Гемоглобин
Гемоглобин (от др.-греч. Гемо — кровь и лат. globus — шар) – это сложная белковая молекула внутри красных клеток крови – эритроцитов (у человека и позвоночных животных). Гемоглобин составляет примерно 98% массы всех белков эритроцита. За счет своей структуры гемоглобин участвует в переносе кислорода от легких к тканям, и оксида углерода обратно.
Строение гемоглобина
Гемоглобин состоит из двух цепей глобина типа альфа и двух цепей другого типа (бета, гамма или сигма), соединенными с четырьмя молекулами гемма, содержащего железо. Структура гемоглобина записывается буквами греческого алфавита: α2γ2.
Обмен гемоглобина
Гемоглобин образуется эритроцитами в красном костном мозге и циркулирует с клетками в течение всей их жизни – 120 дней. Когда селезенкой удаляются старые клетки, компоненты гемоглобина удаляются из организма или поступают обратно в кровоток, чтобы включиться в новые клетки.
Типы гемоглобина
К нормальным типам гемоглобина относится гемоглобин А или HbA (от adult — взрослый), имеющий структуру α2β2, HbA2 (минорный гемоглобин взрослого, имеющий структуру α2σ2 и фетальный гемоглобин (HbF, α2γ2. Гемоглобин F – гемоглобин плода. Замена на гемоглобин взрослого полностью происходит к 4-6 месяцам (уровень фетального гемоглобина в этом возрасте менее 1%). Эмбриональный гемоглобин образовывается через 2 недели после оплодотворения, в дальнейшем, после образования печени у плода, замещается фетальным гемоглобином.
Тип гемоглобина | Процент содержания у взрослого человека |
HbA — взрослый гемоглобин | 98% |
HbA2 – взрослый гемоглобин минорный | Около 2% |
HbFi – фетальный гемоглобин | 0,5-1% |
Эмбриональный гемоглобин | нет |
HbA1C – гликированный гемоглобин |
Аномальных гемоглобинов более 300, их называют по месту открытия.
Функция гемоглобина
Основная функция гемоглобина – доставка кислорода от легких к тканям и углекислого газа обратно.
Формы гемоглобина
- Оксигемоглобин – соединение гемоглобина с кислородом. Оксигемоглобин преобладает в артериальной крови, идущей от легких к тканям. Из-за содержания оксигемоглобина артериальная кровь имеет алый цвет.
- Восстановленный гемоглобин или дезоксигемоглобин (HbH) — гемоглобин, отдавший кислород тканям
- Карбоксигемоглобин – соединение гемоглобина с углекислым газом. Находится в венозной крови и придает ей темный вишневый цвет.
Как же это происходит? Почему в легких гемоглобин забирает, а в тканях отдает кислород?
Эффект Бора
Эффект был описан датским физиологом Христианом Бором http://en.wikipedia.org/wiki/Christian_Bohr (отцом знаменитого физика Нильса Бора).
Христиан Бор заявил, что при большей кислотности (более низкое значение рН, например, в тканях) гемоглобин будет меньше связываться с кислородом, что позволит его отдать.
В легких, в условиях избытка кислорода, он соединяется с гемоглобином эритроцитов. Эритроциты с током крови доставляют кислород ко всем органам и тканям. В тканях организма с участием поступающего кислорода проходят реакции окисления. В результате этих реакций образуются продукты распада, в том числе, углекислый газ. Углекислый газ из тканей переносится в эритроциты, из-за чего уменьшается сродство к кислороду, кислород выделяется в ткани.
Эффект Бора имеет громадное значение для функционирования организма. Ведь если клетки интенсивно работают, выделяют больше СО2, эритроциты могут снабдить их большим количеством кислорода, не допуская кислородного «голодания». Следовательно, эти клетки могут и дальше работать в высоком темпе.
Какой уровень гемоглобина в норме?
В каждом миллилитре крови содержится около 150 мг гемоглобина! Уровень гемоглобина меняется с возрастом и зависит от пола. Так, у новорожденных гемоглобин значительно выше, чем у взрослых, а у мужчин выше, чем у женщин.
Что еще влияет на уровень гемоглобина?
Некоторые другие состояния также влияют на уровень гемоглобина, например, пребывание на высоте, курение, беременность.
Заболевания, связанные с изменением количества или структуры гемоглобина
- Повышение уровня гемоглобина наблюдается при эритроцитозах, обезвоживании.
- Снижение уровня гемоглобина наблюдается при различных анемиях.
- При отравлении угарным газом образуется карбгемоглобин (не путайте с карбоксигемоглобином!), который не может присоединять кислород.
- Под действием некоторых веществ образуется метгемоглобин.
- Изменение структуры гемоглобина называется гемоглобинопатией. Самые известные и частые заболевания этой группы – серповидно-клеточная анемия, бета-талассемия, персистенция фетального гемоглобина. См.гемоглобинопатии на сайте Всемирной организации здравоохранения http://www.who.int/mediacentre/factsheets/fs308/ru/index.html
Знаете ли Вы?
- У беспозвоночных животных гемоглобин растворен в плазме крови.
- В сутки из легких в ткани переносится около 600 литров кислорода!
- Красный цвет крови придает гемоглобин, входящий в состав эритроцитов. У некоторых червей вместо гемоглобина хлорокруорин и кровь зеленая. А у каракатиц, скорпионов и пауков голубая, так как вместо гемоглобина – содержащий медь гемоцианин.
Источник
ДЫХАТЕЛЬНЫЕ ПИГМЕНТЫ
Дыхательные пигменты (лат. pigmentum краска) — окрашенные органические вещества различного химического строения, способные в зависимости от условий связывать или освобождать молекулярный кислород. В организме человека и животных Дыхательные пигменты осуществляют транспорт кислорода от органов дыхания к тканям и принимают участие в процессах биологического окисления и в окислительно-восстановительных процессах. Главными из Дыхательных пигментов являются дыхательные белки и дыхательные ферменты (см.).
Использование растворенного в воде кислорода одноклеточными или низшими многоклеточными животными организмами, обитающими в водной среде, осуществляется в результате его диффузии через клеточные мембраны. У более сложно организованных животных обеспечение организма кислородом происходит с помощью специальных дыхательных белков, переносящих кислород от органов дыхания к тканям. К таким белкам относятся гемоглобин (см.), эритрокруорин, хлорокруорин, гемэритрин, гемоцианин, геликорубин. Миоглобин (см.) не способен переносить кислород, но участвует в его депонировании.
Дыхательные пигменты представляют собой сложные белки — хромопротеиды (см.), молекулы которых состоят из простого белка и небелковой окрашенной простетической группы.
У многих Д. п. простетической группой является железопорфириновый комплекс — гем. У позвоночных гемсодержащими дыхательными пигментами являются гемоглобин, находящийся в эритроцитах и осуществляющий связывание, транспорт и высвобождение кислорода в тканях, и миоглобин, с помощью к-рого в мышцах резервируется кислород в количествах, достаточных для осуществления механической работы, производимой мышцами. Во внутриклеточном депонировании кислорода, кроме миоглобина, по-видимому, принимают участие находящиеся в клетках каротиноиды (см.), причем роль этих пигментов повышается в условиях гипоксии и при старении организма.
Более многочисленными и разнообразными являются Д. п. беспозвоночных животных. Высокомолекулярные гемоглобиноподобные вещества (мол. вес 400 000—6 700 000), растворенные в гемолимфе кольчатых червей (полихет и олигохет) и моллюсков, получили название эритрокруоринов. Они представляют собой гемсодержащие белки, в состав которых входит от 30 до 400 групп гема. Каждый гем способен связывать одну молекулу кислорода. Молекула эритрокруорина состоит из 12 субъединиц.
Много общего с эритрокруорином имеет хлорокруорин — зеленый пигмент многощетинковых кольчатых червей (Spirographis и родственных им видов). Он содержится в растворенном состоянии в плазме крови.
Хлорокруорин — гемсодержащий белок, гем к-рого отличается от гема гемоглобина наличием формильной группы при втором углеродном атоме протопорфиринового кольца; он носит название спирографиспорфирина или спирографисгемина. Мол. вес хлорокруорина колеблется от 2 750 000 до 3 500 000, содержание железа в нем находится в пределах 0,45—1,2%, молекула состоит из 12 субъединиц и содержит 190 групп хлорокруорогема. Хлорокруорин обладает высоким сродством к кислороду и незначительным — к окиси углерода; кислородная емкость крови кольчатых червей составляет 10%.
Гемэритрин — коричнево-красный Д. п. с мол. весом 66 000, находится внутри клеток, циркулирующих в полостной жидкости некоторых видов беспозвоночных (морские кольчатые черви, гл. обр. Sipunculidae, и др.). Гемэритрин отличается от других дыхательных белков тем, что не содержит гема. Молекула гемэритрина состоит из 8 субъединиц, в каждой из которых находится по 2 атома железа, которые, по всей вероятности, соединяются с атомами серы, входящей в состав белка. Содержание железа колеблется от 0,8 до 1,01%, кислородная емкость составляет ок. 1,6%. Свойство гемэритрина обратимо соединяться с кислородом (каждые 2 атома железа связывают одну молекулу кислорода) обусловлено особым расположением полипептидных цепей в его молекуле.
К Дыхательным пигментам относят также гемсодержащий красный пигмент виноградной улитки — геликорубин, способный к обратимому окислению — восстановлению.
Дыхательные пигменты, содержащие в своей молекуле медь, называются гемоцианинами. Они содержатся в плазме крови многих моллюсков и членистоногих, придавая ей голубую окраску. Гемоцианины представляют собой высокомолекулярные белки (мол. вес колеблется от 500 000 до 10 000 000), содержание меди в них составляет 0,17—0,18% (моллюски) и 0,24—0,26% (членистоногие). Молекулы гемоцианинов имеют одинаковую форму и состоят из 3—6 субъединиц, содержащих значительное количество атомов меди (у гемоцианина омара их 20), которые располагаются парами. Гемоцианины отличаются один от другого по своей растворимости, цвету (от пурпурно-синего до зеленого) и форме кристаллов. Они способны обратимо соединяться с кислородом, причем одна молекула кислорода связывается с двумя атомами одновалентной меди, которые при этом окисляются. Кислородная емкость крови таких моллюсков и членистоногих пропорциональна содержанию в ней меди и количественно меньше, чем кислородная емкость крови позвоночных животных. В крови, ткани печени и других тканях животных обнаружены медьсодержащие белки, не участвующие в переносе кислорода. К таким белкам, являющимся Д. п., относятся гемокупреин и гепатокупреин. Они представляют собой синие пигменты идентичной структуры, в результате чего эти Д. п. получили общее название цитокупреины. Цитокупреин — это белок с мол. весом 32 000; молекула цитокупреина состоит из двух субъединиц, каждая из которых содержит один атом меди и один атом цинка в двухвалентном состоянии. Установлено, что фермент супероксиддисмутаза, катализирующий реакцию дисмутации супероксидных радикалов H2O-, накапливающихся в тканях в ходе окислительных процессов, представляет собой цитокупреин.
Поскольку супероксидные радикалы и некоторые продукты их превращения чрезвычайно токсичны, супероксид-дисмутаза является жизненно необходимым ферментом.
Другой медьсодержащий белок — церулоплазмин (см. Кровь) — играет главную роль в резервировании и транспорте меди у позвоночных животных и человека. Церулоплазмин является не только нетоксическим резервом меди в организме, но и способен также ускорять окисление двухвалентных ионов железа в трехвалентные, т. е. обладает ферроксидазными свойствами, участвует в синтезе гемоглобина и трансферрина (железосвязывающего белка плазмы крови; нормальное содержание его у человека — 250 мг%, при поражении паренхимы печени эта цифра уменьшается).
Церулоплазмин является медьсодержащим альфа-1-глобулином сыворотки крови человека с мол. весом 151 000; на его долю приходится до 0,5% от общего количества белка в плазме крови человека и 90% всей меди плазмы крови. У здорового человека общее содержание меди в плазме крови составляет 70— 140 мкг%. Гиперкупремия и гиперцерулоплазминемия наблюдаются в остром периоде инфекций, протекающих с лихорадкой и распадом клеточных элементов, при заболеваниях печени — гепатитах, циррозах и механических желтухах, при карциноме, лейкемии, анемиях. Гиперцерулоплазминемия отмечается также при беременности.
В сыворотке крови количественное определение церулоплазмина проводят в клин, лабораториях по Равину. Метод основан на том. что церулоплазмин является единственным компонентом сыворотки крови, обладающим оксидазными свойствами, поэтому он катализирует окисление некоторых аминов, в т. ч. парафенилендиаминдигидрохлорида, в результате окисления к-рого образуется вещество сине-фиолетового цвета. Оптическая плотность (см. Колориметрия) р-ра измеряется при 530 нм, и концентрация церулоплазмина, пропорциональная степени окисления используемого субстрата, вычисляется по калибровочной кривой. Зная количество меди в плазме крови, можно также рассчитать содержание церулоплазмина по формуле:
церулоплазмин(мг%) = Cu(мкг%)• 100/0,32
т. к. теоретически содержание меди в церулоплазмине составляет 0,32%.
К Дыхательным пигментам относится также обширная группа флавоновых пигментов, окрашенных в желтый или желто-коричневый цвет и содержащих в своей молекуле ядро флавона (см. Флавоны). Эти пигменты содержатся в основном в растениях. Для животных и человека особое значение имеют производные флавона, близкие по своему хим. строению и биол, активности и являющиеся компонентами капилляроукрепляющего витамина Р. К таким Д. п. относятся гесперидин, рутин, катехин, эпикатехин и их галловые эфиры. Витамин P в животных клетках участвует в окислительно-восстановительных процессах вместе с аскорбиновой к-той, а также является ингибитором ряда ферментов, особенно гиалуронидазы (см.). Рутин способен в определенных условиях стимулировать процессы тканевого дыхания и окислительного фосфорилирования в митохондриях и, по-видимому, участвует в биосинтезе убихинона. Возможно, что катехин, рутин и гесперидин обладают адреналиноподобным действием.
Источник
ГЕМОГЛОБИН
ГЕМОГЛОБИН, Hb (haemoglobinum; греч. haima кровь + лат. globus шарик),— гемопротеид, сложный белок, относящийся к гемсодержащим хромопротеидам; осуществляет перенос кислорода от легких к тканям и участвует в переносе углекислого газа от тканей в органы дыхания. Гемоглобин содержится в эритроцитах всех позвоночных и некоторых беспозвоночных животных (черви, моллюски, членистоногие, иглокожие), а также в корневых клубеньках некоторых бобовых растений. Мол. вес (масса) Гемоглобина эритроцитов человека равен 64 458; в одном эритроците находится ок. 400 млн. молекул Гемоглобина. В воде Гемоглобин хорошо растворим, нерастворим в спирте, хлороформе, эфире, хорошо кристаллизуется (форма кристаллов Гемоглобина различных животных неодинакова).
В состав Гемоглобина входит простой белок— глобин и железосодержащая простетическая (небелковая) группа — гем (96 и 4% от массы молекулы соответственно). При pH ниже 2,0 происходит расщепление молекулы Гемоглобина на гем и глобин.
Содержание
Гем (C34H32O4N4) представляет собой железопротопорфирин— комплексное соединение протопорфирина IX с двухвалентным железом. Железо находится в центре протопорфиринового ядра и связано с четырьмя атомами азота пиррольных ядер (рис. 1): две связи координационные и две связи с замещением водорода.
Поскольку координационное число железа равно 6, две валентности остаются неиспользованными, одна из них реализуется при связывании гема с глобином, а ко второй присоединяется кислород или другие лиганды — CO, F + , азиды, вода (рис. 2) и т. д.
Комплекс протопорфина IX с Fe 3+ называют гематином. Солянокислая соль гематина (хлоргемин, гемин) легко выделяется в . кристаллическом виде (так наз. кристаллы Тейхманна). Гем обладает способностью образовывать комплексные соединения с азотистыми соединениями (аммиаком, пиридином, гидразином, аминами, аминокислотами, белками и т. д.), превращаясь при этом в гемохромогены (см.). Поскольку у всех видов животных гем одинаков, то различия в свойствах гемоглобинов обусловлены особенностями строения белковой части молекулы Г. — глобина.
Глобин
Глобин — белок типа альбуминов, содержит в своей молекуле четыре полипептидные цепи: две альфа-цепи (в каждую из которых входит по 141 аминокислотному остатку) и две бета-цепи, содержащие по 146 остатков аминокислот. Т. о., белковый компонент молекулы Г. построен из 574 остатков различных аминокислот. Первичная структура, т. е. генетически обусловленная последовательность расположения аминокислот в полипептидных цепях глобина человека и ряда животных, полностью изучена. Отличительной особенностью глобина человека является отсутствие в его составе аминокислот изо лейцина и цистина. N-концевыми остатками в альфа- и бета-цепях являются остатки валина. C-концевые остатки альфа-цепей представлены остатками аргинина, а бета-цепей — гистидина. Предпоследнее положение в каждой из цепей занимают остатки тирозина.
Рентгеноструктурный анализ кристаллов Г. позволил выявить основные особенности пространственной структуры его молекулы [Перутц (М. Perutz)]. Оказалось, что альфа- и бета-цепи содержат спиральные сегменты различной длины, которые построены по принципу альфа-спиралей (вторичная структура); альфа-цепь имеет 7, а бета-цепь — 8 спиральных сегментов, соединенных неспиральными участками. Спиральные сегменты, начиная с N-конца, обозначаются буквами латинского алфавита (А, В, С, D, E, F, G, Н), а неспиральные участки или углы поворота спиралей имеют соответствующее обозначение (АВ, ВС, CD, DE и т. д.). Неспиральные участки на аминном (N) или карбоксильном (С) конце цепи глобина обозначают соответственно NA или НС. Аминокислотные остатки нумеруются в каждом сегменте и, кроме того, в скобках дается нумерация данного остатка от N-конца цепи.
Спиральные и неспиральные участки определенным образом уложены в пространстве, что определяет третичную структуру цепей глобина. Последняя почти идентична у альфа- и бета-цепей Г., несмотря на значительные различия в их первичной структуре. Это обусловлено специфическим расположением полярных и гидрофобных групп аминокислот, приводящим к скоплению неполярных групп во внутренней части глобулы с образованием гидрофобного ядра. Полярные группы белка обращены к водной среде, находясь с ней в контакте. Внутри каждой цепи глобина недалеко от поверхности находится гидрофобная впадина («гемовый карман»), в к-рой располагается гем, ориентируясь так, что его неполярные заместители направлены во внутрь молекулы, входя в состав гидрофобного ядра. В результате возникает ок. 60 неполярных контактов между гемом и глобином и один-два полярных (ионных) контакта гема с альфа- и бета-цепями, в которых участвуют остатки пропионовой к-ты гема, выходящие наружу из гидрофобного «кармана». Расположение гема в гидрофобной впадине глобина обеспечивает возможность обратимого присоединения кислорода к Fe 2+ гема без окисления последнего до Fe 3+ и характерно для гемоглобинов различных видов животных. Подтверждением этого является крайняя чувствительность Г. к любым изменениям неполярных контактов вблизи гема. Так, замена гема в Г. на гематопорфирин приводит к резкому нарушению свойств Г.
Некоторые аминокислотные остатки, окружающие гем в гидрофобной впадине, относятся к числу инвариантных аминокислот, т. е. аминокислот, одинаковых для различных видов животных и существенных для функции Г. Среди инвариантных аминокислот большое значение отводится трем: остаткам гистидина, так наз. проксимальным гистидинам (87-я позиция в а- и 92-я позиция в P-цепях), дистальным гистидинам (58-я позиция в а- и 63-я позиция в (5-цепях), a также остатку валина Е-11 (62-я позиция в альфа-цепи и 67-я позиция в бета-цепи).
Связь между так наз. проксимальным гистидином и железом гема является единственной хим. связью между ними (реализуется пятая координационная связь атома Fe 2+ гема) и непосредственно влияет на присоединение кислорода к гему. «Дистальный» гистидин непосредственно не связан с гемом и участия в фиксировании кислорода не принимает. Его значение состоит в стабилизации атома Fe 2+ против необратимого окисления (по-видимому, за счет образования водородной связи между кислородом и азотом). Остаток валина (Е-11) является своего рода регулятором скорости присоединения кислорода к гемам: в бета-цепях он стерически расположен так, что занимает то место, куда должен присоединиться кислород, вследствие чего оксигенация начинается с фльфа-цепей.
Белковая часть и простетическая группа молекулы Г. оказывают друг на друга сильное влияние. Глобин изменяет многие свойства гема, придавая ему способность к связыванию кислорода. Гем обеспечивает устойчивость глобина к действию к-т, нагреванию, расщеплению ферментами и обусловливает особенности кристаллизационных свойств Г.
Полипептидные цепи с присоединенными к ним молекулами гема образуют четыре основные части — субъединицы молекулы Г. Характер соединения (укладки) их между собой ц расположение в пространстве определяют особенности четвертичной структуры Г.: а- и P-цепи располагаются по углам тетраэдра вокруг оси симметрии, причем альфа-цепи лежат поверх p-цепей и как бы втискиваются между ними, а все четыре гема далеко удалены друг от друга (рис. 3). В целом образуется тетрамерная сфероидная частица с размерами 6,4 X 5,5 х 5,0 нм. Четвертичная структура стабилизирована солевыми связями между α—α- и β-β-цепями и двумя видами контактов между α и β-цепями (α1-β1 и α2-β2). Контакты α1-β1 наиболее обширны, в них участвуют 34 аминокислотных остатка, большинство взаимодействий неполярно. Контакт α1-β2 включает 19 аминокислотных остатков, большинство связей также неполярно, за исключением нескольких водородных связей. Все остатки, находящиеся в этом контакте, одинаковы у всех изученных видов животных, в то время как 1/3 остатков в α1-β1-контактах варьирует.
Г. человека гетерогенен, что обусловлено различием полипептидных цепей, входящих в его состав. Так, Г. взрослого человека, составляющий 95—98% Г. крови (HbA), содержит две α- и две β-цепи; малая фракция Г. (HbA2), достигающая максимального содержания 2,0—2,5%, содержит две α- и две σ-цепи; гемоглобин плода (HbF), или фетальный гемоглобин, составляющий в крови взрослого человека 0,1—2% , состоит из двух α- и двух γ-цепей.
Фетальный Г. заменяется на HbA в первые месяцы после рождения. Он характеризуется значительной устойчивостью к тепловой денатурации, на чем основаны методы определения его содержания в крови.
В зависимости от состава полипептидных цепей перечисленные типы Г. обозначаются следующим образом: HbA — как Hbα2β2, HbA2 — как Hbα2σ2, a HbF — как Hbα2γ. При врожденных аномалиях и заболеваниях кроветворного аппарата появляются аномальные типы Г., напр, при серповидноклеточной анемии (см.), талассемии (см.), врожденной метгемоглобинемии неэнзиматического происхождения (см. Метгемоглобинемия) и др. Наиболее часто встречается замещение единственной аминокислоты в одной паре полипептидных цепей.
В зависимости от величины валентности атома железа гема и типа лиганда в молекуле Г. последний может находиться в нескольких формах. Восстановленный Г. (дезокси-Hb) имеет Fe 2+ со свободной шестой валентностью, при присоединении к нему O2 образуется оксигенированная форма Г. (HbO2). При действии на HbO2 ряда окислителей (феррицианид калия, нитриты, хиноны и др.) происходит окисление Fe 2+ до Fe 3+ с образованием метгемоглобин, неспособного к переносу O2. В зависимости от величины pH среды различают кислую и щелочную форму метгемоглобина, содержащих в качестве шестого лиганда H2O или OH-группу. В крови здоровых людей концентрация метгемоглобина составляет 0,83+0,42% .
Метгемоглобин обладает способностью прочно связывать фтористый водород, синильную к-ту и другие вещества. Этим его свойством пользуются в мед. практике для спасения людей, отравленных синильной к-той. Различные производные Г. различаются по спектрам поглощения (табл.).