Меню

Эратосфен измерил длину окружности



Как измерить окружность Земли?

Игорь Шкурин нашел:

Меня периодически посещает ощущение что многие простые вещи специально излагаются так, чтобы читатель ничего не понимал и тупо заучивал, либо прочувствовал свою ничтожность перед изощренностью науки. Это всецело относится к известному по школьным учебникам феерическому способу Эратосфена измерения окружности земного шара. Может быть он на самом деле вычислял таким извращенским способом, но зачем этот бред тиражировать со школы?

О том, как можно запудрить мозги в простом вопросе, посмотрим на примере вычисления длины окружности Земли в морских милях, который является частным случаем измерения широты местности и длины пройденного пути по меридиану.

Если современному человеку дать задачу вычислить длину окружности Земли в морских милях, он в подавляющем большинстве случаев заглянет в интернет/справочники и решит примерно так: длину окружности Земли например по парижскому меридиану 40.000 км с помощью калькулятора разделит на современную морскую милю 1,852 км и получит 21.598,3 морских миль, что будет близко к действительности.

Теперь покажу как вычислить длину окружности Земли в уме и абсолютно точно. Для этого надо знать только одно: «Морская миля — единица измерения расстояния, применяемая в мореплавании и авиации.Первоначально морская миля определялась как длина дуги большого круга на поверхности земного шара размером в одну угловую минуту.» via

В одном угловом градусе 60 минут, в окружности — 360 градусов, то есть в окружности 360х60=21.600 угловых минут, что в данном случае соответствует длине окружности земного шара в 21.600 морских миль. И это — абсолютно точно, поскольку длина окружности земного шара по меридиану является эталоном, а угловая минута-миля — производная единица. Поскольку Земля — не идеальный сфероид, а слегка кривоватый, то мили на разных меридианах будут немного отличаться друг от друга, но это совершенно неважно для навигации, ибо угловая минута — она и в Африке угловая минута.

Широту местности с точностью до градусов вполне можно измерить даже примитивными приспособлениями вроде транспортира с отвесом, который не сильно отличается от реально применявшегося моряками квадранта и по существу то же самое что и астролябия:

Для более точных измерений углов впоследствии был изобретен секстант (мор. арго — секстан):

Современные люди слабо представляют себе что такое аналоговые вычислительные машины и как ими пользоваться. Для того, чтобы вычислить расстояние между двумя точками в меридиональном направлении, надо всего лишь измерить широты точек, аразность широт выраженная в угловых минутах и будет расстоянием между ними в морских милях. Все просто, удобно и практически применимо.

Если уж так сильно хочется выяснить сколько в морской миле стадий, саженей, аршинов или там египетских локтей, надо аккуратно на коленках промерить ими расстояние между точками с известным расстоянием в морских милях-угловых минутах. Но зачем? Как это практически применимо?

Эратосфен будто бы измерял углы с точностью до угловых секунд и разница широт Александрии составила у него 7° 6,7′, то есть 7х60=420+6,7=426,7 морских миль (угловых минут). Кажется, что еще надо? Но ему почему-то требуются дни пути верблюдов и стадии. Возникает ощущение чего-то надуманного — фейка или розыгрыша.

Метод Эратосфена согласно В. А. Бронштейн, Клавдий Птолемей, Гл.12. Работы Птолемея в области географии:

«Как известно, метод Эратосфена заключался в определении дуги меридиана между Александрией и Сиеной в день летнего солнцестояния. В этот день, по рассказам лиц, посещавших Сиену, Солнце в полдень освещало дно самых глубоких колодцев и, значит, проходило через зенит. Следовательно, широта Сиены равнялась углу наклона эклиптики к экватору, который Эратосфен определил в 23°51’20». В тот же день и час в Александрии тень от вертикального столбика гномона закрывала 1/50 часть окружности, центром которой служил кончик гномона. Это значит, что Солнце отстояло в полдень от зенита на 1/50 часть окружности, или на 7° 12′. Приняв расстояние между Александрией и Сиеной равным 5000 стадиев, Эратосфен нашел, что окружность земного шара равна 250 000 стадиев. Вопрос о точной длине стадия, принятого Эратосфеном, долгое время служил предметом дискуссий, поскольку существовали стадии длиной от 148 до 210 м . Большинство исследователей принимали длину стадия 157,5 м («египетский» стадий). Тогда окружность Земли равна, по Эратосфену, 250 000-0,1575 = 39 375 км, что очень близко к действительному значению 40 008 км. Если же Эратосфен пользовался греческим («олимпийским») стадием длиной185,2 м, то получалась окружность Земли уже 46 300 км.

По современным измерениям широта Музея в Александрии 31°11,7′ широта Асуана (Сиены) 24° 5,0′, разница широт 7° 6,7′, чему соответствует расстояние между этими городами 788 км. Деля это расстояние на 5000, получим длину стадия, использованного Эратосфеном, 157,6 м. Значит ли это, что он использовал египетский стадий?

Этот вопрос сложнее, чем может показаться.Уже одно то, что Эратосфен привел явно округленное число — 5000 стадиев (а, скажем, не 5150 или 4890) не внушает к нему доверия. А если оценка Эратосфена была завышена хотя бы на 15%, получим, что он использовал египетский стадий в 185 м. Решить этот вопрос пока нельзя.» via

Теперь обратим внимание на следующие обстоятельства:

— Асуан (Сиена) и Александрия не находятся на одном меридиане, разница по долготе составляет 3°, то есть около 300 километров.

— Эратосфен не измерил расстояние, а принял исходя из дней пути верблюдов, которые ходили явно не по прямой линии.

— Совершенно неясно каким прибором Эратосфен измерял углы с точностью до секунд

— Непонятно какой стадий использован Эратосфеном для измерения расстояний и т.п.

Но при этом он будто бы получил достаточно точный результат! Или историками сделана подгонка под результат?

Из Википедии: «Эратосфен говорит, что Сиена и Александрия лежат на одном меридиане. И поскольку меридианы в космосе являются большими кругами, такими же большими кругами обязательно будут и меридианы на Земле. И поскольку таков солнечный круг между Сиеной и Александрией, то и путь между ними на Земле с необходимостью идёт по большому кругу. Теперь он говорит, что Сиена лежит на круге летнего тропика. И если бы летнее солнцестояние в созвездии Рака происходило ровно в полдень, то солнечные часы в этот момент времени с необходимостью не отбрасывали бы тени, поскольку Солнце находилось бы точно в зените; дела и в самом деле обстоят таким образом в [полосе шириной] в 300 стадиев. А в Александрии в этот же час солнечные часы отбрасывают тень, поскольку этот город лежит к югу от Сиены. Эти города лежат на одном меридиане и на большом круге. На солнечных часах в Александрии проведём дугу, проходящую через конец тени гномона и основание гномона, и этот отрезок дуги произведёт большой круг на чаше, поскольку чаша солнечных часов расположена на большом круге. Далее, вообразим две прямые, опускающиеся под Землю от каждого гномона и встречающиеся в центре Земли. Солнечные часы в Сиене находятся отвесно под Солнцем, и воображаемая прямая проходит от Солнца через вершину гномона солнечных часов, производя одну прямую от Солнца до центра Земли. Вообразим ещё одну прямую, проведённую от конца тени гномона через вершину гномона к Солнцу на чаше в Александрии; и она будет параллельна уже названной прямой, поскольку уже сказано, что прямые от разных частей Солнца к разным частям Земли параллельны (а это он откуда знает?). Прямая, проведённая от центра Земли к гномону в Александрии, образует с этими параллельными равные накрестлежащие углы. Один из них — с вершиной в центре Земли, при встрече прямых, проведённых от солнечных часов к центру Земли, а другой — с вершиной на конце гномона в Александрии, при встрече с прямой, идущей от этого конца к концу его же тени от Солнца, там где эти прямые встречаются наверху. Первый угол опирается на дугу от конца тени гномона до его основания, а второй — на дугу с центром в центре Земли, проведённую от Сиены до Александрии. Эти дуги подобны между собой, поскольку на них опираются равные углы. И какое отношение имеет дуга на чаше к своему кругу, такое же отношение имеет и дуга от Сиены до Александрии [к своему кругу]. Но найдено, что на чаше она составляет пятидесятую часть своего круга. Поэтому и расстояние от Сиены до Александрии с необходимостью будет составлять пятидесятую часть большого круга Земли. Но оно равно 5 000 стадиев. Поэтому весь круг будет равен 250 000 стадиям. Таков метод Эратосфена».

Читайте также:  Какие единицы измерения площади ты знаешь

Позднее полученное Эратосфеном число было увеличено до 252 000 стадиев. Определить, насколько эти оценки близки к реальности, трудно, поскольку неизвестно, каким именно стадием пользовался Эратосфен. Но если предположить что речь идёт о греческом (178 метров), то его радиус земли равнялся 7 082 км, если египетским (157,5), то 6 287 км. Современные измерения дают для усреднённого радиуса Земли величину 6 371 км, что делает вышеописанный расчёт выдающимся достижением и первым достаточно точным расчётом размеров нашей планеты.»

Обращаю внимание на то, что в Википедии кроме подгонки результатов также сначала говорится об измерении Эратосфеном длины окружности Земли, а в итоге делается вывод о точности вычисления радиуса Земли. В общем, в огороде бузина, а в Киеве — дядька, хоть они и взаимосвязаны.

Диагноз очень простой: в учебниках по-прежнему будут тиражировать не дающий ничего для понимания сущности и практической применимости метод Эратосфена, но ни словом не будут упоминать связку «морская миля — угловая минута» как пример пропорционального мышления древних, потому что современный тренд заточен под дискретные вычислительные машины, а обаналоговых вычислительных машинах древности приходится рассказывать заново.

Источник

Как впервые вычислили окружность Земли – описание, схема, видео

В наши дни окружность Земли можно измерить с помощью измерительной аппаратуры и спутников. Но можно и не изобретать никаких хитроумных инструментов, как это сделал Эратосфен более 2000 лет назад. Он вычислил размеры Земли, не покидая стен библиотеки, где работал.

Как Эратосфен измерил окружность Земли?

Эратосфен — греческий ученый, живший в египетском городе Александрии с 276 года по 196 год до нашей эры. Работал он в Александрийском мусейоне. Отчасти это был музей, отчасти научный центр того времени.

В музее был ботанический сад, виварий, астрономическая обсерватория и лаборатории. Одни ученые мужи вели научные диспуты в аудитории музея, другие трапезничали и беседовали в триклинии (то есть в столовой).

Эратосфен заведовал библиотекой мусейона, в которой хранилось около 100 тысяч книг, написанных на свитках папируса (разновидность бумаги, сделанной из волокон растения папируса). Эратосфен интересовался всем на свете. Он изучал философию, историю и естественные науки, был театральным критиком. Многие коллеги по мусейону считали его дилетантом, то есть человеком, который всем интересуется, но ничего не знает по истине глубоко.

Как Эратосфен измерил окружность Земли?

От проезжих путешественников Эратосфен услышал о необычном явлении, которое они наблюдали в Сиене, городе, расположенном далеко к югу от Александрии. Путешественники рассказали, что в полдень первого дня лета — в самый продолжительный день в году — в Сиене исчезали тени. Солнце в это время стояло прямо над головой, лучи его падали на землю отвесно вниз. Внимательно вглядываясь в воду водоема, можно было рассмотреть отражение Солнца на дне.

Эратосфен съездил в Сиену и убедился в этом сам. Вернувшись в Александрию, он обнаружил, что и в самый длительный день года в полдень стены мусейона продолжали отбрасывать тень на землю. Основываясь на этом простом наблюдении, он смог вычислить окружность Земли. Вот как он это сделал.

Вычисления окружности

Эратосфен знал, что из – за громадного расстояния от Земли до Солнца, лучи последнего достигают и Сиены и Александрии параллельными лучами. То есть лучи Солнца, падающие на землю в Александрии, параллельны лучам, падающим на землю в Сиене в то же время. Если бы Земля была плоской, то тени исчезали бы на ней повсеместно 21 июня. Но так как, рассуждал он, Земля искривлена, то в Александрии, удаленной от Сиены на 500 миль (1 миля равна 1,609 километра) к северу, местные стены и колонны наклонены по отношению к сиенским стенам и колон нам под некоторым углом.

Вычисления окружности

Итак, в полдень первого дня лета Эратосфен измерил тень, отбрасываемую обелиском, стоявшим неподалеку от мусейона. Зная высоту обелиска, он смог легко вычислить длину линии, соединяющей вершину обелиска и конец тени. Получился воображаемый треугольник. После того как треугольник был «очерчен», оставалось, используя известные к тому времени правила геометрии, вычислить его углы. И Эратосфен их вычислил. Он нашел, что угол отклонения обелиска от солнечного луча составляет чуть больше 7 градусов.

Так как в Сиене вертикальные предметы не отбрасывали тени, то угол между ними и солнечным лучом составлял ноль градусов. Короче, никакого угла не было. Это означало, что Александрия отстоит по земной окружности от Сиены на 7 градусов. Такой угол между городами — это 1 /50 часть окружности. Всякая окружность содержит 360 градусов, земная окружность в этом смысле не исключение. Эратосфен умножил расстояние между Сиеной и Александрией — 500 миль — на 50 и получил значение окружности Земли. Оно оказалось равным 25 тысячам миль. Современные ученые, измерившие с помощью высококлассной техники окружность Земли, нашли ее равной 24 894 тысяч миль. Все таки Эратосфен оказался первоклассным ученым, а не дилетантом.

Определение расстояний на земной поверхности

В настоящее время существует целая наука — геодезия, которая занимается определением расстояний на земной поверхности. Геодезисты используют специальные приборы для определения угловых расстояний. Они изучают колебания силы тяжести на нашей планете, чтобы выявить истинную форму Земли. Для вычисления углов используют спутники. Такой спутник перемещается в вершину воображаемого треугольника, два других его угла помещают в заданных точках на земной поверхности.

Читайте также:  Что называют удельным сопротивлением проводника какова его единица измерения

Как вычислили окружность Земли

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

«Как Эрастофен ещё в III в. до н.э. доказал, что Земля круглая и измерил ее окружность?»

«Как Эрастофен ещё в III в. до н.э. доказал, что Земля круглая и измерил ее окружность?»

В крупнейшем культурном центре того времени — египетской Александрии, жил великий мыслитель по имени Эратосфен. Он был очень разнообразным человеком. Эратосфен занимался астрономией, географией, философией, математикой и даже поэзией и театром.

В его распоряжении была Александрийская библиотека — одна из крупнейших библиотек древности, где хранилось множество информации. Работая в ней, он обнаружил старый папирус, в котором было сказано, что на юге, в Сиене (ныне город Асуан), вблизи первого из порогов Нила, в полдень 21-ого июня вертикальный шест не отбрасывает тени. В день летнего солнцестояния по мере того как время шло к полудню, тени колонн храма становились всё короче, а ровно в полдень они исчезали.

Эратосфен начал серьезно размышлять над таким, казалось бы, непримечательным фактом. Он решил поставить такой же опыт с шестом в Александрии и проверить, отбросит ли вертикальный шест тень ровно в полдень 21-ого июня. И он увидел, что шест отбрасывает тень.

Он задумался, почему же в один и тот же момент в Сиене шест не отбрасывает тени, а в Александрии тень отчетлива видна? Но если Земля плоская, то солнечные лучи должны падать на оба шеста под одним и тем же углом. Тогда как объяснить тот факт, что в один и тот же момент, в одном месте есть тень, а в другом нет?

Эратосфен нашёл только один выход, что поверхность Земли искривлена. При том чем больше кривизна, тем больше разница в длине теней. Солнце находится так далеко, что его лучи, падающие на Землю, можно считать параллельными. Шесты, расположенные под разными углами по отношению к солнечным лучам, отбрасывают тени разной длины. Для того чтобы получить наблюдаемое различие между Александрией и Сиеной в длине тени, расстояние между ними по поверхности Земли должно составлять около семи градусов. Если мысленно продолжить шесты до центра Земли, то они пересекутся под углом семь градусов. Семь градусов — это примерно одна пятидесятая от трехсот шестидесяти градусов, составляющих полную окружность Земли.

Эратосфен нанял человека, который шагами измерил дистанцию между Александрией и Сиеной. Расстояние составило около 800 км. Раз 7 градусов — это 1/50 от 360 градусов, он перемножил это расстояние на 50 и получил 40000 км. 40000 км. — это полная длина окружности Земли.

И вычисленния Эратосфена оказались очень точными. Единственными инструментами Эратосфена были глаза, ноги, мозг, ну и 2 шеста. И этого ему оказалось достаточно, чтобы определить длину окружности Земли с погрешностью в несколько процентов. Замечательное достижение для эпохи, которую от нас отделяют почти 2200 лет! Эратосфен был первым, кто смог точно измерить размер нашей планеты.

Источник

Как Эратосфен измерял окружность Земли.

Как ученый Эратосфен более 2000 лет назад вычислил размеры Земли, не покидая стен своей библиотеки, где он работал?!

Эратосфен понимал, что из — за огромнейшего расстояния от Земли до Солнца, лучи последнего достигают Сиены и Александрии параллельными лучами. Получается,что лучи Солнца, которые падают на территорию в Александрии, будут параллельны лучам,которые падают на землю в Сиене в одно же самое время.

Если б Земля имела плоскую форму, то тени исчезали бы на ней все вместе 21 июня. Но из-за того, как рассуждал Эратосфен, Земля искривленная, то в Александрии, которая удалена от Сиены на 500 миль (1 миля = 1,609 км) к северу, местные стены и колонны наклонены относительно к сиенским стенам и колоннам под неким углом.

Значит, в полдень первого дня лета Эратосфен померял тень, которая отбрасывалась обелиском, стоявшим рядом от мусейона. Зная высоту обелиска, он легко вычислил длину линии, которая соединяла вершину обелиска и конец тени. Так получился воображаемый треугольник,и далее, используя известные в ту пору законы геометрии,он вычислил его углы. У него получилось,что угол отклонения обелиска от луча Солнца составил немного больше 7 градусов.

Из-за того,что в Сиене вертикальные предметы не отбрасывали тени, то угол между ними и солнечным лучом равнялся 0 градусам. То есть никакого угла не было! А это означало то, что Александрия отстоит по земной окружности от Сиены на 7 градусов. Именно такой угол между городами — это 1/50 часть окружности.

Известно,что любая окружность имеет 360 градусов,и земная окружность в этом смысле такая же. Эратосфен умножил расстояние между Сиеной и Александрией — 500 миль — на 50 и получил значение окружности Земли. Оно было равным 25 тысячам миль.

И современные ученые,которые измерили с помощью высококлассной техники окружность Земли, нашли ее равной 24 894 тысяч миль! Можно с уверенностью сказать,что Эратосфен- первоклассный ученый-гений.

Источник

Сайт Александра Таранова

Есть мечта? Иди к ней! Не можешь идти? Ползи к ней! Не можешь ползти? Ляг и лежи в направлении мечты.

Как измерили Землю

Впервые довольно точно измерил величину земного шара Эратосфен Киренский (ок. 276-194 до н.э.) – древнегреческий математик, астроном и географ из египетского города Александрия. Он, как и Аристотель, считал, что Земля шар.

Эратосфен узнал, что в день летнего солнцестояния в Сиене (теперь Асуан), расположенной южнее Александрии, солнце освещало в полдень дно глубоких колодцев, т.е. находилось в зените. В тот же полдень в Александрии, по измерениям Эратосфена, Солнце отстояло от зенита на 7°12′, что составляет 1/50 долю окружности. Отсюда Эратосфён заключил, что такую же долю окружности Земли составляет расстояние от Сиены до Александрии. Измерить это расстояние в те времена можно было только по числу дней, которое тратили караваны верблюдов на переход между этими городами. Оно составило 5.000 греческих стадий. И если 1/50 окружности Земли равняется 5.000 стадий, то вся окружность Земли должна быть в 50 раз больше, т.е. 5.000х50=250.000 стадий. К сожалению, точная длина древнегреческой стадии теперь неизвестна, но, по-видимому, она была близка к 160 м . Таким образом, по определению Эратосфена, окружность Земли приблизительно равна 40.000 км , что очень близко к современным расчётам.

Конечно, здесь был элемент случайности. На самом деле расчёт Эратосфена был очень грубым главным образом потому, что он не знал точного расстояния от Сиены до Александрии. Но идея расчёта была совершенно правильной. Она применяется поныне и заключается в следующем. На Земле измеряется расстояние в несколько сотен километров по прямой, проще всего по меридиану.

В конечных точках этой длины проводятся астрономические наблюдения, например, Солнца в полдень или звёзд в соответствующей части неба. Так определяют, скольким градусам, т.е. 360 долям окружности, соответствует эта длина. Элементарными расчетами легко получить длину дуги 1°. А если умножить длину одного градуса на 360, то получим всю длину земной окружности, равной 2Пи*R , где R – радиус земного шара, в круглых числах равный 6370 км .

Читайте также:  Чем измерить тонус матки

Таким образом, измерение величины земного шара сводится к определению длины одного градуса на Земле. Такая операция называется градусным измерением. В наше время в этот способ внесены многие усовершенствования, главным образом в измерение больших расстояний на земной поверхности.

Многочисленные исследования были проведены учёными разных эпох, прежде чем удалось уточнить длину дуги одного градуса Земли. Трудности были связаны с отсутствием специальных астрономических инструментов, при помощи которых можно было бы с большой точностью определить разницу в географической широте двух мест на земном шаре. Ещё труднее было измерять большие расстояния с нужной точностью.

Эратосфен знал расстояние между Сиеной (Н) и Александрией (К) и полагал, что они лежат на одном меридиане. Ему удалось заметить, что, когда в Сиене Солнце стоит прямо над головой (отражается в воде глубоких колодцев), в Александрии его лучи отклоняются от отвеса на 7°12′, т.е. на 1/50 окружности. По углу между радиусами Земли и хорде он вычислил длину окружности Земли.

В начале XVII в. голландский географ Снеллиус предложил способ расчёта, при котором точному измерению больших расстояний не мешают встречающиеся на пути водные преграды, леса, горы, долины, овраги. Из геометрии известно, что можно построить треугольник по стороне и двум прилежащим к ней углам, а по формулам тригонометрии – вычислить длину двух других сторон. Поэтому для измерения большого расстояния, например между пунктами А и Д, выбирают ряд точек так, чтобы из каждой были видны 3-4 соседние. Это могут быть вершины гор или возвышенностей, высокие здания или же сооружённые с этой целью специальные вышки, так называемые геодезические сигналы. В этих точках с помощью угломерных инструментов – теодолитов – измеряют углы между направлениями на соседние точки. В полученном ряде треугольников остается измерить длину лишь одной какой-нибудь стороны. Она называется базисом, что означает «основание». Базис длиной около 10 км выбирают в наиболее удобной местности, без крутых склонов и других препятствий. Измерение базиса – сложный и трудоёмкий процесс. Зная длину базиса и углы в соответствующем треугольнике, вычисляют длину двух других сторон, которые входят в состав соседних треугольников. Таким образом, двигаясь дальше, можно шаг за шагом найти величины всех других треугольников и в конечном итоге определить расстояние АД. Именно так решается вопрос об измерении больших расстояний на поверхности Земли.

Вся эта операция называется триангуляцией (от латинского «триангулум» – треугольник). Вершины треугольников, или триангуляционные пункты, служат ещё и для важной практической цели: поскольку их взаимное положение известно с большой точностью, они используются при топографических съёмках для составления подробных географических карт. Способ триангуляции очень помог учёным уточнить представления о форме и величине Земли.

Уже в первой половине XVIII в. французскими учёными была сделана попытка уточнить при помощи триангуляции длину 1° меридиана. Было найдено, что длина 1° меридиана несколько увеличивается с севера к югу. Это послужило основанием для предположения о том, что Земля не правильный шар, а слегка вытянутый в направлении полюсов. Но это противоречило теоретическому выводу Ньютона, утверждавшему, что Земля должна быть растянута в направлении экватора и сжата у полюсов вследствие наибольшей центробежной силы на экваторе при вращении Земли. Чтобы решить этот спорный вопрос, Французская Академия наук снарядила две экспедиции: одну – к Северному полярному кругу, в Финляндию и Швецию, другую – в Перу, к экватору. Экспедиции работали в очень трудных условиях несколько лет. После сравнения результатов работы экспедиций выяснилось: чем ближе к экватору, тем длина градуса меридиана заметно короче по сравнению с умеренными широтами, т.е. ближе к полюсу. Таким образом, было доказано, что Земля действительно немного сплюснута у полюсов: полярный радиус Земли приблизительно на 21 км короче экваториального. Может показаться, что в таком случае более короткому радиусу должна соответствовать и меньшая длина градуса. Но оказывается, что градусное измерение дает не длину радиуса Земли, т.е. не расстояние её поверхности от центра, а так называемый радиус кривизны, определяющий, насколько круто в данном месте изгибается земная поверхность. Действительно, поверхность Земли у полюсов менее выпуклая, чем у экватора, как это преувеличенно показано на рисунке. Заметим, что фигура Земли определяется поверхностью океанов, т.е. уровнем моря, от которого отсчитываются все высоты. Эта поверхность очень близка к поверхности вращения эллипса вокруг малой оси, поэтому тело Земли принято считать эллипсоидом.

Если нам нужно измерить расстояние от А до Д, когда точки Д не видно из точки А, то мы измеряем базис АВ и в треугольнике АСВ – углы, прилегающие к базису. По одной стороне и прилегающим к ней углам определяем расстояния АС и ВС. Далее из точки С мы с помощью зрительной трубы измерительного инструмента находим точку Д, видимую из точек В и С. В треугольнике СДВ нам известна сторона СВ. Остается измерить прилегающие к ней углы, а затем определить расстояние ДВ. Зная расстояние ДВ и АВ и угол между этими линиями, можно определить расстояние от А до Д.

В конце XVIII в. специальная французская экспедиция стремилась установить новую естественную единицу длины, из природы. За эту единицу – метр – решено было принять одну десятимиллионную часть четверти меридиана, т.е. расстояния от экватора до полюса. В таком случае вся окружность Земли по меридиану точно равнялась бы 40.000 км . Последующие, более точные измерения показали, что принятая в 1799 г . и ныне применяемая в качестве эталона длина метра примерно на 0,2 мм короче той, которая соответствовала первоначальному (связанному с размерами Земли) замыслу французских учёных, поэтому фактическая полная длина меридиана на 8,55 км больше, чем должна бы быть по расчётам.

В России замечательное по точности градусное измерение было проведено в 1822-1852 гг. под руководством выдающегося астронома, основателя и первого директора Пулковской обсерватории (под Ленинградом) В.Я.Струве .

Были измерены дуги меридиана общей длиной 2800 км от северных берегов Норвегии до Дуная. В триангуляцию вошло 258 треугольников. Это измерение имело большое практическое значение для составления точных карт.

В настоящее время почти все страны мира покрыты триангуляционной сетью. Геодезисты с большой точностью измерили длины дуг меридианов в разных местах земной поверхности. Результаты произведённых измерений позволили достаточно точно определить действительную фигуру Земли.

В 1941 г . советский геодезист Ф.Н.Красовский вывел из многих измерений размеры земного эллипсоида, принятые у нас за стандартные.

Если Вам понравилась эта страница, и Вам захотелось, чтобы Ваши друзья тоже её увидели, то выберите внизу значок социальной сети, где вы имеете свою страницу, и выразите своё мнение о содержании.

Ваши друзья и случайные посетители благодаря этому добавят Вам и моему сайту рейтинг

Источник