Gps измерения одним приемником

Содержание
  1. Исполнительная-схема.ру
  2. Инструкция по работе с GNSS/GPS оборудованием
  3. Основы работы с GPS оборудованием
  4. Виды GPS-Оборудования
  5. Что влияет на качество сигнала GPS?
  6. Объекты создающие активные помехи:
  7. Геометрический фактор PDOP
  8. Режимы работы GPS
  9. «Статика» (STATIC)
  10. Расчет времени работы в статике:
  11. Режим работы «Стой-иди» ( STOP&GO)
  12. Режим RTK (кинематика в реальном времени)
  13. Каналы передачи данных
  14. NTRIP Работа от базовой станции (БС)
  15. Радиомодем
  16. Понятие «Фиксированное решение»
  17. GPS измерения
  18. Съемка местности при помощи GPS
  19. Методы GPS измерений в геодезии
  20. Спутниковые методы съемки и измерения от Компании «Промтерра»
  21. Спутниковая GPS геодезия
  22. Задача GPS измерений
  23. Принцип работы приемников GPS
  24. Методы GPS измерений
  25. Точность определения координат в GPS-навигации и причины ошибок GPS.
  26. Точность определения координат в GPS-навигации и причины ошибок GPS.
  27. Режим SA.
  28. Погрешности в эфемеридных данных при GPS-навигации.
  29. Влияние отраженного сигнала на точность GPS-навигации.
  30. Спутниковая геометрия при GPS-навигации.

Исполнительная-схема.ру

Инструкция по работе с GNSS/GPS оборудованием

Основы работы с GPS оборудованием

Ниже приведу краткий набор теоретических знаний, которые помогут при работе с GPS оборудованием. О том что такое GPS, про всякие там спутники, частоты и т.д. – почитаете в интернете. Мы будем заниматься конкретными вещами, необходимыми для успешной съемки.

Виды GPS-Оборудования

  • Навигатор туристический. Это все, что встроено в телефоны, навигаторы Garmin и прочие туристические приблуды. Реальная точность таких приборов 5-30 метров. Подходят для поиска дороги, пунктов и т.д. Топографическую съемку такими приборами делать нельзя, но можно использовать для сбора ГИС-данных, где точность 5-30 м допустима.
  • Одночастотные (L1) GPS – это приборы, которые работают только по первой базовой частоте. С них начиналась эра GPS-приемников. По факту – работают медленнее, чем другие приборы. Подходят только для измерений по созданию геодезической основы. Работают ими методом «статика». В изысканиях могут использоваться, чтобы привязать наши заложенные репера к пунктам геодезической основы.
  • Двухчастотные (L1+L2) – более совершенные приборы. Используются для того же, что и приборы на L1, но работают быстрее и более точнее.
  • Двухчастотные с поддержкой RTK – на сегодняшний день одни из самых современных приборов. Позволяют проводить топографическую съемку местности.

Что влияет на качество сигнала GPS?

Понижают качество измерений следующие факторы:

Наличие препятствий вокруг приемника (строений, деревьев). Каждый приемник обычно показывает количество спутников, сигнал от которых он принимает. В теории для работы приемника достаточно 4 общих спутника (общих для базы и ровера).

На практике при числе спутников:

Число спутников Действия
меньше 6 Нельзя проводить измерения. Надо дождаться повышения количества спутников или поменять позицию
6-8 Можно начинать работать, но время измерений желательно увеличить
9 и более Нормальное количество

Так что GPS могут хуже работать в лесу, между домами, которые закрывают горизонт прибору и т.д. Также если вы устанавливаете GPS на пункте триангуляции, где сохранилась металлическая пирамида – увеличьте время стояния. Металл над антенной GPS тоже плохо влияет на измерения.

Объекты создающие активные помехи:

Объекты, которые формируют вокруг себя электромагнитное поле – негативно влияют на прием сигналов GPS. К таким объектам относятся линии электропередач, активные радары аэропортов и военных объектов, промышленное электронное мощное оборудование. То есть лучше избегать ставить GPS под линиями электропередач.

Геометрический фактор PDOP

PDOP – это коэффициент, который показывает «насколько хорошо GPS сейчас работается» Это основной параметр, который отображается во многих GPS приборах.
Значения PDOP:

Значение Действия
1-3 Хорошее качество можно работать
3-7 Удовлетворительное качество, но лучше увеличить время сеанса на 50%
7 и более Плохое качество. Измерения могут не обрабатываться.

Режимы работы GPS

«Статика» (STATIC)

Метод статических определений. Наиболее точный из всех методов. Позволяет получить миллиметровую точность. Используется для передачи координат от изветсных пунктов к определяемым пунктам. Минимальный комплект приемников: 2 штуки. Один из приемников называют «база», второй «ровер». Базовый приемник устанавливается над пунктом с известными координатами. Замеряется его высота над точкой и он включается. Затем второй приемник (ровер) устанавливается на объекте над точкой, координаты которой мы хотим узнать. Приемники работают некоторое время. После измерений ровер переставляют на другие определяемые точки и повторяют наблюдения. Потом данные обрабатывают на компьютере и получают координаты определяемых точек. При этом измерения можно вводить в «сеть». Например провести насколько сеансов в разное время с разных пунктов, разными приемниками – свести их в единую сеть на компьютере, обсчитать и уравнять.

Цепочка информации будет выглядеть так:

Тут критически важно знать, что время измерений – это время в течении которого работают оба приемника (совместно). Именно совместная работа приемников с наличием общих спутников потом позволит получить координаты точек. От одной базы может работать множество роверов.

Пример временной записи:

В этом примере всего процесс занял у нас 2 часа (12-14), но полезное время совместных измерений было только 30 минут (12:30 – 13:30). Надо указать, что расстояние между базой и ровером для приемников L1 не должно превышать 20км, а для приемников L2 – до 50 км. Измерения при базисе больше 50 км для приборов L2 проводить можно, но они обрабатываются в специальных программах. Ограничение по расстоянию связано с кривизной земли и наличием общих спутников во время сеанса наблюдений. Однако стоит сказать, что когда я работал в аэрофотосъемке — мы используя специальные программы и приборы типа L2 обрабатывали базисы в 200-300 км. То есть это возможно, но требует дополнительных знаний.

Расчет времени работы в статике:

Каждая модель GPS приемника имеет обычно свои указания по расчету времени работы. Ниже приведу «примерное» время работы исходя из своего опыта. Основные параметры влияющие на время сеанса: количество спутников, расстояние между приемниками и PDOP. Обычно достаточно знать расстояние между приемниками для планирования сеанса.

Расчет времени работы в статике приборами L1:

Расстояние Время сеанса
0-5км 20 мин
(лучше 30 мин)
5-10 1 час
10-20 2 часа
20-… 3 часа

Расчет времени работы в статике приборами L2:
Общая формула 10 мин. + 0,5минут на км
Пример: Расстояние базиса 20 км = 10мин+0,5*20мин = 20мин
2й вариант (более точный)

Количествово спутников Формула
10 10мин+2мин/км
8 10мин+5мин/км
6 10мин+10мин/км

Есть основное правило:
— Если все хорошо и до пункта менее 10 км – стоим 30 минут
— Если что-то не так – стоим 1..2..3 часа

Режим работы «Стой-иди» ( STOP&GO)

Режим очень похож на статику с той лишь разницей, что ровер стоит над каждой точкой около 3-х минут и перемещается далее. В приемниках L1 такой режим позволял проводить съемку открытых пространств. С появление RTK режима – теперь практически не используется.
Основные моменты:

Расстояние база ровер – менее 20 км
Время стояния ровером на точке – 3мин
Применяется для топосъемки открытых площадок приемниками L1

Режим RTK (кинематика в реальном времени)

Основной современный режим съемки GPS оборудованием для проведения топографических съемок.
Надо сказать, что не смотря на наличие такого режима привязку временных реперов и других точных пунктов надо делать в режиме «статика».
Основная идея:
База стоит над точками с известными координатами и через канал связи передает некие «поправки» роверу. Ровер их принимает и выдает координаты своего местоположения с
высокой точностью.
Точность = примерно 10мм + 0,5мм * Дальность,км
Пример:
При удалении от базы на 20км получим точность ровера:
10мм + 0,5мм * 20км = 20мм
Это без учета всех остальных поправок. На практике получаем точность 5-50 мм., в зависимости от рельефа местности, может быть гораздо больше…

Каналы передачи данных

Существует насколько каналов по которым база может передавать поправки роверу:

Поправки передаются через мобильную связь. Для этого в базе и в ровере должны быть вставлены SIM-карточки мобильных операторов с услугой «CSD» (услуга факсимильной передачи данных ). На момент января 2018 г. для оператора МТС эта услуга стоит 1мин=2руб, кроме того теперь для МТС эта услуга называется «пакетная передача данных» и она выдается только юридическим лицам. Для работы канала нужно мобильное покрытие территории и денюжка на карточках.

Поправки передаются через мобильную сеть с выходом в интернет. Условия для работы как и для GSM канала, но нужны уже просто любые SIM-карты с доступом в интернет и сервер для поддержки и обработки данных.

В среднем база потребляет 1,5мБ в час трафика, т.е при ежедневной работе по 8 часов за 30 дней понадобиться 360мб., при работе по 6 часов за 20 дней — 180мб

NTRIP Работа от базовой станции (БС)

В этом методе в качестве базы используются «базовые станции» сторонних организаций, установленные обычно в городах и «вещающие» свои координаты в эфир. Услуги платные и для работы понадобятся данные доступа к БС. При таком методе для работы вам понадобится только один ровер с контроллером. Очень удобно. Приехали на место, достали GPS, подключились к базовой станции и можно снимать. Рекомендуемое удаление от БС – до 50км, хотя по факту нормально работали и на удалении 70-90км (точность падала до 2см). При этом базовые станции позволяют работать от них как в режиме RTK (NTRIP), так и в режиме «Статика» с последующей обработкой данных.

Радиомодем

Канал данных, при котором поправки передаются по радио. Бывают встроенные модемы, которые встроены в GPS (мощность до 2-6Вт) и обеспечивают связь на удалении до 1-2х километров от базы. Бывают также модемы внешние (мощностью около 20-35-60Вт), которые подключаются к GPS и обеспечат покрытие до 20-25км. Покрытие сильно зависит от типа местности, наличия строений, леса и т.д. Надо сказать, что например в Москве и Питере работать по радио на территории города запрещено. Все там работают от базовых станций через мобильную сеть. Также могут быть проблемы при работе на территории аэропортов и военных объектов. Предварительно уточняйте можно ли работать на объекте в радиорежиме. В малонаселенных районах – этот канал передачи поправок основной.

Понятие «Фиксированное решение»

При работе в режиме RTK возникает следующая цепочка передачи информации :

Момент, когда ровер успешно принимает поправки от базы и уверенно рассчитывает свои координаты – называется «Фиксированное решение» или в простонародье «Фикса».
Любой контроллер GPS этот момент всегда отображает.

Соответственно правило:
— Есть «фикса» — можно работать и снимать
— Нет «фиксы» — надо ее дождаться, снимать нельзя

Основные моменты когда фикса слетает:

  • не работает канал передачи (закончились деньги на СИМ-карточке, далеко отошли от базы, базу спиздили:), нет покрытия, сигнал поправок не доходит из-за препятствий)
  • Ровер сверху перекрывает какое-то препятствие (крыша строения, трубы, арки, переходы)
  • Неверные настройки канал передачи между базой и ровером

В принципе это основные моменты о которых надо знать при работе с GPS-приемниками. Однако надо помнить, что самообразование – залог профессионализма 🙂

Источник

GPS измерения

Бурное развитие науки и техники, а также потребность в более быстром и мобильном определение местоположения, координат и приращений координат позволило создать принципиально новое направление в инженерных изысканиях – спутниковые методы измерения

В данном методе вместо привычных неподвижных пунктов государственной геодезической сети используются подвижные спутники, координаты которых можно вычислить на любой интересующий момент времени.

Съемка местности при помощи GPS

На данный момент для выполнения работ спутниковым методом используются спутники двух глобальных систем определения местоположения ГЛОНАСС (ГЛОбальная Навигационная Спутниковая Система — российская спутниковая система навигации) и NAVSTAR GPS (NAVigation System with Time And Ranging Global Positioning System – навигационная система определения расстояния и времени, глобальная система позиционирования – американская спутниковая система навигации), также в ближайшие годы планируется запуск европейской спутниковой системы Galileo («Галилео»).

Принцип работы спутникового метода измерения заключается в определение расстояния от GPS приемника до спутника. Спутниковые измерения возможно производить в нескольких режимах, которые делятся на две группы: статические и кинематические.

Методы GPS измерений в геодезии

Статические методы измерения являются более точными, но и требуют наибольших временных затрат. Время на одном определяемом пункте может колебаться от 30 минут до нескольких часов, в зависимости от необходимой точности и внешних условий. При данной методики измерений все GPS приемники стоят неподвижно на точках с известными координатами и на определяемых точках. Статические методы измерения обычно используются при создание геодезических сетей различного класса (государственная геодезическая сеть, городская геодезическая сеть, опорная геодезическая сеть и т.д.).

Кинематические методы измерения менее точны чем статические, и используется в основном для производства топографической съемки. Время производства измерений на одном определяемом пункте в среднем будет занимать не более минуты. При данной методике измерений один GPS приемник (базовый) стоит на точке с известными координатами, а второй GPS приемник (ровер) передвигается от точке к точке. Если на оба приемника, базу и ровер, установить радиомодем или GSM модем, то появится возможность использовать режим кинематики в реальном времени (Real Time Kinematics – КЕЛ). Режим RTK позволяет получить координаты и приращения координат непосредственно в момент измерения с высокой точность, при чем время стояния приемника на точке занимает несколько секунд.

Преимущества спутниковых методов измерения:

    Высокая скорость производства работ; Мобильность GPS измерений; Возможность производства работ без прямой видимости между GPS приемниками; Возможность использования приемников на большом расстояние (до 30 км).

Спутниковые методы съемки и измерения от Компании «Промтерра»

Наша компания предлагает Вам следующие виды работ выполняемые спутниковым методом:

    Создание опорной геодезической сети и съемочной геодезической сети; Деформационный мониторинг зданий и строительных объектов; Топографическая съемка масштабов 1:500 – 1:10 000; Прикладная геодезия при сопровождении строительства; Наземное обеспечение при производстве аэрофотосъемки и воздушного лазерного сканирования; Установка, наладка и дальнейшее сопровождение постоянно действующих базовых GPS станций.

Компания «Промтерра» имеет богатый опыт выполнения инженерных изысканий и геодезических работ с использованием спутниковых методов по многим регионам страны и по всем районам Московской области.

Источник

Спутниковая GPS геодезия

Приемники, работающие в системе GPS (или системе ГЛОНАС) – высокоточное оборудование, используемое для получения точных данных при выполнении кадастровых и геодезических работах. GPS геодезия позволяет сократить временные и трудовые затраты и облегчает выполнение инженерно-геодезических изысканий.

Задача GPS измерений

GPS (система глобального позиционирования) представляет собой 24 спутника, скоординированных между собой, и передающих навигационную информацию на землю. Прием данных осуществляется спутниковыми приемниками, как простыми, задействованными в навигаторах, так и технически сложными, установленными в высокоточном, в том числе и геодезическом, оборудовании.

При помощи GPS решаются задачи по созданию съемочных и опорных сетей, проводится исполнительная топографическая съемка, вынос проектов в натуру, привязка результатов измерений к государственной геодезической сети.

Принцип работы приемников GPS

Все спутники постоянно передают сигналы с орбитальными координатами и точным временем отправки. GPS-приемник, принимающий информацию от нескольких таких спутников, рассчитывает их взаимное расположение и расстояние до каждого, получая в итоге абсолютно точные координаты точки приема. Расстояние до спутника вычисляется благодаря разнице времени отправки и получения сигнала, а точность данных гарантируется высокоточными часами, установленными как на спутнике (погрешность которых составляет 10¯9 секунды/год), так и в принимающем устройстве.

Для определения широты и долготы места установки приемника, достаточно сигналов, получаемых от трех источников, для того, чтобы выяснить и высоту от уровня мора – четырех. Скорость и точность определения местоположения зависит от количества принимаемых сигналов.

Передаваемые спутниками сигналы закодированы, поэтому приемные устройства, не оснащенные специальными дешифраторами, принимают только открытые коды с невысокой точностью позиционирования. В отличие от бытовых приборов, геодезические приемники обрабатывают «закрытые», платные, частоты. Второе отличие – геодезисты работают, как минимум, с двумя принимающими устройствами, одно из которых располагается на месте определения координат, а второе – на базе, месторасположение которой известно заранее. В итоге точность положения первого составляет 1-2 сантиметра.

Методы GPS измерений

Существует несколько методов работы с GPS приемниками, которые различаются по времени нахождения приемника на точке, координаты которой определяются:

  • статический – наблюдения проводятся не меньше часа, точность измерений 5 мм + 1 мм/км;
  • быстростатический – 15-20 минут, точность сравнима со статическим методом, но менее достоверна;
  • кинематический – длительность 30 секунд, точность 1-2 см + 2 мм/км;
  • непрерывный кинематический – с непрерывным движением приемника по линейным объектам, точность 10-15 см;

RTK-метод, наиболее современный, скорость измерений несколько секунд, а точность сопоставима с быстростатическим способом.

Источник

Точность определения координат в GPS-навигации и причины ошибок GPS.

Пользователя GPS-навигатора всегда интересует реальная точностьсистемы GPS-навигации и степень доверия к ее показаниям. Насколько можно приближаться к какой-либо навигационной опасности, полагаясь только на приемник GPS-навигатора? К сожалению, однозначного ответа на этот вопрос не существует. Это связано со статистическим характером ошибок GPS-навигации. Рассмотрим их подробнее.

Точность определения координат в GPS-навигации и причины ошибок GPS.

На скорость распространения радиоволн влияют ионосфера и тропосфера, ионосферная и тропосферная рефракция. Это главный, после отключения SA, источник погрешностей. Скорость радиоволн в пустоте постоянна, но при входе сигнала в атмосферу изменяется. Для сигналов от разных спутников задержка времени различна. Задержки распространения радиоволн зависят от состояния атмосферы и высоты спутника над горизонтом. Чем нижеспутник, тем больший путь проходит его сигнал через атмосферу и тем больше искажения. Большинство приемников исключают использование сигналов от спутников с возвышением над горизонтом менее 7,5 градусов.

Кроме того, атмосферные помехи зависят от времени суток. После захода солнца плотность ионосферы и ее влияние на радиосигналы уменьшается, явление, хорошо знакомое радистам-коротковолновикам. Военные и гражданские приемники GPS-навигаторов могут автономно определять атмосферную задержку сигнала, сравнивая задержки на разных частотах. Одночастотные потребительские приемники вносят приблизительную поправку на основании прогноза, передаваемого в составе навигационного сообщения. Качество этой информации в последнее время выросло, что дополнительно повысило точность GPS-навигации.

Режим SA.

Для сохранения преимущества высокой точности для военных GPS-навигаторов с марта 1990 года был введен режим ограничения доступа SA (Selective Availability), искусственно снижающий точность гражданского GPS-навигатора. При задействованном режиме SA в мирное время добавляется ошибка в несколько десятков метров. В особых случаях могут вводиться ошибки в сотни метров. Правительство США отвечает за работоспособность системы GPS перед миллионами пользователей, и можно рассчитывать, что повторное включение SA, и тем более, столь значительное снижение точности не будет введено без достаточно серьезных причин.

Загрубление точности достигается путем хаотического сдвига времени передачи псевдослучайного кода. Ошибки, возникающие от SA, — случайные и равновероятные в каждую сторону. SA влияет также на точность курса и скорости по GPS-навигатору. По этой причине неподвижный приемник часто показывает слегка изменяющиеся скорость и курс. Так что оценить степень воздействия SA можно по периодическим изменениям курса и скорости по GPS.

Погрешности в эфемеридных данных при GPS-навигации.

Прежде всего это погрешности, связанные с отклонением спутника от расчетной орбиты, неточностями часов, задержками сигнала в электронных схемах. Коррекция этих данных производится с Земли периодически, в промежутках между сеансами связи ошибки накапливаются. Ввиду малости эта группа погрешностей не имеет значения для гражданских пользователей.

Крайне редко, но могут иметь место более крупные ошибки из-за внезапных сбоев информации в устройствах памяти спутника. Если такой сбой не выявляется средствами самодиагностики, то до момента обнаружения ошибки наземной службой и передаче команды о неисправности спутник может какое-то время передавать неверную информацию. Происходит так называемое нарушение непрерывности или как часто переводят термин integrity, целостности навигации.

Влияние отраженного сигнала на точность GPS-навигации.

Кроме прямого сигнала от спутника GPS-приемник также может принять сигналы, отраженные от скал, зданий, проходящих судов так называемое характеризующие многолучевое распространение (multypath). Если прямой сигнал закрыт от приемника надстройками или такелажем судна, отраженный сигнал может быть сильнее. Этот сигнал проделывает более длинный путь, и приемник «думает», что находится дальше от спутника, чем на самом деле. Как правило, эти ошибки намного меньше 100 метров, поскольку только близко расположенные предметы способны дать достаточно сильное эхо.

Спутниковая геометрия при GPS-навигации.

Зависит от расположения приемника относительно спутников, по которым определяется позиция. Если приемник поймал четыре спутника и все они находятся на севере — спутниковая геометрия плохая. Результат ошибка до 50-100 метров или даже невозможность определения координат.

Все четыре измерения — из одного и того же направления, и область пересечения линий положений слишком велика. Но если 4 спутника будут расположены равномерно по сторонам горизонта, то точность намного возрастет. Спутниковая геометрия измеряется геометрическим фактором PDOP (Position Dilution Of Precision). Идеальному расположению спутников соответствует PDOP = 1. Большие значения говорят о плохой спутниковой геометрии.

Пригодными для навигации считаются значения PDOP меньше 6,0. В двухмерной навигации применяется HDOP (Horizontal Dilution Of Precision), меньше 4,0. Также используются вертикальный геометрический фактор VDOP, меньше 4,5, и временной TDOP, меньше 2,0. PDOP служит множителем для учета ошибок от других источников. Каждая измеренная приемником псевдодальность имеет свою погрешность, зависящую от атмосферных помех, ошибок в эфемеридах, режима SA, отраженного сигнала и так далее.

Так, если предполагаемые значения суммарных задержек сигнала по этим причинам, URE User Range Error или UERE User Equivalent Range Error, по-русски ЭДП — эквивалентная дальномерная погрешность, в сумме составляют 20 метров и HDOP = 1,5, то ожидаемая ошибка определения места будет равна 20 х 1,5 = 30 метров. Приемники GPS-навигаторов по-разному представляют информацию для оценки точности с использованием PDOP.

Кроме PDOP или HDOP, используется GQ (Geometric Quality) величина, обратная HDOP, или качественная оценка в баллах. Многие современные приемники показывают ЕРЕ (Estimated Position Error — ожидаемую ошибку позиции) непосредственно в единицах дистанции. ЕРЕ учитывает расположение спутников и прогноз погрешности сигналов для каждого спутника в зависимости от SA, состояния атмосферы, ошибок спутниковых часов, передаваемых в составе эфемеридной информации.

Спутниковая геометрия также становится проблемой при использовании приемника GPS-навигатора внутри транспортных средств, в густом лесу, горах, вблизи высоких зданий. Когда сигналы от отдельных спутников блокированы, положение оставшихся спутников определит, насколько точной будет позиция GPS, и их число покажет, может ли позиция вообще быть определена. Хороший приемник GPS-навигатора покажет не только, какие спутники используются, но и их местоположение, азимут и возвышение над горизонтом, так что вы можете определить, затруднен ли прием данного спутника.

По материалам книги Все о GPS-навигаторах.
Найман В.С., Самойлов А.Е., Ильин Н.Р., Шейнис А.И.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector