообразно располагать, производить и обрабатывать наблюдения астрономическими инструментами, необходимые для решения той или другой задачи астрономии. Существенную часть ее составляет теория инструментов (об этом см.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Астрономия Древней Греции — Астрономия Древней Греции астрономические познания и взгляды тех людей, которые писали на древнегреческом языке, независимо от географического региона: сама Эллада, эллинизированные монархии Востока, Рим или ранняя Византия. Охватывает… … Википедия

История астрономии — История науки … Википедия

Угломер — (синонимы уклономер, угломерка, угломера, углометр) угломерный прибор (инструмент, снаряд), предназначенный для измерения геометрических углов в различных конструкциях, в деталях и между поверхностями (в основном контактным методом) и … Википедия

Институт астрофизики Академии наук Республики Таджикистан — Тип астрономическая обсерватория Код 191 (наблюдения) Расположение Душанбе, Таджикистан Координаты … Википедия

Испытатель уровней — экзаменатор уровней, прибор для исследования уровней (См. Уровень) высокой чувствительности, которыми снабжаются астрономические, геодезические и др. угломерные инструменты. И. у. определяют цену деления уровня (т. е. угол, на который… … Большая советская энциклопедия

Экзаменатор уровней — прибор для исследования уровней (См. Уровень) высокой чувствительности, которыми снабжаются астрономические, геодезические и другие угломерные инструменты. См. Испытатель уровней … Большая советская энциклопедия

Источник

астрономический инструмент для измерения небольших угловых расстояний между двумя какими-либо светилами, а также видимых диаметров Солнца и других небесных тел, 9 букв, 9 буква «Р», сканворд

Слово из 9 букв, первая буква — «Г», вторая буква — «Е», третья буква — «Л», четвертая буква — «И», пятая буква — «О», шестая буква — «М», седьмая буква — «Е», восьмая буква — «Т», девятая буква — «Р», слово на букву «Г», последняя «Р». Если Вы не знаете слово из кроссворда или сканворда, то наш сайт поможет Вам найти самые сложные и незнакомые слова.

Отгадайте загадку:

Что в решете не унесёшь? Показать ответ>>

Что вверх корнем растёт? Показать ответ>>

Что видно, если ничего не видно? Показать ответ>>

Другие значения этого слова:

Случайная загадка:

В воду попадёт — не мокнет, Палкой колотишь — не плачет.

Случайный анекдот:

Пpофессоp истоpии, объясняя студентам, как меняется идеал кpасоты со вpеменем, пpивел следующий пpимеp:
— Мисс Амеpика-1921 была метp шестьдесят pостом и весила семьдесят тpи киллогpамма. Как вы думаете, победила бы она сегодня на конкуpсе кpасоты?
— Вpяд ли, — сказал один из студентов, — слишком уж она стаpая.

Знаете ли Вы?

Первоначально под словом *офицер* в XVI веке подразумевалось всякое лицо, занимавшее государственную должность *оффициум* (по-французски). Только в конце XVI века слово *офицер* получило современное значение и перешло во все армии.

Сканворды, кроссворды, судоку, кейворды онлайн

Источник

Для измерения угловых размеров небесных тел используют

§ 13. О пределение расстояний и размеров тел в С олнечной системе

1. Форма и размеры Земли

П редставление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.

Считается, что первое достаточно точное определение размеров Земли провёл греческий учёный Эратосфен (276—194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1 ° , а затем длину окружности и величину её радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: ϕ B – ϕ A .

Рис. 3.8. Способ Эратосфена

Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане. Измерив высоту Солнца h B (рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2 ° . В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените ( h A = 90 ° ). Следовательно, длина дуги составляет 7,2 ° . Расстояние между Сиеной ( A ) и Александрией ( B ) около 5000 греческих стадий — l .

Стадией в Древней Греции считалось расстояние, которое проходит легко вооружённый греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.

Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, её введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счёта времени.

Обозначив длину окружности земного шара через L , получим такое выражение:

= ,

откуда следует, что длина окружности земного шара равняется 250 тыс. стадий.

Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 тыс. км.

Эратосфен ввёл в практику использование терминов «широта» и «долгота». Видимо, появление этих терминов связано с особенностями формы карт того времени: они повторяли по очертаниям побережье Средиземного моря, которое длиннее по направлению запад—восток (по долготе), чем с севера на юг (по широте).

Рис. 3.9. Параллактическое смещение

Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — BC ) и двух углов B и C в треугольнике ABC (рис. 3.9).

Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.

Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.

Рис. 3.10. Схема триангуляции

Для определения длины дуги используется система треугольников — способ триангуляции , который впервые был применён ещё в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30—40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса AC (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента ( теодолита ) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги AB .

В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Её полярный радиус на 21 км короче экваториального.

Для школьного глобуса масштаба 1 : 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.

Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием . По современным данным, оно составляет , или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.

В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передаёт фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.

В настоящее время форму Земли принято характеризовать следующими величинами:

сжатие эллипсоида — 1 : 298,25;

средний радиус — 6371,032 км;

длина окружности экватора — 40075,696 км.

2. Определение расстояний в Солнечной системе. Горизонтальный параллакс

И змерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.

Горизонтальным параллаксом ( p) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11) .

Рис. 3.11. Горизонтальный параллакс светила

Из треугольника OAS можно выразить величину — расстояние OS = D :

D = ,

где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.

Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57 ʹ . Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8 ʺ . Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.

Известно, что для малых углов sin p ≈ p , если угол p выражен в радианах. В одном радиане содержится 206 265 ʺ . Тогда, заменяя sin p на p и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:

D = R ,

или (с достаточной точностью)

D = R .

Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации . Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.

П РимеР РешениЯ задаЧи

На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9 ʺ ?

Известно, что параллакс Солнца на расстоянии в 1 а. е. равен 8,8 ʺ .

Тогда, написав формулы для расстояния до Солнца и до Сатурна и поделив их одна на другую, получим:

= .

D 1 = = = 9,8 а. е.

Ответ : D 1 = 9,8 а. е.

3. Определение размеров светил

Рис. 3.12. Угловые размеры светила

З ная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:

D = .

Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30 ʹ , а все планеты видны невооружённым глазом как точки, можно воспользоваться соотношением: sin ρ ≈ ρ . Тогда:

D = и D = .

r = R .

Если расстояние D известно, то

где величина ρ выражена в радианах.

П РимеР РешениЯ задаЧи

Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30 ʹ ?

Если ρ выразить в радианах, то

d = = 3490 км.

Ответ : d = 3490 км.

В опросы 1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?

У пражнение 11 1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8 ʺ и 57 ʹ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector