Меню

Электрический заряд прошедший через участок цепи обозначение единица измерения формула



Электрический заряд, напряжение, напряженность, потенциал

Любой физический объект в окружающем нас мире состоит из огромного количества элементарных частиц, обладающих зарядами. Элементарная частица протон имеет элементарный электрический заряд, которому приписывают (условно) положительный знак, элементарная частица электрон имеет элементарный отрицательный заряд.

Содержание:

Электрический заряд

Под электрическим зарядом понимают физическую величину, которая характеризует способность тел (объектов) вступать в электрическое взаимодействие. Электрический заряд обозначается через q (иногда для обозначения используют заглавную букву Q) и в Международной системе единиц (СИ) измеряется в Кулонах, [Кл].

Электрический заряд – дискретная величина, кратная элементарному электрическому заряду одного электрона (по модулю) e = 1,60217*10 -9 Кл.

где N – целое число.

С физической точки зрения 1 кулон [Кл] соответствует электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 Ампер за 1 секунду.

Заряды существуют в двух видах: положительные (+) и отрицательные (-). Одноименные заряды отталкиваются, а разноименные – притягиваются.

Сила взаимодействия зарядов направлена вдоль прямой, соединяющей их, пропорциональна величине зарядов и обратно пропорциональна квадрату расстояния между ними (рисунок 1).

Рис. 1. Сила взаимодействия зарядов

где k – коэффициент пропорциональности, зависящий от выбора системы единиц;

– единичный вектор, направленный вдоль прямой, соединяющей заряды q1 и q2.

Силу взаимодействия двух зарядов принято называть кулоновской силой в честь ученого-физика Шарля Кулона, обнаружевшего ее существование.

Если объект (система) не обменивается зарядами с окружающей средой, его называют электрически изолированным. В такой системе сумма электрических зарядов (положительных и отрицательных) не меняется со временем, то есть наблюдается закон сохранения заряда.

Большинство тел в природе электрически нейтральны, так как содержат заряды обоих типов в одинаковом количестве. Положительные и отрицательные заряды попарно нейтрализуют действие друг друга. Для перехода тела в заряженное состояние необходимо пространственно перераспределить в нем заряды, сконцентрировав одноименные заряды в одной области тела. Это возможно сделать, например, при помощи трения или взаимодействия с другим заряженным объектом (рисунок 2).

Рис. 2. Переход незаряженного объекта в заряженное состояние

Электрический заряд порождает в окружающем его пространстве непрерывную материю, называемую электрическим полем. Благодаря электрическому полю заряды имеют возможность взаимодействовать между собой. В электротехнике электрическое поле характеризуется двумя величинами: напряженностью (силовая характеристика) и потенциалом (энергетическая характеристика).

Напряженность электрического поля

Напряженность электрического поляэто векторная физическая количественная характеристика электрического поля. Ее величина показывает силу, которая действует на пробный точечный единичный положительный заряд, помещенный в некоторую точку электрического поля.

Под точечным зарядом понимают упрощенную модель положительного заряда, в которой его формой и размером можно пренебречь.

Вектор напряженности по направлению совпадает с вектором силы , с которой электрическое поле действует на положительный точечный заряд, помещенный в заданную точку поля (рисунок 3).

Рис. 3. Вектор напряженности E , созданной зарядом q, в точке А

Величина напряженности поля в точке А определяется согласно формуле

где r – расстояние от заряда q до точки А, k – коэффициент пропорциональности, зависящий от выбора системы единиц.

Электрическое поле графически изображается линиями напряженности электрического поля, которые условно принято обозначать исходящими из положительно заряженных элементов и входящими в отрицательно заряженные заряды (рисунок 4).

а) изолированные заряды б) взаимодействующие заряды

Рис. 4. Распределение линий напряженности для изолированных (а) и взаимодействующих (б) зарядов

Потенциал, напряжение

Физическую величину, равную отношению потенциальной энергии W электрического заряда в электростатическом поле к величине самого заряда q, называют потенциалом φ электрического поля

Потенциал – это скалярная величина, которая показывает, какую работу способно затратить поле, чтобы переместить единичный пробный положительный заряд в бесконечно удалённую точку. Единицей измерения электрического потенциала является вольт, [В].

При этом важно отметить, что работа сил электростатического поля при перемещении заряда из одной точки электрического поля в другую не зависит от формы траектории перемещения, а зависит только от начального и конечного положения заряда, а также от его величины.

Если имеется некоторая система, состоящая из N точечных зарядов, то потенциал ее электрического поля φ будет равен алгебраической сумме потенциалов полей каждого входящего в него заряда, то есть

Напряжение электрического поля – это разность потенциалов между двумя точками этого поля (рисунок 5).
Напряжение (U) — это работа (А) совершаемая силой поля по перемещению заряженных частиц между двумя точками поля.

U = A/q [Дж/Кл] или [В]

Читайте также:  Градусники для измерения температуры детского питания

Рис. 5. Графическая интерпретация напряжения электрического поля

Напряжение является относительной величиной, то есть всегда определяется относительно некоторого уровня. Нулевой уровень выбирается произвольно и не влияет на итоговое значение напряжения, так как соответствует разности потенциалов в двух точках (то есть изменению потенциальной энергии). Для простоты расчетов в качестве нулевого уровня в большинстве случаев принимают потенциал заземленного проводника или земли.
Как уже было отмечено ранее электрическое напряжение – это разность потенциалов двух точек, следовательно его значение определяется по формуле

В системе СИ за единицу измерения напряжения принимается вольт, [В]. Физически величина напряжения, равная 1 вольту, соответствует работе 1 джоуль при перемещении заряда в 1 кулон.

Источник

Что такое электрический заряд и каковы его свойства?

Научное обоснование многих электрических явлений стало возможным благодаря опытам Кулона, на основании которых учёный ввёл термин «точечный электрический заряд». Исследуя природу электризации, французский физик с помощью изобретённых им крутильных весов, открыл закон взаимодействия точечных зарядов, известный нам как закон Кулона.

Впоследствии этот основополагающий закон помог учёным сформировать представление о строении атомов, объяснить природу электричества. Это способствовало созданию источников электрического тока, без которого современного уровня научно-технического прогресса не удалось бы достигнуть.

История

На существование электрических зарядов обращали внимание мыслители ещё до нашей эры. Однако они не способны были объяснить их природу и, тем более, описать взаимодействие.

Прошло много веков до того момента, когда учёные вплотную занялись изучением электрических явлений, что и привело их к открытиям в данной области. В частности Уильям Гильберт ещё в XVI веке, не понимая природы электричества, называл наэлектризованными тела, которые притягивали другие вещества.

В 1729 году, наблюдая за электризацией различных тел, Шарль Дюфе пришёл к выводу о существовании зарядов двух видов, которые называл «стеклянными» (так как они проявляли себя на стеклянной палочке) и «смоляными» (возникающими при электризации смол). Позже Бенджамином Франклином понятия «стеклянные» и «смоляные» были заменены на более общие термины: «положительные» и «отрицательные». Данными терминами мы пользуемся по сегодняшний день.

Несмотря на то, что эти исследователи понимали факт распределения зарядов, они не смогли объяснить природу явления. Вплотную приблизился к пониманию элементарных частиц как носителей зарядов учёный-физик Ш. Кулон. Придуманный им термин «точечный заряд» помог учёному понять взаимодействие элементарных частиц, что привело его к открытию закона.

На основании своего открытия, физик уже мог объяснить причину взаимодействия точечных заряженных тел (см. рис. 1).

Рис. 1. Взаимодействие наэлектризованных тел

Дискретность (неделимость) элементарных заряженных частиц доказал Роберт Милликен. Учёный подтвердил, что заряженное тело содержит целое число элементарных частиц. Он пришёл к выводу, что делимость заряда имеет предел. Носителем элементарного заряда является электрон.

На рисунке 2 изображён опыт, подтверждающий делимость заряда. Опыт показывает, что деление кратно, это наталкивает на мысль о существовании элементарных частиц.

Рис. 2. Делимость заряда

Целостная картина сложилась после обнародования предложенной Резерфордом наглядной планетарной модели атома. Модель предполагает, что атом состоит из ядра, вокруг которого вращаются электроны. Это довольно упрощённая модель, но она уже объясняла многие электрические процессы, включая электризацию тел.

Рис. 3. Современная интерпретация планетарной модели атома

Что такое электрический заряд?

Данный термин обозначает то, что заряженное тело способно создавать электрическое поле. В более широком значении, зарядом называют количество электричества – скалярную величину, являющейся источником электромагнитного поля, участвующую в процессах электромагнитных взаимодействий. Электрический заряд не может существовать без носителя.

Элементарными носителями отрицательных зарядов являются электроны. Антиподом электрона является позитрон – устойчивая античастица, равная по массе электрону, но со знаком «+». Существует ещё одна устойчивая, положительно заряженная элементарная частица – протон.

Частицы, заряжены дробными частями (кварки), могут существовать только в составе адронов, поэтому их не считают носителями.

Заряженные протоны, из которых состоит ядро атома, тесно связаны ядерными силами. Они не могут свободно вырываться с ядра атома. Поэтому в качестве свободных носителей положительного заряда принято считать ион – атом, с орбиты которого удалился электрон. Образование отрицательных ионов происходит за счёт присоединения к ним свободных электронов.

Заряженность нейтральных атомов и молекул нулевая, а число положительных и отрицательных ионов в ячейках кристаллических решёток скомпенсировано. Поэтому тела в обычных условиях электростатически нейтральны. Между нейтральными атомами взаимодействие отсутствует.

Читайте также:  Прибор для электрика измерения электричество

Свойства

Установлено, что неподвижный заряд q неразрывно связан с электрическим полем, представителем особого вида материи. Поле является материальным носителем взаимодействия между элементарными частицами. Это свойство поля проявляется даже в случае отсутствия вещества между взаимодействующими телами.

Электрическое поле действует с силой F на пробный заряд q′, расположенный в любой точке поля.

характеризует действие электричества и называется напряженностью поля. Линии, касательные к которым совпадают с вектором напряжённости, образуют линии напряжённости. Густота линий напряжённости определяет величину напряжённости.

Линии напряженности электростатического поля точечного заряда представляют собой лучи, выходящие из одной точки (для положительного) или входящего в точку (для отрицательного) (см. рис. 4).

Рис. 4. Линии напряжённости поля

Электростатическое взаимодействие электромагнитных полей можно наблюдать на поведении заряженных шариков. Если эбонитовую или стеклянную палочку наэлектризовать трением и приблизить её к крохотным бузиновым шарикам, то мы увидим, как в результате силовых взаимодействий частицы отталкиваются (если они одинаковых знаков), либо притягиваются (разнознаковые).

Насыщение свободными носителями зарядов различных веществ не одинаково. Больше всего свободных электронов содержится в металлах. Поскольку заряженные электроны способны перемещаться под действием электрического поля, они являются основными транспортировщиками электрического тока в металлах. При этом движения электронов не приводит к каким-либо химическим изменениям.

Перенос зарядов в расплавленных солях или в растворах кислот осуществляется ионами. Они могут быть заряжены как положительно, так и отрицательно. В отличие от металлов, перераспределение зарядов в этих жидкостях сопровождается химическими реакциями. Поэтому растворы называют проводниками второго рода, то есть такими, которые под действием постоянных токов приводят к изменению химического состава вещества.

Таким образом, вещества условно подразделяют по типу проводимости:

  • проводники первого рода (металлы);
  • проводники второго рода (соляные, щелочные и кислотные растворы);
  • полупроводники (электронно-дырочная проводимость);
  • диэлектрики (вещества не способные проводить электричество из-за отсутствия свободных носителей).

Единица измерения

Единицей измерения заряда в международной системе СИ принято 1 кулон – совокупный заряд элементарных частиц, преодолевающих сечение проводника с током в 1 А, за единицу времени (секунду). Это огромная величина. Силу взаимодействия величиной в 1 Кл на расстоянии 1 м можно сравнить с действием гравитационного притяжения Землёй тела, массой 1 млн. т (9 × 10 9 Н).

Взаимодействие зарядов

Многочисленные опыты показали, что заряженные элементарные частицы взаимодействуют между собой. Носители одноименных зарядов отталкиваются, а носители разноименных зарядов – притягиваются (см.рис. 5).

Рис. 5. Взаимодействие элементарных частиц

Силу взаимодействия точечных зарядов определяют по формуле, вытекающей из закона Кулона: F = (k*q1*q2)/r 2 , где q1 и q2 –две заряженные точки, расположенные на расстоянии r, а k – коэффициент, размерность которого зависит от выбранной системы измерений, а значение – от свойств окружающей среды. Закон Кулона – один из фундаментальных законов физики.

Рис. 6. Интерпретация закона кулона

Закон сохранения электрического заряда

Экспериментально установлено, что в замкнутой системе выполняется один из основополагающих законов физики – закон сохранения. В изолированной системе суммарный заряд не исчезает, а сохраняется во времени. Кроме того, он квантуется, то есть изменяется порциями, кратными заряду элементарной частицы.

Алгебраическая сумма зарядов – величина постоянная: q1 + q2 + … + qn = const (см. рис. 7).

Рис. 7. Сохранение статического электричества

Закон сформулирован Б.Франклином (1747 г.) и подтверждён М. Фарадеем в 1843 г.

Способы измерения

Самый простой прибор для измерения – электроскоп. Он состоит из двух лепестков из фольги, расположенных на металлическом стержне. Конструкция накрыта стеклянным колпаком.

Если наэлектризованным телом прикоснуться к стержню, то лепестки наэлектризуются. Поскольку знаки на них одинаковые, то кулонова сила оттолкнёт их в разные стороны. По величине угла отклонения можно оценить величину статического электричества поступившего на лепестки.

Более сложный прибор – электрометр (схематическое изображение на рис. 8). Прибор состоит из стержня электрометра, стрелки и шкалы. Принцип действия аналогичен электроскопу (стрелка отталкивается от стержня). Благодаря наличию шкалы отклонение стрелки электрометра показывает количественную величину переданного электричества.

Рис. 8. Схематическое изображение электрометра

Мы уже упоминали, что Кулон в своих опытах пользовался крутильными весами. Этот измерительный прибор позволил учёному открыть знаменитый закон, названный в честь его имени.

Источник

Особенности формулы заряда q

Время на чтение:

Электрический заряд – это основа работы любого электронного прибора и та величина, без которой невозможно посчитать ни один важный показатель в электродинамике и электростатике. Подробная расшифровка термина, описание формулы нахождения электрического заряда и образец решения типовой задачи приведены в данной статье.

Читайте также:  Нитяным дальномером можно измерить

Что такое электрический заряд q

Электрический заряд, обозначаемый в международной системе единиц буквами q и Q, считается скалярной физической величиной, которая определяет свойство частицы или тела выступать в качестве источника электромагнитного поля и вступать в прямое взаимодействие с ним. В физике существует несколько видов электромагнитных заряженных частиц, и они называются положительными или отрицательными. Обе единицы измеряются в Кулонах, а найти их можно путём вычисления произведения одного Ампера с одной секундой.

Понятие из учебного пособия

Формула нахождения заряда

Определить искомую величину можно из физико-математической формулы силы тока. В соответствии с ней, нужно перемножить силу тока на время его прохождения по проводнику. Количество заряда можно узнать через формулу +-ne, где n служит целым числом, а е равно значению = -1,6*10^-19 Кулон.

Обратите внимание! Формула заряда является следствием прямой зависимости напряженности электромагнитного поля от потенциала его частицы, что является основным правилом нахождения емкости заряженного конденсатора и величины энергии, накопленной в нём. Кроме того, вычислить количество заряда можно через силу Лоренца.

Как вычислять с помощью законов

Поскольку q и Q являются скалярными единицами, вычислить их с помощью законов можно через точные формулы, выведенные известными учеными-физиками. К примеру, в соответствии с законом Кулона, можно найти величину и силовое направление взаимодействия заряженных частиц между несколькими неподвижными телами.

Закон сохранения

Все элементарные частицы подразделяются на нейтральные или заряженные. Они вступают во взаимодействие друг с другом внутри электромагнитного поля. Частицы, которые имеют одноименный электрон, отталкиваются, а разноименный – притягиваются. В первом случае наблюдается избыток электронов, а во втором – их недостаток. Оба типа частиц заряжаются посредством электризации. На практике, при возникновении данного явления, заряженные частицы равны по модулю, несмотря на противоположность знаков. Когда разные частицы притягиваются, то между ними происходит электризация и сохранение электрона. При этом, сумма всех изолированных системных частиц не изменяется, то есть, q + q + q…= const.

Закон сохранения

Закон Кулона

Выше было сказано, что электрические заряженные микрочастицы бывают как положительными, так и отрицательными, а их наличие подтверждается силовым взаимодействием, которое с помощью экспериментов на весах описал в 1785 году О. Кулон, создав свой физико-математический закон.

Закон Кулона представляет собой физическую закономерность, которая описывает взаимодействие наэлектризованных частиц между не электризованными, в зависимости от промежутка между ними. В соответствии с этой формулировкой, чем больше электронов имеет частица, тем ближе она расположена к другой элементарной единице заряда, и, соответственно, сила возрастает.

Обратите внимание! При увеличении расстояния между частицами, сал их взаимодействия неизменно убывает. В математической формуле это выглядит так: F1 = F2 = K*(q1*q2/r2), где q1 и q2 считаются модулями заряженных микрочастиц, k является коэффициентом пропорциональности, который зависит от системного выбора единицы, а r — расстоянием.

Образец решения задач по теме «Электрический заряд»

Ниже приведены образцы решения простых задач по электростатике, в частности, на закон Кулона.

Задача 1. Несколько одинаковых заряженных шаров имеют показатели q1 = 6 микрокулон и q2 = -18 микрокулон. Они располагаются друг от друга на 36 сантиметров (0,36 метров). Насколько будет меняться сила их взаимодействия при соприкосновении друг с другом и разведении в сторону?

Чтобы решить эту задачу, нужно воспользоваться эл заряд формулой F=K*(q1*q2/r2), подставив вместо букв известные величины. В результате, выйдет число 7,5.

Задача 2. Маленькие одинаковые шары находятся на промежутке в 0,15 метра и притягиваются с силой 1 микроньютон. Задача состоит в определении первоначальных зарядов шаров.

Чтобы решить вторую задачу, нужно использовать ту же формулу Кулона, но немного видоизмененную: F=kq2/r2. Затем вывести из правила показатель q2. Он будет равен Fr2/k. Подставив известные значения и выполнив несложные расчеты, получится цифры в 10^-7 или 10 микрокулон.

Формула для решения

В целом, электрический заряд представляет собой физическую скалярную величину, которая определяет способность тел являться источником электромагнитного поля и участвовать во взаимодействии с ним. Отыскать величину, которая обозначается буквами q и Q, для решения задач или для выполнения другой работы, можно через закон сохранения, Кулона и представленные выше основные физические формулы.

Источник