Меню

Формулу гаусса для вычисления средней квадратической ошибки одного измерения



Тема: Элементы теории ошибок измерений.

1. Классификация ошибок измерений

_______ Измерения в геодезии рассматриваются с двух точек зрения: количественной, выражающей числовое значение измеренной величины, и качественной, характеризующей ее точность. Из практики известно, что даже при самой тщательной и аккуратной работе многократные (повторные) измерения не дают одинаковых результатов. Это указывает на то, что получаемые результаты не являются точным значением измеряемой величины, а несколько отклоняются от него. Значение отклонения характеризует точность измерений.

_______ При геодезических измерениях неизбежны ошибки. Эти ошибки бывают грубые , систематические и случайные .

_______ К грубым ошибкам относятся просчеты в измерениях по причине невнимательности наблюдателя или неисправности прибора, и они полностью должны быть исключены. Это достигается путем повторного измерения.

_______ Систематические ошибки происходят от известного источника, имеют определенный знак и величину и их можно учесть при измерениях и вычислениях.

_______ Случайные ошибки обусловлены разными причинами и полностью исключить их из измерений нельзя. Поэтому возникают две задачи: как из результатов измерений получить наиболее точную величину и как оценить точность полученных результатов измерений. Эти задачи решаются с помощью теории ошибок измерений _______

_______ В основу теории ошибок положены следующие свойства случайных ошибок :
_______ 1. Малые ошибки встречаются чаще, а большие реже.
_______ 2. Ошибки не превышают известного предела.
_______ 3. Положительные и отрицательные ошибки, одинаковые по абсолютной величине, одинаково часто встречаются.
_______ 4. Сумма ошибок, деленная на число измерений, стремится к нулю при большом числе измерений.

_______ По источнику происхождения различают ошибки приборов, внешние и личные. Ошибки приборов обусловлены их несовершенством, например погрешность угла, измеренного теодолитом, неточным приведением в вертикальное положение оси его вращения.

_______ Внешние ошибки происходят из-за влияния внешней среды, в которой протекают измерения, например погрешность в отсчете по нивелирной рейке из-за изменения температуры воздуха на пути светового луча (рефракция) или нагрева нивелира солнечными лучами.

_______ Личные ошибки связаны с особенностями наблюдателя, например, разные наблюдатели по-разному наводят зрительную трубу на визирную цель. Так как грубые погрешности должны быть исключены из результатов измерений, а систематические исключены или ослаблены до минимально допустимого предела, то проектирование измерений с необходимой точностью и оценку результатов выполненных измерений производят, основываясь на свойствах случайных погрешностей.

2. Арифметическая середина

_______ Если одна величина измерена n раз и получены результаты: l 1, l 2, l 3, l 4, l 5, l 6,…. l n , то

_______ Величина x называется арифметической серединой или вероятнейшим значением измеренной величины. Разности между каждым измерением и арифметической срединой называют вероятнейшими ошибками измерений:

_______ Или в общем виде получим:

3. Средняя квадратическая ошибка

_______ Точность результатов измерений оценивается средней квадратической ошибкой. Средняя квадратическая ошибка одного измерения вычисляется по формуле:

где [v 2 ] – сумма квадратов вероятнейших ошибок; n – число измерений. Средняя квадратическая ошибка арифметической середины вычисляется по формуле:

_______ Предельная ошибка не должна превышать утроенной средней квадратической ошибки, т.е. ε = 3 x m.

_______ Иногда о точности измерений судят не по абсолютной величине средней квадратической или предельной погрешности, а по величине относительной ошибки. ___

_______ Относительной ошибкой называется отношение абсолютной ошибки к значению самой измеренной величины. Относительную ошибку выражают в виде простой дроби, числитель которой — единица, а знаменатель — число, округленное до двух-трех значащих цифр с нулями. Например, относительная средняя квадратическая погрешность измерения линии длиной:

_______ l = 110 м, при m = 2 см, равна m/ l = 1/5500.

_______ Линия измерена шесть раз. Определить ее вероятнейшую длину и оценить точность этого результата. Вычисления приведены в таблице:

Таб. 1

_______ По формулам вычислены абсолютные средние квадратические ошибки, а оценивать точность измерения длины линии необходимо по относительной ошибке. Поэтому нужно абсолютную ошибку разделить на длину линии. Для нашего примера относительная ошибка вероятнейшего значения измеренной линии равна

4. Оценка точности измерений

_______ Точность результатов многократных измерений одной и той же величины оценивают в такой последовательности:

Читайте также:  Непрерывное измерение лазерной рулеткой

_______ 1. Находят вероятнейшее (наиболее точное для данных условий) значение измеренной величины по формуле арифметической середины х = [ l ]/n.
_______ 2. Вычисляют отклонения для каждого значения измеренной величины от значения арифметической средины. Контроль вычислений: [v] = 0;
_______ 3. По формуле вычисляют среднюю квадратическую ошибку одного измерения.
_______ 4. По формуле вычисляют среднюю квадратическую ошибку арифметической средины.
_______ 5. Если измеряют линейную величину, то подсчитывают относительную среднюю квадратическую ошибку каждого измерения и арифметической средины.

_______ 6. При необходимости подсчитывают предельную ошибку одного измерения, которая может служить допустимым значением погрешностей аналогичных измерений.

5. Понятие о неравноточных измерениях

_______ Неравноточными измерениями называются такие, которые выполнены различным числом приемов, приборами различной точности и т.д. Если измерения неодинаковой точности, то для определения общей арифметической середины пользуются формулой:

________ Весом называется число, которое выражает степень доверия к результату измерения. В тех случаях, когда неизвестны веса измеренных величин, а известны их средние квадратические ошибки, то веса можно вычислить по формуле:

т.е. вес результата измерений обратно пропорционален квадрату средней квадратической ошибки.

_______ При неравноточных измерениях средняя квадратическая ошибка измерения, вес которого равен единице, определяется по формуле:

где δ – разность между отдельными результатами измерений и общей арифметической серединой.

Источник

Cредняя квадратическая погрешность (СКП). Формулы Гаусса и

Наилучшим критерием оценки точности измерений принято считать среднюю квадратическую погрешность (СКП) измерения, определяемую по формуле Гаусса:

где Di=li-X (Х — истинное значение измеряемой величины, а li — результат измерения).

Так как, в большинстве случаях истинное значение неизвестно, то СКП определяют по формуле Бесселя:

где Ji=li-х (х — средняя арифметическое значение или вероятнейшее значение измеряемой величины, аli — результат измерения).

СКП арифметической середины:

Эта формула показывает, что СКП арифметической середины в Ön раз меньше СКП отдельного измерения.

Через уклонения арифметического среднего среднюю квадратическую погрешность определяют по формуле Бесселя:

m = , где [ 2 ] – сумма квадратов вероятнейших ошибок; n – число измерений, n-1 – число избыточных измерений.

Анализ кривой нормального распределения Гаусса показывает, что при достаточно большом числе измерений одной и той же величины случайная погрешность измерения может быть:

Больше средней квадратической m в 32 случаях из 100;

Больше удвоенной средней квадратической 2m в 5 случаях из 100;

Больше утроенной средней квадратической 3m в 3 случаях из 1000.

Маловероятно, чтобы случайная погрешность измерения оказалась больше утроенной средней квадратической, поэтому утроенную среднюю квадратическую погрешность считают предельной:

В качестве предельной часто принимают среднюю квадратическую погрешность, равную:

с вероятностью ошибки равной порядка 1%.

Пусть известна функция общего вида

где x,y. t — независимые измеренные величины, полученные с известными средними квадратическими погрешностями (СКП).

Тогда СКП функции независимых аргументов равна z корню квадратному из суммы квадратов произведений частных производных функций по каждому из аргументов на СКП соответствующих аргументов, т.е.

(*)

Если функция имеет вид

Назначение государственной геодезической сети

2.1 .1. Государственная геодезическая сеть (далее — ГГС) представляет собой совокупность геодезических пунктов, расположенных равномерно по всей территории и закрепленных на местности специальными центрами, обеспечивающими их сохранность и устойчивость в плане и по высоте в течение длительного времени.

ГГС включает в себя также пункты с постоянно действующими наземными станциями спутникового автономного определения координат на основе использования спутниковых навигационных систем с целью обеспечения возможностей определения координат потребителями в режиме, близком к реальному времени.

2.1.2. ГГС предназначена для решения следующих основных задач, имеющих хозяйственное, научное и оборонное значение:

— установление и распространение единой государственной системы геодезических координат на всей территории страны и поддержание ее на уровне современных и перспективных требований;

— геодезическое обеспечение картографирования территории России и акваторий окружающих ее морей;

Читайте также:  Интересные способы измерения длины

— геодезическое обеспечение изучения земельных ресурсов и землепользования, кадастра, строительства, разведки и освоения природных ресурсов;

— обеспечение исходными геодезическими данными средств наземной, морской и аэрокосмической навигации, аэрокосмического мониторинга природной и техногенной сред;

— изучение поверхности и гравитационного поля Земли и их изменений во времени;

— изучение геодинамических явлений;

— метрологическое обеспечение высокоточных технических средств определения местоположения и ориентирования.

2.1 .3. Наряду с ГГС созданы государственные нивелирная и гравиметрическая сети, а также геодезические сети специального назначения.

Государственные геодезическая, нивелирная и гравиметрическая сети, созданные за счет средств федерального бюджета, относятся к федеральной собственности и находятся под охраной государства (ст. 16 Федерального закона «О геодезии и картографии» от 26 декабря 1995 г. № 209-ФЗ (с изменениями).

Источник

23. Средняя квадратическая ошибка измерения. Формула Гаусса. Абсолютная и относительная ошибка. Предельная ошибка.

Для правильного использования результатов измерений необходимо знать, с какой точностью, т.е. с какой степенью близости к истинному значению измеряемой величины, они получены.

Характеристикой точности отдельного измерения в теории погрешностей служит предложенная Гауссом средняя квадратическая погрешность

где п — число измерений данной величины. Эта формула применима для случаев, когда известно истинное значение измеряемой величины. Такие случаи в практике встречаются

редко. В то же время из измерений можно получить результат, наиболее близкий к истинному значению, — арифметическую средину. Для этого случая средняя квадратическая погрешность одного измерения подсчитывается по формуле Бесселя:

m, вычисляемая по следующей формуле:

где б — отклонения отдельных значении измеренной величины ог арифметической средины, называемые вероятнейшими погрешностями, причем [б] = 0. Точность арифметической средины, естественно, будет выше точности отдельного измерения. Ее средняя квадратическая погрешность определяется по формуле

где т — средняя квадратическая погрешность одного измерения, вычисляемая по формулам (5.1) или (5.2). Часто в практике для контроля и повышения точности определяемую величину измеряют дважды — в прямом и обратном направлениях, например, длину линий, превышения между точками. Из двух полученных значений за окончательное принимается

среднее из них. В этом случае средняя квадратическая погрешность

а среднего результата из двух измерений одного измерения

где d — разность двукратно измеренных величин; n —

число разностей (двойных измерений). В соответствии с первым свойством случайных погрешностей для абсолютной величины случайной погрешности при данных условиях измерений существует допустимый предел, называемый предельной погрешностью. В строительных нормах предельная погрешность называется допускаемым отклонением.

Теорией погрешностей измерений доказывается, что абсолютное большинство случайных погрешностей (68,3%) данного ряда измерений находится в интервале от 0 до ±т; в интервал от 0 до ±2т попадает 95,4 %, а от 0 до ±3т — 99,7 % погрешностей. Таким образом, из 100 погрешностей данного ряда измерений лишь пять могут оказаться больше или равны 2т, а из 1000 погрешностей только три будут больше или равны 3т. На основании этого в качестве предельной погрешности «дельта»пр для данного ряда измерений принимается утроенная средняя квадратическая погрешность, т.е. «дельта»пр = 3т. На практике во

многих работах для повышения требований точности измерений принимают «дельта»пр = 2т. Погрешности измерений, величины которых превосходят «дельта»пр, считают грубыми.

Иногда о точности измерений судят не по абсолютной величине средней квадратической или предельной погрешности, а по величине относительной погрешности. Относительной погрешностью называется отношение абсолютной погрешности к значению самой измеренной величины. Относительную погрешность выражают в виде простой дроби, числитель которой — единица, а знаменатель — число, округленное до двух-трех значащих цифр с нулями. Например, относительная средняя квадратическая погрешность измерения линии длиной l = 110 м при ml = 2 см равна тl/1 = 1/5500, а относительная предельная погрешность при «дельта»пр = 3т = 6 см «дельта»пр/l= 1/1800.

Источник

Средняя квадратичная ошибка

Оценка точности результатов измерений

Оценить точность каких-либо измерений – это значит определить на основе полученных результатов сравнимые числовые (количественные) характеристики, выражающие качественную сторону самих измерений и условий их проведения. Количественные характеристики измерений или критерии оценки точности измерений устанавливаются теорией вероятности и теорией ошибок (в частности, способом наименьших квадратов). Согласно этим теориям оценка точности результатов измерений производится только по случайным ошибкам.

Читайте также:  Что такое методика прямых измерений

Показателями точности измерений могут служить:

— средняя квадратическая ошибка измерений;

— относительная ошибка измерений;

— предельная ошибка измерений.

Понятие средней квадратичной ошибки введено Гауссом, и в настоящее время она принята в качестве основной характеристики точности измерений в геодезии.

Средней квадратичной ошибкой называется среднее квадратичное значение из суммы квадратов ошибок отдельных измерений. Для ее вычисления используют либо истинные ошибки измерений, либо уклонения результатов измерений от среднего арифметического.

Обозначим истинное значение измеряемой величины через X, результат измерения через li.

Истинными ошибками измерений Δi называются разности результатов измерений и истинных значений, т. е.

В этом случае среднюю квадратичную ошибку m отдельного результата вычисляют по формуле:

(11)

где n – количество равноточных измерений.

Однако в большинстве случаев практики, если не считать редких случаев специальных исследований, истинное значение измеряемой величины и, следовательно, истинные ошибки остаются неизвестными. В этих случаях для нахождения окончательного значения измеряемой величины и оценки точности результатов измерений используют принцип среднего арифметического.

Пусть l1, l2, . ln результаты n равноточных измерений одной и той же величины. Тогда частное

называется средним арифметическим из измеренных значений этой величины.

Разность каждого отдельного результата измерения и среднего арифметического значения называется уклонением результатов измерений от среднего арифметического и обозначается буквой v:

vi = li.

Пример. Отдельный угол измерен четырьмя приемами, и получены результаты:

Тогда среднее арифметическое значение угла будет = 74° 17’44»,5, а уклонения результатов измерений от среднего арифметического соответственно будут v1 = — 2″,5; v2= +1″,5; v3 = — 1″,5 и v4= +2″,5.

Уклонения результатов измерений от среднего арифметического обладают двумя важными свойствами:

— для любого ряда равноточных измерений алгебраическая сумма уклонений равна нулю [v] = 0;

— для любого ряда равноточных измерений сумма квадратов уклонений минимальна, т. е. меньше суммы квадратов уклонений отдельных измерений от любого другого значения, принятого, вместо среднего арифметического значения, [v 2 ] = min.

Первое свойство уклонений служит надежным контролем вычисления среднего арифметического значения из результатов измерений. Второе свойство уклонений используют для оценки точности результатов измерений.

Если ошибки отдельных измерений вычисляют относительно среднего арифметического значения из результатов измерений, среднюю квадратичную ошибку отдельного результата вычисляют по формуле

. (12)

Пример. Используя данные предыдущего примера, найдем среднюю квадратичную ошибку измерения угла одним приемом:

.

При определении средних квадратичных ошибок измерений необходимо руководствоваться следующими правилами:

1) средняя квадратичная ошибка суммы или разности измеренных величин равна корню квадратному из суммы квадратов средних квадратичных ошибок слагаемых, т. е. для выражения А = а + b — с +. + q средняя квадратичная ошибка будет равна

при равноточных измерениях, когда ma = mb = mc = . = mq:

;

2) средняя квадратичная ошибка произведения измеренной величины на постоянное число равна произведению средней квадратичной ошибки этой величины на то же самое число, т. е. для выражения L = kl;

;

3) средняя квадратичная ошибка результатов равноточных измерений прямо пропорциональна средней квадратичной ошибке одного измерения m и обратно пропорциональна корню квадратному из числа измерений, т.е.

;

или с учетом формулы (12):

Примеры: 1. Угол β получен как разность двух направлений, определенных с ошибками m1 = ± 3″ и m2 = ± 4″.

По первому правилу находим .

2. Радиус окружности измерен со средней квадратичной ошибкой mR = ±5 см.

По второму правилу находим среднюю квадратичную ошибку длины окружности

m = 2πmR = 2 × 3,14 × 5 = ± 31 см.

3. Средняя квадратичная ошибка измерения угла одним приемом равно m = ± 8″. Какова точность измерения угла четырьмя приемами?

По третьему правилу

.

4. Угол β измерен пятью приемами. При этом отклонения от среднего арифметического составили: — 2″, + 3″,- 4″, +4″ и -1″. Какова точность окончательного результата?

Источник