Меню

Два исследователя независимо друг от друга производят измерения



Два исследователя независимо друг от друга производят измерения

(Сообщение отредактировал ProstoVasya 3 нояб. 2009 8:41)

(Сообщение отредактировал ProstoVasya 3 нояб. 2009 8:42) Всего сообщений: 1268 | Присоединился: июнь 2008 | Отправлено: 3 нояб. 2009 8:39 | IP

RKI



Долгожитель

Цитата: STUDENT JURFAKA RGU написал 3 нояб. 2009 1:52

3. Три исследователя независимо друг от друга проводят измерения некоторой физической величины. Вероятность того, что первый исследователь допустит ошибку при считывании показаний прибора 0.1, для второго и третьего исследователей — 0,15 и 0,2 соответственно. Найти вероятность того, что при однократном измерении хотя бы одни из исследователей допустит ошибку.
1)0388; 2)0,333; 3)0,402

не Ai = ,i=1,2,3
P(не A1) = 1 — P(A1) = 1 — 0.1 = 0.9
P(не A2) = 1 — P(A2) = 1 — 0.15 = 0.85
P(не A3) = 1 — P(A3) = 1 — 0.2 = 0.8

P(не A) = P((не A1)*(не A2)*(не A3)) =
= P(не A1)*P(не A2)*P(не A3) =
= (0.9)*(0.85)*(0.8) = 0.612

P(A) = 1 — P(не A) = 1 — 0.612 = 0.388

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 3 нояб. 2009 8:40 | IP
RKI



Долгожитель

Цитата: STUDENT JURFAKA RGU написал 3 нояб. 2009 1:52

5. В урне 2 белых, 3 черных и 5 красных шаров. Три шара вынимаем наугад (без возвращения). Какова вероятность, что все три разного цвета?

Посчитаем число n всевозможных исходов. Всего в урне 2 + 3 + 5 = 10 шаров. Способов вытащить 3 шара из 10 имеющихся
n = C(3;10) = 10!/3!7! = 120.

Посчитаем число m благоприятных исходов. Способов выбрать 1 белый шар из 2 имеющихся
m1 = C(1;2) = 2!/1!1! = 2.
Способов выбрать 1 черный шар из 3 имеющихся
m2 = C(1;3) = 3!/1!2! = 3.
Способов выбрать 1 красный шар из 5 имеющихся
m3 = C(1;5) = 5!/1!4! = 5.
По правилу произведения
m = m1*m2*m3 = 2*3*5 = 30.

По классическому определению вероятности
P(A) = m/n = 30/120 = 0.25

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 3 нояб. 2009 8:49 | IP
RKI



Долгожитель

tanya08

Отредактируйте Ваши задания.
Подставьте Ваши значения m и n.
Запишите нормально формулы.

Всего сообщений: 5184 | Присоединился: октябрь 2008 | Отправлено: 3 нояб. 2009 8:51 | IP
Yulika


Новичок

Помогите пожалуйста с задачами!
1)Вероятность «сбоя» в работе телефонной станции при каждом вызове равна 0,003. Поступило 500 вызовов. Определить вероятность того, что будет более 2 «сбоев». Найти точное значение вероятности и приближенные значения, используя формулы Муавра-Лапласа и Пуассона.

2)Пара игральных костей подбрасывается 1000 раз. Найти вероятность того, что сумма очков равная 12, выпадет не менее 30 раз. Найти точное значение вероятности и приближенное, используя формулу Муавра-Лапласа.

3)В партии из 100000 изделий имеется 500 дефектных. Из партии выбирается для контроля 1000 изделий. Найти вероятность того, что среди них будет от 40 до 60 дефектных. Найти точное значение вероятности и приближенные значения, используя формулы Бернулли (предполагаем, что каждая деталь с равной вероятностью и не зависимо от остальных может оказаться дефектной), Муавра-Лапласа и Пуассона.

4)Каждый из 240 абонентов АТС в любой момент времени может занимать линию с вероятностью 1/40. Каково минимальное число линий должна содержать АТС, чтобы вероятность потери вызова (занятости линии) не превосходила 0,005.

Всего сообщений: 24 | Присоединился: сентябрь 2009 | Отправлено: 3 нояб. 2009 12:53 | IP
STUDENT JURFAKA RGU



Новичок

БОЛЬШОЕ СПАСИБО ЗА ЗАДАЧИ. ПОМОГИТЕ С ПОСЛЕДНЕЙ.

4. Отлитые болванки поступают на обработку из двух цехов: 70% из первого и 30% из второго. При этом болванки первого цеха имеют 10% брака, второго 5%. Найти вероятность того, что взятая наугад болванка:

а) не имеет дефектов и «пришла» из первого цеха (событие С);
б) не имеет дефектов (событие В)

Всего сообщений: 2 | Присоединился: ноябрь 2009 | Отправлено: 3 нояб. 2009 17:55 | IP
asselka


Новичок

Помогите пожалуйста решить эти 2 задачки.
1) СВ Х подчинена нормальному закону с математическим ожиданием, равным 0. Вероятность попадания этой СВ в интервал (-1; 1) равна 0,5. Найти среднее квадратичное отклонение и записать нормальный закон (ответ таков — 1,47)

2) Вероятность появления некоторого события в одном опыте равна 0,6. Какова вероятность того, что это событие появится в большинстве из 60 опытов? (по закону больших чисел. Ответ — 0,966)

Источник

tv_ms_1

Так как события попарно независимы и , также верно .

Обозначим . Выразим через , пользуясь теоремой сложения для трёх несовместных событий:

.

Решив это уравнение относительно , получим .

В таком случае достигает максимального значения (при ).

Если , то, на первый взгляд, . Покажем, что допущение приводит к противоречию. Действительно, при условии, что ; или, так как , при условии, что . Отсюда .

Итак, наибольшее возможное значение .

Вероятность отказа первого элемента равна 0,1,второго —

То есть =0,1, =0,15, =0,2

=0,9, =0,85, =0,8

Тока в цепи не будет, если откажет хотя бы один элемент

То есть нужно использовать формулу появления хотя бы одного события (P(A)=1-*…*)

Значит, искомая вероятность равна 0,388

(P(A)=1-**=1-(0,9*0,85*0,8)=0,388)

Устройство содержит два независимо работающих элемента. Вероятности отказа элементов соответственно равны 0,05 и 0,08. Найти вероятность отказа устройства, если для этого достаточно, чтобы отказал хотя бы один элемент.

Решение: Вероятность того, что откажет 1й элемент, 2й элемент или оба, обратна вероятности того, что ни один не откажет, т.е.:

Для разрушения моста достаточно попадания одной авиационной бомбы. Найти вероятность того, что мост будет разрушен, если на него сбросить четыре бомбы, вероятности попадания которых соответственно равны: 0,3; 0,4; 0,6; 0,7.

Решение: При последовательном сбрасывании четырех бомб мост будет разрушен (событие А), если в него попадет хотя бы одна бомба. Следовательно, искомая вероятность равна:

Три исследователя, независимо один от другого, производят измерения некоторой физической величины. Вероятность того, что первый исследователь допустит ошибку при считывании показаний прибора, равна 0,1. Для второго и третьего исследователей эта вероятность соответственно равна 0,15 и 0,2. Найти вероятность того, что при однократном измерении хотя бы один из исследователей допустит ошибку.

Вероятность того, что при однократном измерении хотя бы один из исследователей допустит ошибку равна:

Вероятность успешного выполнения упражнения

для каждого из двух спортсменов равна 0,5. Спортсмены

выполняют упражнение по очереди, причем каждый делает

по две попытки. Выполнивший упражнение первым полу-

получает приз. Найти вероятность получения приза спорт-

Решение. Для вручения приза достаточно, чтобы хотя бы

одна из четырех попыток была успешной. Вероятность успешной

попытки р = 0,5, а неуспешной q=1 — 0,5 = 0,5. Искомая вероятность

Р = 1 — q^4 = 1 —0,5^4 =0,9375.

Вероятность попадания в мишень каждым из двух стрелков равна 0,3. Стрелки стреляют по очереди, причем каждый должен сделать по два выстрела. Попавший в мишень первым получает приз. Найти вероятность того, что стрелки получат приз.

Решение. Для получения приза достаточно, чтобы хотя бы одна из четырех попыток была успешна. Вероятность успешной попытки p=0,3 , неуспешной q=1-p=0,7. Тогда искомая вероятность будет равна P=1-q*q*q*q=1-≈0,76

Вероятность хотя бы одного попадания стрелком в мишень при трех выстрелах равна 0,875. Найти вероятность попадания при одном выстреле.

Вероятность попадания в мишень хотя бы при одном из трех выстрелов (событие А) равна

Р(А)=1-q3, где q — вероятность промаха. По условию, P (A) = 0,875. Следовательно,

0,875=1—q3, или q3 = 1—0,875 = 0,125.

Отсюда q= =0,5.

Искомая вероятность р = 1— q = 1—0,5 = 0,5.

Вероятность хотя бы одного попадания в цель при четырех выстрелах равна 0,9984. Найти вероятность попадания в цель при одном выстреле.

Вероятность попадания в мишень хотя бы при одном из трех выстрелов (событие А) равна

Р(А)=1-q4, где q — вероятность промаха. По условию, P (A) = 0,9984. Следовательно,

0,9984=1—q4, или q4 = 1—0,9984= 0,0016.

Отсюда q= =0,2.

Искомая вероятность р = 1— q = 1—0,2 = 0,8.

Многократно измеряют некоторую физическую величину. Вероятность того, что при считывании показаний прибора допущена ошибка, равна . Найти наименьшее число измерений, которое необходимо произвести, чтобы с вероятностью можно было ожидать, что хотя бы один результат измерений окажется неверным.

Вероятность хотя бы одной ошибки из считываний равна , где , и — вероятность ошибки при одном считывании. Из условия получим:

; ; ;

Следовательно, искомое число измерений равно , где – целая часть числа

В урну, содержащую два шара, опущен белый шар, после чего из нее наудачу извлечен один шар. Найти вероятность того, что извлеченный шар окажется

белым, если равновозможны все возможные предположения о первоначальном составе шаров (по цвету).

Обозначим через А событие — извлечен белый шар. Возможны следующие предположения о первоначальном составе шаров: В1 — белых шаров нет, В2 — один белый шар, В3 — два белых шара.

Поскольку всего имеется три гипотезы, причем по условию они равновероятны, и сумма вероятностей гипотез равна единице (так как они образуют полную группу событий), то вероятность каждой из гипотез равна 1/3, т. е. P(B1) = P(B2) = P(B3) =

Вероятность того, что будет извлечен белый шар, при условии, что первоначально в урне не было белых шаров, . Если в урне был один белый шар, то . Условная вероятность того, что будет извлечен белый шар, при условии, что в урне было два белых шара

Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

Ответ: P(A)=

В урну, содержащую n шаров, опущен белый шар, после наудачу извлечен один шар. Найти вероятность того что извлеченный шар окажется белым, если равновозможны все возможные предположения о первоначальном составе шаров по цвету.

Обозначим через А событие — извлечен белый шар. Возможны следующие предположения о первоначальном составе шаров: В1- 1 белый шар, В2- 2 белых шара. Вn-n белых шаров. Поскольку всего имеется n гипотез, причем по условию они равновозможны и сумма вероятностей равна единице, то вероятность каждой гипотезы равна . По гипотезе В1 условная вероятность вытащить белый шар равна , по гипотезе В2 условная вероятность вытащить белый шар равна … по гипотезе Вn условная вероятность вытащить белый шар равна .

Искомую вероятность того, что будет извлечен белый шар, находим по формуле полной вероятности:

В вычислительной лаборатории имеется шесть клавишных автоматов и четыре полуавтомата. Вероятность того, что за время выполнения некоторого расчета автомат не выйдет из строя, равна ; для полуавтомата эта вероятность равна . Студент производит расчет на наудачу выбранной машине. Найти вероятность того, что до окончания расчета машина не выйдет из строя.

Обозначим через событие – произведен расчет на наудачу выбранной машине. Возможны следующие гипотезы в данном эксперименте: — расчет производится на клавишном автомате, — расчет производится на полуавтомате.

Так как имеется 6 клавишных автоматов и 4 полуавтомата, то вероятность того, что произойдет гипотеза , равна . А вероятность того, что произойдет гипотеза , равна .

Условная вероятность того, что клавишный автомат не выйдет из строя, равна , т.е . А условная вероятность того, что полуавтомат не выйдет из строя, равна , т.е .

Искомая вероятность того, что до окончания эксперимента машина не выйдет из строя, находим по формуле полной вероятности:

В пирамиде пять винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок произведет один выстрел из наудачу взятой винтовки.

A – стрелок поразит мишень

В1 – взятая наудачу винтовка снабжена оптическим прицелом

В2 – взятая наудачу винтовка без оптического прицела

Следовательно, по условию, вероятность события А при условии события В1: , а вероятность события А при условии события В2: .

В свою очередь вероятность события В1: , т.к. всего винтовок 5, а благоприятствуют событию 3 винтовки. Аналогично .

Пользуясь формулой полной вероятности , получим:

Задание: В ящике содержится 12 деталей, изготовленных на заводе № 1, 20 деталей —на заводе № 2 и 18 деталей— на заводе № 3. Вероятность того, что деталь, изготовленная на заводе № 1, отличного качества, равна 0,9; для деталей, изготовленных на заводах N° 2 и № 3, эти вероятности соответственно равны 0.6 и 0,9. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества.

Решение: Обозначим через A событие – извлечена деталь отличного качества. Возможно три варианта гипотезы: – извлечена деталь отличного качества, изготовленная заводе №1; – извлечена деталь отличного качества, изготовленная заводе №2; – извлечена деталь отличного качества, изготовленная заводе №3. По условию . Найдём вероятности того, что извлечённая деталь изготовлена на заводе №1, №2, №3.

где — общее число изготовленных на 3-х заводах деталей, – количество деталей изготовленных, соответственно, на заводах №1, 2, 3.

Искомая вероятность вероятность того, что извлеченная наудачу деталь окажется отличного качества находится по формуле полной вероятности:

В первой урне содержится 10 шаров, из них 8 белых; во второй урне 20 шаров, из них 4 белых. Из каждой урны наудачу извлекли по одному шару, а затем из этих двух шаров наудачу взят один шар. Найти вероятность того, что взят белый шар.

Обозначим через событие – извлечён белый шар. Возможны следующие гипотезы:

— белый шар взят из первой урны,— белый шар взят из второй урны.

Поскольку всего имеется две гипотезы, причём по условию они равновероятны, и сумма вероятностей гипотез равна единице(т.к. они образуют полную группу событий), то вероятность каждой из гипотез равна , т.е. .

Условная вероятность того, что белый шар будет извлечён из первой урны равна: =

Условная вероятность того, что белый шар будет извлечён из второй урны равна: =

По формуле полной вероятности находим:

В каждой из трех урн содержится 6 черных 4 белых шара. Из первой урны наудачу извлечен один шар и переложен во вторую урну, после чего из второй урны наудачу извлечен один шар и переложен в третью урну. Найти вероятность того, что шар, наудачу извлеченный из третьей урны, окажется белым.

A1 – вероятность того, что из первой урны извлечен белый шар.

A2 – вероятность того, что из первой урны извлечен черный шар.

B1 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну белый шар.

B2 – вероятность того, что из второй урны извлечен белый шар, после того как из первой урны переложили во вторую урну черный шар.

C1 – вероятность того, что из второй корзины будет извлечен белый шар.

C2 – вероятность того, что из второй корзины будет извлечен черный шар.

D1 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну белый шар.

D2 – вероятность того, что из третьей урны извлечен белый шар, после того как из второй урны переложили в втретью урну черный шар.

E – вероятность того, что из третьей урны будет извлечен белый шар.

Вероятности того, что во время работы цифровой электронной машины произойдет сбой в арифметическом устройстве, в оперативной памяти, в остальных устройствах,

относятся как 3:2:5. Вероятности обнаружения сбоя в арифметическом устройстве, в оперативной памяти и в остальных устройствах соответственно равны 0,8; 0,9; 0,9. Найти вероятность того, что возникший в машине сбой будет обнаружен.

Решение: Пусть А – событие того, что сбой будет обнаружен, тогда из формулы полной вероятности следует, что:

PA= PB1PB1A+PB2PB2A+PB3PB3A= 0,3*0,8+0,2*0,9+0,5*0,9=0,87.

Обозначим через А событие – деталь отличного качества

Можно сделать два предположения

-деталь произведена первым автоматом (так как производительность первого автомата вдвое больше второго автомата, то Р()=2/3)

-деталь произведена вторым автоматом (Р()=1/3)

Условная вероятность, что она будет отличного качества, если она произведена первым автоматом (A)=0,6

Условная вероятность, что она будет отличного качества, если она произведена первым автоматом (A)=0,84

Вероятность того, что наудачу взятая деталь окажется отличного качества, по формуле полной вероятности равна

P(A)=Р()*(A)+ Р()*(A)=2/3*0.6+1/3*0.84=0.68

Вероятность того, что взятая отличная деталь произведена первым автоматом, по формуле Бейеса равна

()===

Ответ:

В пирамиде 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Что вероятнее: стрелок стрелял из винтовки с оптическим прицелом или без него?

Решение: Обозначим событие А – стрелок поразил мишень и гипотезы: B1 – стрелок выбрал винтовку с оптическим прицелом, B2 – без оптического прицела. Тогда . Условные вероятности попадания из винтовки с оптическим прицелом и без: . Вычислим вероятность попадания из наудачу взятой винтовки:

Теперь, воспользовавшись формулой Бейеса, получим ответ:

Ответ: Стрелок вероятнее всего стрелял из винтовки без оптического прицела.

Число грузовых автомашин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе как 3:2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина.

Решение: Обозначим через А событие—подъезд автомобиля к заправке. Можно сделать два предположения: —проехал грузовой автомобиль, причем =3/5; — проехал легковой автомобиль, причем = 2/5.

Условная вероятность, что проезжающий грузовой автомобиль подъедет на заправку: = 0,1 . Для легкового: = 0,2.

Вероятность того, что проезжающий автомобиль подъедет на заправку, по формуле полной вероятности равна Р(А) = + = 3/5 0,1 + 2/5 0,2 = 0,14

Искомая вероятность того, что подъехавший к заправке автомобиль будет грузовым, по формуле Бейеса равна = = = 3/7

Две перфораторщицы набили на разных перфораторах по одинаковому комплекту перфокарт. Вероятность того, что первая перфораторщица допустит ошибку, равна 0,05; для второй перфораторщицы эта вероятность равна 0,1. При сверке перфокарт была обнаружена ошибка. Найти вероятность того, что ошиблась первая перфораторщица. (Предполагается, что оба перфоратора были исправны.)

Обозначим через событие А – ошибку перфораторщицы. Тогда, – ошибка сделана первой перфораторщицей, — ошибка сделана второй перфораторщицей. Причем P()=0,5 и P()=0,5, т.к. обе работали одинаково.

Условная вероятность того, что первая перфораторщица допустит ошибку, равна (A)=0,05;

Условная вероятность того, что вторая перфораторщица допустит ошибку, равна (A)=0,1.

Вероятность того, что наудачу взятая перфокарта, окажется с ошибкой равна, по формуле полной вероятности равна:

P(A)= P()*(A)+ P()*(A)=0,5*0,05+0,5*0,1=.

Искомая вероятность того, что взятая перфокарта произведена первой перфораторщицей, по формуле Бейеса равна:

===.

В специализированную больницу поступают

в среднем 50% больных с заболеванием К, 30%—с за-

заболеванием L, 20%—с заболеванием М- Вероятность

полного излечения болезни К равна 0,7; для болезней L

и М эти вероятности соответственно равны 0,8 и 0,9.

Больной, поступивший в больницу, был выписан здоро-

здоровым. Найти вероятность того, что этот больной страдал

Больные поступают в больницу в разном процентном соотношении. Р(k)= 0.7, P(L)=0.3,P(M)= 0.2, где K,L,M – заболевания, а Р(Х)- вероятность поступления с данным заболеванием.Тогда Pk(A)=0.7, Pl(A)=0.8 ,Pm(A)=0.9 это вероятность полного излечения от данного заболевания. Чтобы найти вероятность что Больной, поступивший в больницу, был выписан здоровым надо найти :

Источник

Читайте также:  Назовите основные единицы измерения информации чему равен 1 бит

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.