Меню

Доклад методы измерения больших температур кратко



Температура. Измерение и контроль температуры. Методы и средства измерения температуры.

Температурой называется статистическая величина, характеризующая тепловое состояние тела и пропорциональная средней кинематической энергии молекул тела. За единицу температуры принимают кельвин (К). Температура может быть также представлена в градусах Цельсия (°С). Нуль шкалы Кельвина равен абсолютному нулю, поэтому все температуры по этой шкале положительные. Связь между температурами t по Цельсию и T по Кельвину определяется следующим уравнением:

Измерить температуру непосредственно, как, например, линейные размеры, невозможно. Поэтому температуру определяют косвенно — по изменению физических свойств различных тел, получивших название термометрических.

Измерение температуры связано с преобразованием сигнала измерительной информации (температуры) в какое-либо свойство, связанное с температурой.

Для практических целей, связанных с измерением температуры, принята Международная температурная шкала (МТШ-90) (рис. 2.89), которая является обязательной для всех метрологических органов. Она основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определенные значения температуры.

Рис. 2.89. Международная Температурная шкала (МТШ-90) с реперными точками (подчеркнуты)

Для измерения температуры наибольшее распространение получили следующие методы, основанные:

— на тепловом расширении жидких, газообразных и твердых тел (термомеханический эффект);

— изменении давления внутри замкнутого объема при изменении температуры (манометрические);

— изменении электрического сопротивления тел при изменении температуры (терморезисторы);

— использовании электромагнитного излучения нагретых тел.

Приборы, предназначенные для измерения температуры, называются термометрами. Они подразделяются на две большие группы: контактные и бесконтактные.

Контактное измерение температуры.

Термометры расширения нашли широкое распространение в практике контактных измерений температуры. Основные типы механических контактных термометров, их метрологические характеристики, преимущества, недостатки и область применения представлены в табл. 2.18.

Таблица 2.18. Основные метрологические характеристики механических контактных термометров

Наименование прибора

Тип прибора

Пределы измерений,°С

Погрешность измерения,%

Инерцион ность

Преимущества

Недостатки

Область применения

Металли ческие термометры расширения

Дилато метриче ские

Дешевые, надежные, малое время срабатывания; очень большие перестановочные усилия

Малая точность, высокая инерционность

Дешевые, надежные; большие перестановочные усилия

Оценочный контроль температуры, температурные выключатели

Жидкостные термометры

Малая механическая прочность, нет дистанцион- ности

Лабораторные термометры, бытовые термометры

Дешевые, надежные, не требуют внешних источников энергии; дистан- ционность до 50 м, большие перестановочные усилия

Температура соединительного капилляра влияет на показания прибора

Промышленные термометры, термореле

Конденса ционные манометри ческие

Нелинейная статическая характеристика

Газовые термометры

С гелиевым заполнением

Принцип измерения соответствует определению термодинамической температуры

Малая механическая прочность, большая трудоемкость процесса измерения

Поверочные (калибровочные) работы

Жидкостные стеклянные термометры конструктивно подразделяются на палочные (рис. 2.90, а) и технические со вложенной шкалой (рис. 2.90, б). Принцип их действия основан на зависимости между температурой и объемом термометрической жидкости, заключенной в стеклянной оболочке. Жидкостный термометр состоит из стеклянной оболочки 1, капиллярной трубки 3, запасного резервуара 4 и шкалы 2. Термометрическая жидкость заполняет резервуар и часть капиллярной трубки. Свободное пространство в капилляре заполняется инертным газом или из него удаляется воздух.

Рис. 2.90. Жидкостные стеклянные термометры:

а — палочный; б — технический со вложенной шкалой; 1 — стеклянная оболочка; 2 — шкала; 3 — капиллярная трубка; 4 — запасной резервуар

В качестве термометрической жидкости применяют органические заполнители: толуол, этиловый спирт, керосин, пентан. Наиболее широкое распространение получили термометры с ртутным наполнением. Это объясняется свойствами ртути находиться в жидком состоянии в широком диапазоне температур и не смачивать стекло, что позволяет использовать капилляры с небольшим диаметром канала (до 0,1 мм) и обеспечивать высокую точность измерения. Так, ртутные образцовые термометры 1-го разряда имеют погрешность 0,002. 2°С.

Органические заполнители характеризуются более низкой температурой применения, меньшей стоимостью, большей погрешностью измерения.

Стеклянные термометры в зависимости от назначения и области применения подразделяются на образцовые, лабораторные, технические, бытовые, метеорологические.

Лабораторные термометры обеспечивают измерение в интервале температур 0. 500°С, который разбит на четыре диапазона, что позволяет получить погрешность измерений, не превышающую ±0,01 °С (0. 60 °С); ±0,02 °С (55. 155 °С); ±0,05°С (140. 300 °С) и ±0,1 °С (300. 500°С).

В качестве технических применяют только термометры со вложенной шкалой, которые имеют две модификации: прямые и угловые. Допускаемая погрешность обычно равна цене деления. При стационарной эксплуатации в различных точках технологических агрегатов термометры устанавливают в специальных металлических защитных чехлах (кожухах).

Для обеспечения задач позиционного регулирования и сигнализации в лабораторных и промышленных установках применяют специальные электроконтактные технические термометры двух типов:

1) с постоянными впаянными контактами, которые обеспечивают замыкание и размыкание электрических цепей при одной, двух или трех заранее заданных температурах;

2) с одним подвижным контактом (перемещается внутри капилляра с помощью магнита) и вторым неподвижным, впаянным в капилляр, что обеспечивает замыкание и размыкание электрической цепи при любом значении выбранной температуры.

Перемещающаяся в капилляре ртуть размыкает или замыкает цепи между контактами, к которым подводится напряжение постоянного или переменного тока и нагрузка на которые не должна превышать 0,5 мА при напряжении не более 0,3 В.

Биметаллические и дилатометрические термометры основаны на свойстве твердых тел в различной степени изменять свои линейные размеры при изменении их температуры.

В основном металлы и их сплавы относятся к материалам с высоким температурным коэффициентом линейного расширения. Так, для латуни он равен (18,3. 23,6)*10 -6 °С -1 , для никелевой стали 20*10 -6 °С -1 . В то же время есть сплавы, имеющие низкий коэффициент линейного расширения: сплав инвар — 0,9*10 -6 °С -1 , плавленый кварц — 0,55*10 -6 °С -1 .

На рис. 2.91, а представлена конструкция биметаллического термометра, в котором в качестве термочувствительного элемента используется двухслойная пластинка, состоящая из металлов с существенно различными коэффициентами линейного расширения: латуни 1 и инвара 2. При увеличении температуры свободный конец пластины будет изгибаться в сторону металла с меньшим коэффициентом, по величине этого перемещения судят о температуре.

Данный тип устройств часто используется как термореле в системах сигнализации и автоматического регулирования, а также в качестве температурных компенсаторов в измерительных устройствах, например в радиационных пирометрах, манометрических термометрах и т. п.

На рис. 2.91, б приведена конструкция чувствительного элемента пневматического дилатометрического преобразователя температуры.

Рис. 2.91. Термометры:

а — биметаллический: 1 — латунь; 2 — инвар; б — дилатометрический: 1 — корпус; 2 — стержень; 3 — трубка; 4 — шарик; 5 — толкатель; 6 — пружина; 7 — преобразователь

В корпусе 1, изготовленном из латуни (нержавеющей стали) расположены трубка 3 и стержень 2, выполненный из инвара (кварца). Стержень 2 через трубку 3 и толкатель 5 с помощью пружины 6 постоянно поджимается к нижнему концу корпуса 1. Шарик 4 исключает появление люфтов между стержнем и компенсационной трубкой, которая выполнена также из латуни и предназначена для исключения температурной погрешности при установке на объектах с различной толщиной тепловой изоляции. Изменение разности удлинений корпуса 1 и стержня 2, пропорциональное изменению температуры измеряемой среды, трансформируется в пневматический сигнал в преобразователе 7, усиливается и поступает на регистрирующий прибор.

Дилатометрические преобразователи выпускают и с электрическим выходным сигналом. Класс точности устройств 1,5 и 2,5 с диапазоном измеряемых температур от -30 до +1000 °С.

Жидкостные манометрические термометры (рис. 2.92) основаны на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Термосистема состоит из термобаллона 4, капилляра 5 и манометрической одно- или многовитковой пружины 6. Капилляр 5 соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 7, поводок 3, сектор 2 связан со стрелкой прибора 1.

Рис. 2.92. Конструкция манометрического термометра:

1 — стрелка; 2 — сектор; 3 — поводок; 4 — термобаллон; 5— капилляр; 6 — пружина; 7 — шарнирное соединение

При изменении температуры среды изменяется давление термометрического вещества в замкнутом пространстве, в результате чего чувствительный элемент (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное перемещение преобразуется в поворот регистрирующей стрелки относительно шкалы прибора.

В зависимости от термометрического вещества манометрические термометры подразделяются на газовые, конденсационные и жидкостные.

В газовых термометрах термобаллон, капилляр и манометрическая пружина заполняются каким-либо инертным газом (азотом, гелием и др.). Диапазон измерения весьма широк и лежит в пределах от критической температуры газа (азот — 147 °С, гелий — 267 °С) до температуры, определяемой теплостойкостью материала термобаллона.

В конденсационных термометрах насыщенные пары некоторых низкокипящих жидкостей (ацетон, метилхлорид, этилхлорид) меняют давление при изменении температуры. Диапазон измерения этих приборов от 0 до +400 °С при погрешности измерений ±1 %.

В жидкостных термометрах термосистема заполнена хорошо расширяющейся жидкостью (ртутью, керосином, лигроином и др.). Диапазон измерения этих приборов от -30 до +600 °С при погрешности измерений ±1 %.

На показания манометрических термометров значительное влияние оказывают внешние условия: изменения температуры окружающего воздуха, различная высота расположения термобаллона и пружины, колебания атмосферного давления.

Манометрические термометры имеют ограниченную длину линии связи от термобаллона к показывающему прибору, большую инерционность и динамическую погрешность.

Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.

Манометрические термометры применяют для измерения температуры охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для заправки и т. п.

Термометры сопротивления.

Термометр сопротивления состоит из чувствительного элемента в виде терморезистора, защитного чехла и соединительной головки.

Принцип действия чувствительного элемента основан на использовании зависимости электрического сопротивления вещества от температуры. В качестве материалов для их изготовления используют чистые металлы: платину, медь, никель и полупроводники. Платина является основным материалом для изготовления термометров сопротивления. В качестве чувствительного элемента в полупроводниковых термометрах сопротивления используют германий, окиси меди и марганца, титана и магния.

Основные метрологические характеристики термометров сопротивления, их принципиальные схемы, преимущества, недостатки и область применения представлены в табл. 2.19.

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Характеристики

Термометры сопротивления

Термоэлектрические термометры

Пределы измерений, °С

Погрешность измерения, %

Инерционность

Преимущества

Высокая точность, линейная статическая характеристика

Высокая чувствительность, возможны измерения в точке

Дешевые, хорошая линейность статической характеристики

Прочность, малая тепловая инерция, линейная статическая характеристика

Недостатки

Невозможно измерение температуры в точке

Нелинейная статическая характеристика, большой разброс параметров, низкая стабильность параметров во времени

Большая тепловая инерция

Область применения

Энергетика, непрерывные технологические процессы в химии, пищевая промышленность

Энергетика, технологические процессы в химии, производство искусственных материалов, медицина

Энергетика, непрерывные производства, пищевая промышленность

Энергетика, непрерывные производства, химия, медицина, строительство, производство искусственных материалов

Для решения различных задач термометры сопротивления подразделяются на эталонные, образцовые и рабочие, которые, в свою очередь, подразделяются на лабораторные и технические.

Эталонные термометры сопротивления предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13,81. . 903,89 К. В качестве эталонных, образцовых и лабораторных приборов повышенной точности применяют платиновые термометры сопротивления.

Технические термометры сопротивления в зависимости от конструкции подразделяются: на погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го класса точности и т.д.

Одна из конструкций промышленных термометров сопротивления, используемых для измерения температур жидких и газообразных сред, представлена на рис. 2.93, а. Термометр состоит из чувствительного элемента 5, расположенного в стальном защитном кожухе 3, на котором приварен штуцер 2. Провода 9, армированные фарфоровыми бусами 4, соединяют выводы чувствительного элемента 5 с клеммной колодкой б, находящейся в корпусе головки 1. Сверху головка 1 закрыта крышкой 10, снизу имеется сальниковый ввод 7, через который осуществляется подвод монтажного кабеля 8.

Чувствительный элемент термометра сопротивления (рис. 2.93, б) выполнен из металлической тонкой проволоки толщиной 0,03. 0,1 мм с безындукционной каркасной или бескаркасной намоткой.

Рис. 2.93. Термометр сопротивления:

а — конструкция термометра: 1 — корпус головки; 2 — штуцер; 3 — защитный кожух; 4 — фарфоровые бусы; 5 — чувствительный элемент; 6 — клеммная колодка; 7 — сальниковый ввод; 8 — монтажный кабель; 9 — провода; 70 — крышка; б — конструкция чувствительного элемента термометра: 1 — глазурь; 2 — пространство; 3 — каркас; 4 — платиновые спирали; 5 — выводы

В качестве каркаса для платиновых термометров применяют плавленный кварц и керамику на основе окиси алюминия. В каналах каркаса 3 расположены четыре (или две) последовательно соединенные платиновые спирали 4. К верхним концам спиралей припаяны выводы 5, выполненные из платины или сплава иридия с радием. Пространство 2 между спиралями и каркасом заполнено порошком окиси алюминия. Крепление спиралей и выводов в каркасе производится глазурью 1.

При применении термометров сопротивления о температуре можно судить по изменению электрического сопротивления его чувствительного элемента, падению напряжения на нем при постоянном токе или значению тока при постоянном напряжении.

Наибольшее распространение получила первая схема, когда изменение сопротивления служит мерой температуры (рис. 2.94). В этом случае терморезистор 1 включают в одну из диагоналей моста последовательно с регулировочным резистором Rv, служащим для приведения к определенному значению сопротивления подводящих проводов. Показания гальванометра 3, включенного в диагональ моста, зависят также от напряжения питания моста, для поддержания постоянства которого в цепь питания включен регулировочный резистор.

Рис. 2.94. Схема включения термометра сопротивления:

1 — терморезистор (термометр сопротивления); 2 — уравнительный резистор RA; 3 — гальванометр; 4 — измерительный мост с резисторами Rv, R2, R3, Я4, RA; 5 — источник питания; 6 — регулировочный резистор Rv

Термоэлектрические термометры состоят из термопары, защитного чехла и соединительной головки, они основаны на термоэлектрических свойствах чувствительного элемента.

Сущность термоэлектрического метода заключается в возникновении электродвижущей силы в спае двух разнородных проводников (например, хромель — копель), температура которого отличается от температуры вторых выводов. Для получения зависимости термоЭДС от одной температуры t2 необходимо температуру t1 поддерживать на постоянном уровне, обычно при 0 или +20 °С. Спай, помещаемый в измеряемую среду, называют горячим, или рабочим, концом термопары, а спай, температуру которого поддерживают постоянной, — холодным, или свободным, концом.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные — при известной и постоянной температуре t1.

Основные метрологические характеристики термоэлектрических термометров, их принципиальные схемы, преимущества, недостатки и область применения см. в табл. 2.19.

В качестве термопар (ТП) наиболее часто применяют комбинации материалов, имеющих высокое значение развиваемой термо- ЭДС, стабильность характеристик при различных температурах, воспроизводимость и линейную зависимость термоЭДС от температуры, простоту технологической обработки и получения спая, а именно: хромель-копелевые (TBP)[AJ], хромель-алюмелевые (TXK)[L], платинородий-платиновые (ТХА)[К], вольфрам-рениевые (Tnn)[S] и др. В квадратных скобках приведены условные обозначения номинальных статистических характеристик преобразования. Наиболее точной является термопара ТПП, которая используется в качестве рабочих эталонов и образцовых термометров 1-го, 2-го и 3-го разряда.

Основные характеристики термоэлектрических термометров представлены в табл. 2.20.

Таблица 2.20. Основные характеристики термоэлектрических термометров

Термопара

Градуировка

Химический состав термоэлектрода

Пределы применения, C

Пределы допускаемой погрешности, С, при температуре, С

Источник

Методы измерения температуры

Пирометрические методы измерения температуры основаны на регистрации характеристик теплового излучения, которое испускает любое «нагретое» тело (здесь под «нагретым» телом мы понимаем тело с температурой выше температуры абсолютного нуля (-273°С)). Соответственно, данные методы реализуются с помощью пирометров – приборов, предназначенных для измерения температуры объекта с некоторого расстояния.

Принцип действия пирометров базируется на том, что интенсивность и спектр излучения тепловой энергии от объекта напрямую зависит от его температуры.

Пирометрические методы измерения температуры классифицируются по диапазону длин волн теплового излучения на оптический и радиационный методы.

Оптические методы измерения температуры основаны на зависимости цвета электромагнитного излучения (в оптическом и ИК-диапазонах) от температуры поверхности объекта. Такую зависимость можно наглядно проследить по изменению цвета излучения с увеличением температуры тела:

  • при 700-800°С — темно-оранжевое свечение;
  • при 1000°С — ярко-оранжевое свечение;
  • при 2000°С — ярко-желтое свечение;
  • при 2500°С — практически белое свечение.

Оптические пирометры по принципу действия подразделяются на яркостные и цветовые (спектрального отношения).

Принцип действия яркостного пирометра основан на визуальном сравнении цвета излучения от объекта с цветом эталонной металлической нити. Окуляр пирометра направляется на исследуемый объект и, регулируя силу тока, нагревают нить до полного слияния ее изображения с цветом свечения объекта, и по величине тока пересчитывают температуру объекта.

Действие цветовых пирометров основано на определении отношения энергетической яркости объекта, измеренной в двух областях спектра. Цветовые пирометры обладают большей точностью по сравнению с яркостными, поэтому и находят большее применение.

В диапазоне относительно небольших температур (до 500°С) основная мощность теплового излучения сосредоточена в инфракрасном диапазоне длин волн (от 0,78 мкм до 14 мкм). Именно на регистрации и пересчете этой мощности основана работа радиационных пирометров:

  1. ИК-излучение от объекта фокусируется объективом пирометра и направляется на термодатчик.
  2. Под действием ИК-излучения термодатчик генерирует электрический сигнал, соответствующий мощности излучения.
  3. Электрический сигнал обрабатывается процессором пирометра, и численное значение температуры выдается на дисплее пирометра.

Радиационные пирометры обладают малым весом и компактными размерами, надежны и удобны в применении, обеспечивают высокую точность и повторяемость измерений, а также, в отличие от оптических пирометров, способны измерять отрицательные температуры. Учитывая эти факторы, а также меньшую стоимость и большую разрешающую способность по сравнению с оптическими пирометрами, сегодня абсолютное большинство мобильных портативных пирометров работает по радиационному принципу.

Среди относительных недостатков радиационного метода измерения температуры необходимо назвать зависимость результатов измерений от излучательной способности поверхности объекта и расстояния съемки. Для исключения данных ошибок измерений необходимо правильно подбирать в настройках пирометра коэффициент излучательной способности поверхности и проводить съемку в соответствии с оптическим разрешением пирометра. Все это подразумевает достаточно высокую квалификацию оператора, которую можно получить на курсе «Радиационные пирометры. Тепловой метод неразрушающего контроля», который периодически проводится в Учебном Центре компании MVR.

Также в компании MVR вы можете купить пирометр серии RY-150 с температурным диапазоном от -20°С до 500°С и коэффициентом визирования 8:1.

Пирометры MVR отличает:

  • уникальный эргономичный дизайн;
  • ударопрочный и пылезащищенный корпус из ABS пластика;
  • точный и долговечный приемник инфракрасного излучения;
  • прецизионные линзы, обеспечивающие работу в условиях
  • высокая помехоустойчивость;
  • меньшая погрешность измерений за счет комплектации новейшими процессорами;
  • быстрое согласование изменяемого коэффициента излучения с

особенностями объекта измерения;

  • возможность установки порогового уровня.

Благодаря отличным техническим характеристикам, высокому качеству сборки, простоте и надежности эксплуатации, пирометры RY-150 считаются одними из лучших по соотношению цена/качество/функциональность и находят самое широкое применение в металлургии, бумажном производстве, на ж/д транспорте, в строительстве, энергоаудите, ЖКХ, научных исследованиях и многих других приложениях.

Источник

Доклад: Температура. Способы измерения температур. Значение теплоизоляции в жизни человека и животного

Научный проект по физике

На тему: «Температура. Способы измерения температур. Значение теплоизоляции в жизни человека и животного»

1. История изобретения термометра

2. Современные термометры

3. Теплоизоляции в жизни человека и животного

1. История изобретения термометра

История термодинамики началась, когда в 1592 году Галилео Галилей создал первый прибор для наблюдений за изменениями температуры, назвав его термоскопом. Термоскоп представлял собой небольшой стеклянный шарик с припаянной стеклянной трубкой. Шарик нагревали, а конец трубки опускали в воду. Когда шарик охлаждался, давление в нем уменьшалось, и вода в трубке под действием атмосферного давления поднималась на определенную высоту вверх. При потеплении уровень воды в трубки опускался вниз. Недостатком прибора было то, что по нему можно было судить только об относительной степени нагрева или охлаждения тела, так как шкалы у него еще не было.

Позднее флорентийские ученые усовершенствовали термоскоп Галилея, добавив к нему шкалу из бусин и откачав из шарика воздух.

В 17 веке воздушный термоскоп был преобразован в спиртовой флорентийским ученым Торричелли. Прибор был перевернут шариком вниз, сосуд с водой удалили, а в трубку налили спирт. Действие прибора основывалось на расширении спирта при нагревании, — теперь показания не зависели от атмосферного давления. Это был один из первых жидкостных термометров.

На тот момент показания приборов еще не согласовывались друг с другом, поскольку никакой конкретной системы при градуировке шкал не учитывалось. В 1694 году Карло Ренальдини предложил принять в качестве двух крайних точек температуру таяния льда и температуру кипения воды.

В 1714 году Д.Г. Фаренгейт изготовил ртутный термометр. На шкале он обозначил три фиксированные точки: нижняя, 32 °F — температура замерзания солевого раствора, 96 ° — температура тела человека, верхняя 212 ° F — температура кипения воды. Термометром Фаренгейта пользовались в англоязычных странах вплоть до 70-х годов 20 века, а в США пользуются и до сих пор.

Еще одна шкала была предложена французским ученым Реомюром в 1730 году. Он делал опыты со спиртовым термометром и пришел к выводу, что шкала может быть построена в соответствии с тепловым расширением спирта. Установив, что применяемый им спирт, смешанный с водой в пропорции 5: 1, расширяется в отношении 1000: 1080 при изменении температуры от точки замерзания до точки кипения воды, ученый предложил использовать шкалу от 0 до 80 градусов. Приняв за 0 ° температуру таяния льда, а за 80 ° температуру кипения воды при нормальном атмосферном давлении.

В 1742 году шведский ученый Андрес Цельсий предложил шкалу для ртутного термометра, в которой промежуток между крайними точками был разделен на 100 градусов. При этом сначала температура кипения воды была обозначена как 0 °, а температура таяния льда как 100 °. Однако в таком виде шкала оказалась не очень удобной, и позднее астрономом М. Штремером и ботаником К. Линнеем было принято решение поменять крайние точки местами.

М.В. Ломоносовым был предложен жидкостный термометр, имеющий шкалу со 150 делениями от точки плавления льда до точки кипения воды. И.Г. Ламберту принадлежит создание воздушного термометра со шкалой 375 °, где за один градус принималась одна тысячная часть расширения объема воздуха. Были также попытки создать термометр на основе расширения твердых тел. Так в 1747 голландец П. Мушенбруг использовал расширение железного бруска для измерения температуры плавления ряда металлов.

К концу 18 века количество различных температурных шкал значительно увеличилось. По данным «Пилометрии» Ламберта на тот момент их насчитывалось 19.

Температурные шкалы, о которых шла речь выше, отличает то, что точка отсчета для них была выбрана произвольно. В начале 19 века английским ученым лордом Кельвином была предложена абсолютная термодинамическая шкала. Одновременно Кельвин обосновал понятие абсолютного нуля, обозначив им температуру, при которой прекращается тепловое движение молекул. По Цельсию это — 273,15 °С.

2. Современные термометры

На сегодняшний день существует много видов термометров: цифровые, электронные, инфракрасные, биметаллические, дистанционные, термометры сопротивления, электроконтактные, жидкостные, термоэлектрические, газовые, пирометры и т.д. Из всего этого многообразия наиболее популярными являются ртутные и спиртовые.

Исходя из потребностей, на сегодняшний день можно купить любой необходимый бытовой термометр. На товарном рынке представлено большое разнообразие термометров различного назначения: медицинские, уличные, оконные для любого вида окон (пластиковых или деревянных), комнатные термометры для офиса и дома, для саун и бань, для чая и воды, для аквариумов, для почвы, для автомобилей и т.д. И даже термометры для инкубаторов, морозильных камер, винных погребов. Термометры на любой вкус! Цена во многом зависит от вида термометра. Наибольшей популярностью пользуются самые простые измерительные приборы, поскольку их стоимость отличается особенной демократичностью.

3. Теплоизоляция в жизни человека и животного

а) Увеличение и уменьшение потерь тепла у человека.

Температура оказывает существенное влияние на протекание жизненных процессов в организме и на его физиологическую активность. Физико-химической основой этого влияния является изменение скорости протекания химических реакций, благодаря которым происходит энтропическое превращение всех видов энергии в тепловую.

Зависимость скорости химических реакций количественно выражается законом Вант-Гоффа — Аррениуса, согласно которому при изменении температуры окружающей среды на 10°с происходит, соответственно, повышение или понижение скорости химических процессов в 2-3 раза. Разница в 10°с стала стандартным диапазоном, по которому определяют температурную чувствительность биологических систем.

В соответствии с одним из следствий второго закона термодинамики, теплота как конечное превращение энергии способна переходить только из области более высокой температуры в область более низкой. Поэтому поток тепловой энергии от живого организма в окружающую среду не прекращается до тех пор, пока температура тела особи выше, чем температура среды. Температура тела определяется соотношением скорости метаболической теплопродукции клеточных структур и скорости рассеивания образующейся тепловой энергии в окружающую среду. Следовательно, теплообмен между организмом и средой является неотъемлемым условием существования теплокровных организмов. Нарушение соотношения этих процессов приводит к изменению температуры тела.

Человек издревле обитает в различных условиях нашей планеты, температурные различия между которыми превышают 100°с. Ежегодные и ежесуточные колебания могут быть очень велики. Следовательно, проблема защиты от внешних температурных воздействий и физиологической адаптации к ним всегда стояла перед человеком, а при выполнении мышечной работы в некоторых условиях внешней среды терморегуляция является одним из важных лимитирующих факторов.

При анализе температурного режима человеческого организма на протяжении долгого времени понятие о температуре тела как одной из важнейших физиологических констант при нормальном состоянии организма распространялось не только на состояние покоя, но и на активную мышечную деятельность. С этой позиции различная степень гипертермии при мышечной работе не могла расцениваться иначе, как показатель срыва или функциональной недостаточности терморегуляционной системы, в частности, аппарата физической терморегуляции.

Современный взгляд на терморегуляцию человека в процессе работы существенно изменился. Допускается и доказана прямая, хотя и не линейная зависимость, взаимосвязь между температурой ядра и уровнем метаболизма. Важно подчеркнуть, что степень повышения температуры ядра при работе в большей степени коррелирует с общим уровнем энергозатрат, чем с величиной теплопродукции. Поэтому знание физиологических основ терморегуляции человека в различных условиях деятельности, особенно при физических нагрузках, является необходимым.

Температура тела человека. Тепловой баланс.

Возможность процессов жизнедеятельности ограничена узким диапазоном температуры внутренней среды, в котором могут происходить основные ферментативные реакции. Для человека снижение температуры тела ниже 25°с и её увеличение выше 43°с, как правило, смертельно. Особенно чувствительны к изменениям температуры нервные клетки. С точки зрения терморегуляции, тело человека можно представить состоящим из двух компонентов: внешнего, оболочки, и внутреннего, ядра. Ядро — это часть тела, которая имеет постоянную температуру, а оболочка — часть тела, в которой имеется температурный градиент. Через оболочку идёт теплообмен между ядром и окружающей средой. Температура разных участков ядра различна. Например, в печени — 37.8-38.0°с, в мозге — 36.9-37.8°. в целом же, температура ядра тела человека составляет 37.0°с.

Температура кожи человека на различных участках колеблется от 24.4 до 34.4°с. Самая низкая температура наблюдается на пальцах ног, самая низкая — в подмышечной впадине. Именно на основании измерения температуры в подмышечной впадине обычно судят о температуре тела в данный момент времени. По усреднённым данным, средняя температура кожи обнажённого человека в условиях комфортной температуры воздуха составляет 33-34°с.

Существуют циркадные — околосуточные — колебания температуры тела. Амплитуда колебаний может достигать 1°. Температура тела минимальна в предутренние часы (3-4 часа) и максимальна в дневное время (16-18 часов). Эти сдвиги вызваны колебаниями уровня регулирования, т.е. связаны с изменениями в деятельности ЦНС. В условиях перемещения, связанного с пересечением часовых меридианов, требуется 1-2 недели для того, чтобы температурный ритм пришёл в соответствие с новым местным временем. На суточный ритм могут накладываться ритмы с более длительными периодами. Наиболее отчётливо проявляется температурный ритм, синхронизированный с менструальным циклом.

Известно также явление асимметрии аксилярной температуры. Она наблюдается примерно в 54% случаев, причем температура в левой подмышечной впадине несколько выше, чем в правой. Возможна асимметрия и на других участках кожи, а выраженность асимметрии более чем в 0,5° свидетельствует о патологии. Постоянство температуры тела у человека может сохраняться лишь при равенстве процессов теплообразования и теплоотдачи всего организма. В термонейтральной (комфортной) зоне существует баланс между теплопродукцией и теплоотдачей. Ведущим фактором, определяющим уровень теплового баланса, является температура окружающей среды. При её отклонении от комфортной зоны в организме устанавливается новый уровень теплового баланса, обеспечивающий изотермию в новых условиях среды. Оптимальное соотношение теплопродукции и теплоотдачи обеспечивается совокупностью физиологических процессов, называемых терморегуляцией. Различают физическую (теплоотдача) и химическую (теплообразование) терморегуляцию.

Б) Как зимуют животные.

Жизнь животных зимой или кто как зимует? Есть тритоны, лягушки, черепахи и змеи, которые могут безболезненно замерзать и затвердевать так, что их внутренние органы пронизываются кристаллами льда. Это необычно, потому что образующийся в кровеносных сосудах животного лед должен либо их разрывать, либо безнадежно растягивать. И главное — замерзшая вода становится недоступной для клеток, и они могут погибнуть от обезвоживания. Но вот, например, американская лесная лягушка. Когда при охлаждении лед образуется в пальцах ее лап и коже, она наполняет свои ткани глюкозой. Это предохраняет их от повреждения. Даже если бы человек мог накачать столько глюкозы в свои ткани, ее высокий уровень вызвал бы диабетическую кому и смерть. У лягушки избыток сахара тоже вызывает кому: обмен веществ в клетках почти останавливается. Но это не вредит амфибиям. Весной они оттаивают и при движении сжигают глюкозу, как горючее. С замороженным сибирским углозубом произошел поразительный случай: его нашли в вечной мерзлоте на глубине одиннадцати метров. А находка оттаяла и ожила. Радиоуглеродный анализ показал, что углозуб пролежал в мерзлоте около девяноста лет. Есть и животные, тело которых может сильно охлаждаться, а льда при этом не образуется. Некоторые арктические насекомые бодро переносят пятидесятиградусный мороз: они удаляют из своего тела пыль или бактерии, вокруг которых могут нарастать кристаллы льда. Из млекопитающих безболезненно охлаждается длиннохвостый суслик, у которого в зимнюю спячку температура тела может упасть ниже точки замерзания. И никаких кристаллов. Но как это у него получается — пока неизвестно. Ужеобразная подвязочная змея последней из американских змей уходит на зиму в укрытие и первой при потеплении из него выходит. Она зимует в каменистых расщелинах при 4-5 градусах тепла. Биение ее сердца замедляется до 6 ударов в минуту (в десять раз реже, чем в летний солнечный день). В мороз подвязочные змеи тоже могут превращаться в лед. Но даже после одного или двух дней в «морозилке» теплое солнце оживляет рептилию. Подвязочные змеи зимуют и в воде: описан случай, когда сотни змей заползали осенью в цистерну и ждали, пока она наполнится водой. Вероятно, кожа змеи, наподобие легкого, извлекает кислород из воды. Конечно, это очень мало: сердце животного бьется лишь раз в минуту, а обмен веществ сильно замедляется. Как долго зимуют под землей роющие млекопитающие, зависит от того, насколько холодно снаружи. Но и зимой время от времени температура их тела поднимается почти с нуля до нормальной, и они просыпаются на несколько часов или даже на целый день. Как часто просыпается грызун перогнат, зимующий вместе с запасом пищи? Американский исследователь оставлял перогнату 800 граммов семян, и он просыпался каждый день. Когда же семян давали всего 100 граммов — тот дремал по пять дней. Но зачем вообще просыпаться? Ведь спячка должна сохранять энергию, а 80 — 90 ее процентов животные зимой расходуют, именно когда просыпаются. Возможно, они просто боятся проспать весну. Например, когда просыпается земляная белка Белдинга, она сразу спешит потрогать земляную пробку, закрывающую вход в нору. Теплая земля означает приход весны. Когда в экспериментах пробку нагревали, белки сразу же рыли ход наружу. Причем с приближением весны белки просыпаются все чаще и чаще. Возможно, их будят не только биологические часы, но и накопившиеся в организме ядовитые вещества, которые надо время от времени удалять. Перья с пухом, шерсть, слой подкожного жира — почти все животные холодных краев имеют какую-нибудь защиту от мороза. Некоторые грызуны, землеройки и кролики вырабатывают при похолодании особое вещество, именуемое коричневым салом. Оно дает много энергии, потому что насыщено митохондриями — микроскопическими устройствами в клетках, чья единственная задача — превращать пищу в тепло.

Источник

Методы измерения температуры

Пирометрические методы измерения температуры основаны на регистрации характеристик теплового излучения, которое испускает любое «нагретое» тело (здесь под «нагретым» телом мы понимаем тело с температурой выше температуры абсолютного нуля (-273°С)). Соответственно, данные методы реализуются с помощью пирометров – приборов, предназначенных для измерения температуры объекта с некоторого расстояния.

Принцип действия пирометров базируется на том, что интенсивность и спектр излучения тепловой энергии от объекта напрямую зависит от его температуры.

Пирометрические методы измерения температуры классифицируются по диапазону длин волн теплового излучения на оптический и радиационный методы.

Оптические методы измерения температуры основаны на зависимости цвета электромагнитного излучения (в оптическом и ИК-диапазонах) от температуры поверхности объекта. Такую зависимость можно наглядно проследить по изменению цвета излучения с увеличением температуры тела:

  • при 700-800°С — темно-оранжевое свечение;
  • при 1000°С — ярко-оранжевое свечение;
  • при 2000°С — ярко-желтое свечение;
  • при 2500°С — практически белое свечение.

Оптические пирометры по принципу действия подразделяются на яркостные и цветовые (спектрального отношения).

Принцип действия яркостного пирометра основан на визуальном сравнении цвета излучения от объекта с цветом эталонной металлической нити. Окуляр пирометра направляется на исследуемый объект и, регулируя силу тока, нагревают нить до полного слияния ее изображения с цветом свечения объекта, и по величине тока пересчитывают температуру объекта.

Действие цветовых пирометров основано на определении отношения энергетической яркости объекта, измеренной в двух областях спектра. Цветовые пирометры обладают большей точностью по сравнению с яркостными, поэтому и находят большее применение.

В диапазоне относительно небольших температур (до 500°С) основная мощность теплового излучения сосредоточена в инфракрасном диапазоне длин волн (от 0,78 мкм до 14 мкм). Именно на регистрации и пересчете этой мощности основана работа радиационных пирометров:

  1. ИК-излучение от объекта фокусируется объективом пирометра и направляется на термодатчик.
  2. Под действием ИК-излучения термодатчик генерирует электрический сигнал, соответствующий мощности излучения.
  3. Электрический сигнал обрабатывается процессором пирометра, и численное значение температуры выдается на дисплее пирометра.

Радиационные пирометры обладают малым весом и компактными размерами, надежны и удобны в применении, обеспечивают высокую точность и повторяемость измерений, а также, в отличие от оптических пирометров, способны измерять отрицательные температуры. Учитывая эти факторы, а также меньшую стоимость и большую разрешающую способность по сравнению с оптическими пирометрами, сегодня абсолютное большинство мобильных портативных пирометров работает по радиационному принципу.

Среди относительных недостатков радиационного метода измерения температуры необходимо назвать зависимость результатов измерений от излучательной способности поверхности объекта и расстояния съемки. Для исключения данных ошибок измерений необходимо правильно подбирать в настройках пирометра коэффициент излучательной способности поверхности и проводить съемку в соответствии с оптическим разрешением пирометра. Все это подразумевает достаточно высокую квалификацию оператора, которую можно получить на курсе «Радиационные пирометры. Тепловой метод неразрушающего контроля», который периодически проводится в Учебном Центре компании MVR.

Также в компании MVR вы можете купить пирометр серии RY-150 с температурным диапазоном от -20°С до 500°С и коэффициентом визирования 8:1.

Пирометры MVR отличает:

  • уникальный эргономичный дизайн;
  • ударопрочный и пылезащищенный корпус из ABS пластика;
  • точный и долговечный приемник инфракрасного излучения;
  • прецизионные линзы, обеспечивающие работу в условиях
  • высокая помехоустойчивость;
  • меньшая погрешность измерений за счет комплектации новейшими процессорами;
  • быстрое согласование изменяемого коэффициента излучения с

особенностями объекта измерения;

  • возможность установки порогового уровня.

Благодаря отличным техническим характеристикам, высокому качеству сборки, простоте и надежности эксплуатации, пирометры RY-150 считаются одними из лучших по соотношению цена/качество/функциональность и находят самое широкое применение в металлургии, бумажном производстве, на ж/д транспорте, в строительстве, энергоаудите, ЖКХ, научных исследованиях и многих других приложениях.

Источник

Температура. Измерение и контроль температуры. Методы и средства измерения температуры.

Температурой называется статистическая величина, характеризующая тепловое состояние тела и пропорциональная средней кинематической энергии молекул тела. За единицу температуры принимают кельвин (К). Температура может быть также представлена в градусах Цельсия (°С). Нуль шкалы Кельвина равен абсолютному нулю, поэтому все температуры по этой шкале положительные. Связь между температурами t по Цельсию и T по Кельвину определяется следующим уравнением:

Измерить температуру непосредственно, как, например, линейные размеры, невозможно. Поэтому температуру определяют косвенно — по изменению физических свойств различных тел, получивших название термометрических.

Измерение температуры связано с преобразованием сигнала измерительной информации (температуры) в какое-либо свойство, связанное с температурой.

Для практических целей, связанных с измерением температуры, принята Международная температурная шкала (МТШ-90) (рис. 2.89), которая является обязательной для всех метрологических органов. Она основывается на ряде воспроизводимых состояний равновесия (реперных точек) некоторых веществ, которым присвоены определенные значения температуры.

Рис. 2.89. Международная Температурная шкала (МТШ-90) с реперными точками (подчеркнуты)

Для измерения температуры наибольшее распространение получили следующие методы, основанные:

— на тепловом расширении жидких, газообразных и твердых тел (термомеханический эффект);

— изменении давления внутри замкнутого объема при изменении температуры (манометрические);

— изменении электрического сопротивления тел при изменении температуры (терморезисторы);

— использовании электромагнитного излучения нагретых тел.

Приборы, предназначенные для измерения температуры, называются термометрами. Они подразделяются на две большие группы: контактные и бесконтактные.

Контактное измерение температуры.

Термометры расширения нашли широкое распространение в практике контактных измерений температуры. Основные типы механических контактных термометров, их метрологические характеристики, преимущества, недостатки и область применения представлены в табл. 2.18.

Название: Температура. Способы измерения температур. Значение теплоизоляции в жизни человека и животного
Раздел: Рефераты по физике
Тип: доклад Добавлен 00:29:25 29 ноября 2010 Похожие работы
Просмотров: 5361 Комментариев: 13 Оценило: 9 человек Средний балл: 4.2 Оценка: 4 Скачать
Таблица 2.18. Основные метрологические характеристики механических контактных термометров

Наименование прибора

Тип прибора

Пределы измерений,°С

Погрешность измерения,%

Инерцион ность

Преимущества

Недостатки

Область применения

Металли ческие термометры расширения

Дилато метриче ские

Дешевые, надежные, малое время срабатывания; очень большие перестановочные усилия

Малая точность, высокая инерционность

Дешевые, надежные; большие перестановочные усилия

Оценочный контроль температуры, температурные выключатели

Жидкостные термометры

Малая механическая прочность, нет дистанцион- ности

Лабораторные термометры, бытовые термометры

Дешевые, надежные, не требуют внешних источников энергии; дистан- ционность до 50 м, большие перестановочные усилия

Температура соединительного капилляра влияет на показания прибора

Промышленные термометры, термореле

Конденса ционные манометри ческие

Нелинейная статическая характеристика

Газовые термометры

С гелиевым заполнением

Принцип измерения соответствует определению термодинамической температуры

Малая механическая прочность, большая трудоемкость процесса измерения

Поверочные (калибровочные) работы

Жидкостные стеклянные термометры конструктивно подразделяются на палочные (рис. 2.90, а) и технические со вложенной шкалой (рис. 2.90, б). Принцип их действия основан на зависимости между температурой и объемом термометрической жидкости, заключенной в стеклянной оболочке. Жидкостный термометр состоит из стеклянной оболочки 1, капиллярной трубки 3, запасного резервуара 4 и шкалы 2. Термометрическая жидкость заполняет резервуар и часть капиллярной трубки. Свободное пространство в капилляре заполняется инертным газом или из него удаляется воздух.

Рис. 2.90. Жидкостные стеклянные термометры:

а — палочный; б — технический со вложенной шкалой; 1 — стеклянная оболочка; 2 — шкала; 3 — капиллярная трубка; 4 — запасной резервуар

В качестве термометрической жидкости применяют органические заполнители: толуол, этиловый спирт, керосин, пентан. Наиболее широкое распространение получили термометры с ртутным наполнением. Это объясняется свойствами ртути находиться в жидком состоянии в широком диапазоне температур и не смачивать стекло, что позволяет использовать капилляры с небольшим диаметром канала (до 0,1 мм) и обеспечивать высокую точность измерения. Так, ртутные образцовые термометры 1-го разряда имеют погрешность 0,002. 2°С.

Органические заполнители характеризуются более низкой температурой применения, меньшей стоимостью, большей погрешностью измерения.

Стеклянные термометры в зависимости от назначения и области применения подразделяются на образцовые, лабораторные, технические, бытовые, метеорологические.

Лабораторные термометры обеспечивают измерение в интервале температур 0. 500°С, который разбит на четыре диапазона, что позволяет получить погрешность измерений, не превышающую ±0,01 °С (0. 60 °С); ±0,02 °С (55. 155 °С); ±0,05°С (140. 300 °С) и ±0,1 °С (300. 500°С).

В качестве технических применяют только термометры со вложенной шкалой, которые имеют две модификации: прямые и угловые. Допускаемая погрешность обычно равна цене деления. При стационарной эксплуатации в различных точках технологических агрегатов термометры устанавливают в специальных металлических защитных чехлах (кожухах).

Для обеспечения задач позиционного регулирования и сигнализации в лабораторных и промышленных установках применяют специальные электроконтактные технические термометры двух типов:

1) с постоянными впаянными контактами, которые обеспечивают замыкание и размыкание электрических цепей при одной, двух или трех заранее заданных температурах;

2) с одним подвижным контактом (перемещается внутри капилляра с помощью магнита) и вторым неподвижным, впаянным в капилляр, что обеспечивает замыкание и размыкание электрической цепи при любом значении выбранной температуры.

Перемещающаяся в капилляре ртуть размыкает или замыкает цепи между контактами, к которым подводится напряжение постоянного или переменного тока и нагрузка на которые не должна превышать 0,5 мА при напряжении не более 0,3 В.

Биметаллические и дилатометрические термометры основаны на свойстве твердых тел в различной степени изменять свои линейные размеры при изменении их температуры.

В основном металлы и их сплавы относятся к материалам с высоким температурным коэффициентом линейного расширения. Так, для латуни он равен (18,3. 23,6)*10 -6 °С -1 , для никелевой стали 20*10 -6 °С -1 . В то же время есть сплавы, имеющие низкий коэффициент линейного расширения: сплав инвар — 0,9*10 -6 °С -1 , плавленый кварц — 0,55*10 -6 °С -1 .

На рис. 2.91, а представлена конструкция биметаллического термометра, в котором в качестве термочувствительного элемента используется двухслойная пластинка, состоящая из металлов с существенно различными коэффициентами линейного расширения: латуни 1 и инвара 2. При увеличении температуры свободный конец пластины будет изгибаться в сторону металла с меньшим коэффициентом, по величине этого перемещения судят о температуре.

Данный тип устройств часто используется как термореле в системах сигнализации и автоматического регулирования, а также в качестве температурных компенсаторов в измерительных устройствах, например в радиационных пирометрах, манометрических термометрах и т. п.

На рис. 2.91, б приведена конструкция чувствительного элемента пневматического дилатометрического преобразователя температуры.

Рис. 2.91. Термометры:

а — биметаллический: 1 — латунь; 2 — инвар; б — дилатометрический: 1 — корпус; 2 — стержень; 3 — трубка; 4 — шарик; 5 — толкатель; 6 — пружина; 7 — преобразователь

В корпусе 1, изготовленном из латуни (нержавеющей стали) расположены трубка 3 и стержень 2, выполненный из инвара (кварца). Стержень 2 через трубку 3 и толкатель 5 с помощью пружины 6 постоянно поджимается к нижнему концу корпуса 1. Шарик 4 исключает появление люфтов между стержнем и компенсационной трубкой, которая выполнена также из латуни и предназначена для исключения температурной погрешности при установке на объектах с различной толщиной тепловой изоляции. Изменение разности удлинений корпуса 1 и стержня 2, пропорциональное изменению температуры измеряемой среды, трансформируется в пневматический сигнал в преобразователе 7, усиливается и поступает на регистрирующий прибор.

Дилатометрические преобразователи выпускают и с электрическим выходным сигналом. Класс точности устройств 1,5 и 2,5 с диапазоном измеряемых температур от -30 до +1000 °С.

Жидкостные манометрические термометры (рис. 2.92) основаны на использовании зависимости между температурой и давлением термометрического вещества (газа, жидкости), заполняющего герметически замкнутую термосистему термометра. Термосистема состоит из термобаллона 4, капилляра 5 и манометрической одно- или многовитковой пружины 6. Капилляр 5 соединяет термобаллон с неподвижным концом манометрической пружины. Подвижный конец пружины запаян и через шарнирное соединение 7, поводок 3, сектор 2 связан со стрелкой прибора 1.

Рис. 2.92. Конструкция манометрического термометра:

1 — стрелка; 2 — сектор; 3 — поводок; 4 — термобаллон; 5— капилляр; 6 — пружина; 7 — шарнирное соединение

При изменении температуры среды изменяется давление термометрического вещества в замкнутом пространстве, в результате чего чувствительный элемент (манометрическая пружина) деформируется и ее свободный конец перемещается. Данное перемещение преобразуется в поворот регистрирующей стрелки относительно шкалы прибора.

В зависимости от термометрического вещества манометрические термометры подразделяются на газовые, конденсационные и жидкостные.

В газовых термометрах термобаллон, капилляр и манометрическая пружина заполняются каким-либо инертным газом (азотом, гелием и др.). Диапазон измерения весьма широк и лежит в пределах от критической температуры газа (азот — 147 °С, гелий — 267 °С) до температуры, определяемой теплостойкостью материала термобаллона.

В конденсационных термометрах насыщенные пары некоторых низкокипящих жидкостей (ацетон, метилхлорид, этилхлорид) меняют давление при изменении температуры. Диапазон измерения этих приборов от 0 до +400 °С при погрешности измерений ±1 %.

В жидкостных термометрах термосистема заполнена хорошо расширяющейся жидкостью (ртутью, керосином, лигроином и др.). Диапазон измерения этих приборов от -30 до +600 °С при погрешности измерений ±1 %.

На показания манометрических термометров значительное влияние оказывают внешние условия: изменения температуры окружающего воздуха, различная высота расположения термобаллона и пружины, колебания атмосферного давления.

Манометрические термометры имеют ограниченную длину линии связи от термобаллона к показывающему прибору, большую инерционность и динамическую погрешность.

Класс точности манометрических термометров 1,0; 1,5; 2,5 и 4,0 при работе в интервале температур окружающего воздуха от 5 до 50 °С и относительной влажности до 80 %.

Манометрические термометры применяют для измерения температуры охлаждающей воды, воздуха, жидкого и газообразного топлива, на установках для заправки и т. п.

Термометры сопротивления.

Термометр сопротивления состоит из чувствительного элемента в виде терморезистора, защитного чехла и соединительной головки.

Принцип действия чувствительного элемента основан на использовании зависимости электрического сопротивления вещества от температуры. В качестве материалов для их изготовления используют чистые металлы: платину, медь, никель и полупроводники. Платина является основным материалом для изготовления термометров сопротивления. В качестве чувствительного элемента в полупроводниковых термометрах сопротивления используют германий, окиси меди и марганца, титана и магния.

Основные метрологические характеристики термометров сопротивления, их принципиальные схемы, преимущества, недостатки и область применения представлены в табл. 2.19.

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Таблица 2.19. Основные метрологические характеристики электрических контактных термометров

Характеристики

Термометры сопротивления

Термоэлектрические термометры

Пределы измерений, °С

Погрешность измерения, %

Инерционность

Преимущества

Высокая точность, линейная статическая характеристика

Высокая чувствительность, возможны измерения в точке

Дешевые, хорошая линейность статической характеристики

Прочность, малая тепловая инерция, линейная статическая характеристика

Недостатки

Невозможно измерение температуры в точке

Нелинейная статическая характеристика, большой разброс параметров, низкая стабильность параметров во времени

Большая тепловая инерция

Область применения

Энергетика, непрерывные технологические процессы в химии, пищевая промышленность

Энергетика, технологические процессы в химии, производство искусственных материалов, медицина

Энергетика, непрерывные производства, пищевая промышленность

Энергетика, непрерывные производства, химия, медицина, строительство, производство искусственных материалов

Для решения различных задач термометры сопротивления подразделяются на эталонные, образцовые и рабочие, которые, в свою очередь, подразделяются на лабораторные и технические.

Эталонные термометры сопротивления предназначены для воспроизведения и передачи шкалы МПТШ в интервале 13,81. . 903,89 К. В качестве эталонных, образцовых и лабораторных приборов повышенной точности применяют платиновые термометры сопротивления.

Технические термометры сопротивления в зависимости от конструкции подразделяются: на погружаемые, поверхностные и комнатные; защищенные и не защищенные от действия агрессивной среды; стационарные и переносные; термометры 1-го, 2-го и 3-го класса точности и т.д.

Одна из конструкций промышленных термометров сопротивления, используемых для измерения температур жидких и газообразных сред, представлена на рис. 2.93, а. Термометр состоит из чувствительного элемента 5, расположенного в стальном защитном кожухе 3, на котором приварен штуцер 2. Провода 9, армированные фарфоровыми бусами 4, соединяют выводы чувствительного элемента 5 с клеммной колодкой б, находящейся в корпусе головки 1. Сверху головка 1 закрыта крышкой 10, снизу имеется сальниковый ввод 7, через который осуществляется подвод монтажного кабеля 8.

Чувствительный элемент термометра сопротивления (рис. 2.93, б) выполнен из металлической тонкой проволоки толщиной 0,03. 0,1 мм с безындукционной каркасной или бескаркасной намоткой.

Рис. 2.93. Термометр сопротивления:

а — конструкция термометра: 1 — корпус головки; 2 — штуцер; 3 — защитный кожух; 4 — фарфоровые бусы; 5 — чувствительный элемент; 6 — клеммная колодка; 7 — сальниковый ввод; 8 — монтажный кабель; 9 — провода; 70 — крышка; б — конструкция чувствительного элемента термометра: 1 — глазурь; 2 — пространство; 3 — каркас; 4 — платиновые спирали; 5 — выводы

В качестве каркаса для платиновых термометров применяют плавленный кварц и керамику на основе окиси алюминия. В каналах каркаса 3 расположены четыре (или две) последовательно соединенные платиновые спирали 4. К верхним концам спиралей припаяны выводы 5, выполненные из платины или сплава иридия с радием. Пространство 2 между спиралями и каркасом заполнено порошком окиси алюминия. Крепление спиралей и выводов в каркасе производится глазурью 1.

При применении термометров сопротивления о температуре можно судить по изменению электрического сопротивления его чувствительного элемента, падению напряжения на нем при постоянном токе или значению тока при постоянном напряжении.

Наибольшее распространение получила первая схема, когда изменение сопротивления служит мерой температуры (рис. 2.94). В этом случае терморезистор 1 включают в одну из диагоналей моста последовательно с регулировочным резистором Rv, служащим для приведения к определенному значению сопротивления подводящих проводов. Показания гальванометра 3, включенного в диагональ моста, зависят также от напряжения питания моста, для поддержания постоянства которого в цепь питания включен регулировочный резистор.

Рис. 2.94. Схема включения термометра сопротивления:

1 — терморезистор (термометр сопротивления); 2 — уравнительный резистор RA; 3 — гальванометр; 4 — измерительный мост с резисторами Rv, R2, R3, Я4, RA; 5 — источник питания; 6 — регулировочный резистор Rv

Термоэлектрические термометры состоят из термопары, защитного чехла и соединительной головки, они основаны на термоэлектрических свойствах чувствительного элемента.

Сущность термоэлектрического метода заключается в возникновении электродвижущей силы в спае двух разнородных проводников (например, хромель — копель), температура которого отличается от температуры вторых выводов. Для получения зависимости термоЭДС от одной температуры t2 необходимо температуру t1 поддерживать на постоянном уровне, обычно при 0 или +20 °С. Спай, помещаемый в измеряемую среду, называют горячим, или рабочим, концом термопары, а спай, температуру которого поддерживают постоянной, — холодным, или свободным, концом.

Для увеличения чувствительности термоэлектрического метода измерения температуры в ряде случаев применяют термобатарею: несколько последовательно включенных термопар, рабочие концы которых находятся при температуре t2, а свободные — при известной и постоянной температуре t1.

Основные метрологические характеристики термоэлектрических термометров, их принципиальные схемы, преимущества, недостатки и область применения см. в табл. 2.19.

В качестве термопар (ТП) наиболее часто применяют комбинации материалов, имеющих высокое значение развиваемой термо- ЭДС, стабильность характеристик при различных температурах, воспроизводимость и линейную зависимость термоЭДС от температуры, простоту технологической обработки и получения спая, а именно: хромель-копелевые (TBP)[AJ], хромель-алюмелевые (TXK)[L], платинородий-платиновые (ТХА)[К], вольфрам-рениевые (Tnn)[S] и др. В квадратных скобках приведены условные обозначения номинальных статистических характеристик преобразования. Наиболее точной является термопара ТПП, которая используется в качестве рабочих эталонов и образцовых термометров 1-го, 2-го и 3-го разряда.

Основные характеристики термоэлектрических термометров представлены в табл. 2.20.

Таблица 2.20. Основные характеристики термоэлектрических термометров

Термопара

Градуировка

Химический состав термоэлектрода

Пределы применения, C

Пределы допускаемой погрешности, С, при температуре, С

Источник

Читайте также:  Blood pressure monitor измерение артериального давления

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.