Меню

Инструментальный метод измерения примеры



Инструментальный метод измерения примеры

Колчков В.И. МЕТРОЛОГИЯ, СТАНДАРТИЗАЦИЯ И СЕРТИФИКАЦИЯ. М.:Учебное пособие

3. Метрология и технические измерения

3.2. Виды и методы измерений

Измерение — процесс нахождения значения физической величины опытным путем с помощью средств измерения.

Результатом процесса является значение физической величины Q = qU , где q — числовое значение физической величины в принятых единицах; U — единица физической величины. Значение физической величины Q, найденное при измерении, называют действительным.

Принцип измерений — физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

Метод измерений — совокупность приемов использования принципов и средств измерений.

Средствами измерений (СИ) являются используемые технические средства, имеющие нормированные метрологические свойства.

Существует различные виды измерений. Классификацию видов измерения проводят, исходя из характера зависимости измеряемой величины от времени, вида уравнения измерений, условий, определяющих точность результата измерений и способов выражения этих результатов.

  • По характеру зависимости измеряемой величины от времени измерения выделяют статические и динамические измерения.

Статические — это измерения, при которых измеряемая величина остается постоянной во времени. Такими измерениями являются, например, измерения размеров изделия, величины постоянного давления, температуры и др.

Динамические — это измерения, в процессе которых измеряемая величина изменяется во времени, например, измерение давления и температуры при сжатии газа в цилиндре двигателя.

  • По способу получения результатов, определяемому видом уравнения измерений, выделяют прямые, косвенные,совокупные и совместные измерения.

Прямые — это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных. Прямые измерения можно выразить формулой Q = X, где Q — искомое значение измеряемой величины, а X — значение, непосредственно получаемое из опытных данных. Примерами таких измерений являются: измерение длины линейкой или рулеткой, измерение диаметра штангенциркулем или микрометром, измерение угла угломером, измерение температуры термометром и т.п.

Косвенные — это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями. Таким образом, значение измеряемой величины вычисляют по формуле Q = F(x 1 , x 2 . x N ), где Q — искомое значение измеряемой величины; F — известная функциональная зависимость, x 1 , x 2 , … , x N — значения величин, полученные прямыми измерениями. Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения, измерение среднего диаметра резьбы методом трёх проволочек и т.д. Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить прямым измерением. Встречаются случаи, когда величину можно измерить только косвенным путём, например размеры астрономического или внутриатомного порядка.

Совокупные это такие измерения, при которых значения измеряемых величин определяют по результатам повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Значение искомой величины определяют решением системы уравнений, составляемых по результатам нескольких прямых измерений. Примером совокупных измерений является определение массы отдельных гирь набора, т.е. проведение калибровки по известной массе одной из них и по результатам прямых измерений и сравнения масс различных сочетаний гирь. Рассмотрим пример совокупных измерений, который заключается в проведении калибровки разновеса, состоящего из гирь массой 1, 2, 2*, 5, 10 и 20 кг. Ряд гирь (кроме 2*) представляет собой образцовые массы разного размера. Звездочкой отмечена гиря, имеющая значение, отличное от точного значения 2 кг. Калибровка состоит в определении массы каждой гири по одной образцовой гире, например по гире массой 1 кг. Меняя комбинацию гирь, проведем измерения. Составим уравнения, где цифрами обозначим массу отдельных гирь, например 1 обр обозначает массу образцовой гири в 1 кг, тогда: 1 = 1 обр + a; 1 + 1 обр = 2 + b; 2* = 2 + c; 1 + 2 + 2* = 5 + d и т.д. Дополнительные грузы, которые необходимо прибавлять к массе гири указанной в правой части уравнения или отнимать от неё для уравновешивания весов, обозначены a, b, c, d . Решив эту систему уравнений, можно определить значение массы каждой гири.

Совместные — это измерения, производимые одновременно двух или нескольких разноименных величин для нахождения функциональной зависимости между ними. Примерами совместных измерений являются определение длины стержня в зависимости от его температуры или зависимости электрического сопротивления проводника от давления и температуры.

  • По условиям, определяющим точность результата, измерения делятся на три класса.

1. Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.

Читайте также:  Дополнительные единицы измерения кодов тн вэд

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.

  • В зависимости от способа выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютными называют измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант. Примерами абсолютных измерений являются: определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.

Относительными называют измерения, при которых искомую величину сравнивают с одноименной величиной, играющей роль единицы или принятой за исходную. Примерами относительных измерений являются: измерение диаметра обечайки по числу оборотов мерного ролика, измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 куб.м воздуха к количеству водяных паров, которое насыщает 1 куб.м воздуха при данной температуре.

  • В зависимости от способа определения значений искомых величин различают два основных метода измерений метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки — метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия. Примерами таких измерений являются: измерение длины с помощью линейки, размеров деталей микрометром, угломером, давления манометром и т. д.

Метод сравнения с мерой — метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения диаметра калибра оптиметр устанавливают на нуль по блоку концевых мер длины, а результат измерения получают по показанию стрелки оптиметра, являющегося отклонением от нуля. Таким образом, измеряемая величина сравнивается с размером блока концевых мер.Существуют несколько разновидностей метода сравнения:

а) метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, позволяющий установить соотношение между этими величинами, например измерение сопротивления по мостовой схеме с включением в диагональ моста показывающего прибора;

б) дифференциальный метод, при котором измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на нуль по блоку концевых мер длины;

в) нулевой метод — также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Этим методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием;

г) при методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов. Например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал.

  • В зависимости от способа получения измерительной информации, измерения могут бытьконтактными и бесконтактными.
  • В зависимости от типа, применяемых измерительных средств, различают инструментальный, экспертный, эвристический и органолептический методы измерений.

Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

Экспертный метод оценки основан на использовании суждений группы специалистов.

Эвристические методы оценки основаны на интуиции.

Органолептические методы оценки основаны на использовании органов чувств человека. Оценка состояния объекта может проводиться поэлементными и комплексными измерениями. Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности. Например, эксцентриситета, овальности, огранки цилиндрического вала. Комплексный метод характеризуется измерением суммарного показателя качества, на который оказывают влияние отдельные его составляющие. Например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; контроль положения профиля по предельным контурам и т. п.

Читайте также:  Исследование артериального давления методика измерения регистрация полученных результатов

Источник

Методы измерений.

Дата добавления: 2014-05-05 ; просмотров: 4133 ; Нарушение авторских прав

Принцип измерения – совокупность физических принципов, на которых основаны измерения.

Метод измерения – это приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерения.

Метод измерения – совокупность конкретно описанных операций, выполнение которых обеспечивает получение результатов измерений с установленными показателями точности.

Метод измерения должен по возможности иметь минимальную погрешность.

В зависимости от измерительных средств, используемых в процессе измерения, и способа получения значений измеряемой величины различают методы: инструментальный, экспертный, эвристический, органолептический, непосредственной оценки и сравнения.

Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

Экспертный метод основан на использовании данных нескольких специалистов. Широко применяется в спорте, искусстве, медицине.

Эвристический метод основан на интуиции. Широко используется способ попарного сопоставления, когда измеряемые величины сначала сравниваются между собой попарно, а затем производится ранжирование на основании результатов этого сравнения.

Органолептический метод основан на использовании органов чувств человека (осязание, обоняние, зрение, слух, вкус).

Сущность метода непосредственной оценки состоит в том, что о значении измеряемой величины судят по показанию одного (прямые измерения) или нескольких (косвенные измерения) средств измерений, которые заранее проградуированы в единицах измеряемой величины. Это наиболее распространённый метод измерения. Его реализуют большинство средств измерений. Простейший пример – измерение напряжения вольтметром.

К методам сравнения относятся все те методы (дифференциальный, нулевой, замещения, совпадений), при которых измеряемая величина сравнивается с величиной, воспроизводимой мерой. Таким образом, отличительной особенностью этих методов является непосредственное участие мер в процессе измерения.

При дифференциальном методе измеряемая величина Х сравнивается непосредственно или косвенно с величиной Хм, воспроизводимой мерой.

О значении величины Х судят по измеряемой прибором разности ∆Х = Х – Хм и по известной величине Хм, воспроизводимой мерой. Следовательно, Х = Хм + ∆Х. При этом методе производится неполное уравновешивание измеряемой величины.

Пример метода – измерение массы весами с набором гирь.

Нулевой метод – разновидность дифференциального метода. Его отличие в том, что разность ∆Х → 0, что контролируется специальным прибором высокой точности – нуль-индикатором. В данном случае значение измеряемой величины равно значению, воспроизводимому мерой. Погрешность метода очень мала.

Пример метода – взвешивание на весах, когда на одном плече находится взвешиваемый груз, а на другом – набор эталонных грузов. Или измерение сопротивления с помощью уравновешенного моста.

Метод замещения заключается в поочередном измерении прибором искомой величины и выходного сигнала меры, однородного с измеряемой величиной. По результатам этих измерений вычисляется искомая величина.

Пример метода – измерение большого электрического сопротивления путём поочередного измерения силы тока, протекающего через контролируемый и образцовый резисторы. Питание цепи осуществляется от одного и того же источника постоянного тока.

При методе совпадений разность между измеряемой величиной и величиной, воспроизводимой метой, определяют, используя совпадение отметок шкал или периодических сигналов. Этот метод широко используется в практике неэлектрических измерений.

Пример – измерение длины при помощи штангенциркуля.

Источник

Методы измерений. 1) Без инструментальные:

Виды измерений

1) Без инструментальные:

· Органолептические (на использование органов чувств).

· Эвристические (основаны на интуиции).

2) Инструментальные:

По скорости изменения измеренного сигнала.

По степени участия человека:

По кол-ву измерений:

По точности измерений

· С точным оцениванием погрешности.

· С приближенным оцениванием погрешности.

По способу получения результатов измерений:

1) Безинструментальный метод.

· Ранжирование. Заключается в растановке измеряемых величин в возрастании или убывании.

· Метод попарного сопоставления. Первоначально идёт попарное сравнение (больше, меньше, лучше, хуже) далее следует ранжирование на основе попарного сопоставления.

2) Методы инструментальных измерений.

· Метод непосредственной оценки. Значение измеряемой величины следует по показанию одного (прямые измерения) или нескольких (косвенные) приборов заранее проградуированных в единицах измеряемой величины или в еденицах других величин от которых зависит измеряемая величина.

· Нулевой метод. Метод сравнения измеряемой величины с мерой при котором результирующий эффект воздействия величин на индикатор доводится до нуля.

Читайте также:  Микроконтроллеры для измерения напряжений

· Дифференциальный. Значение измеряемой величины в результате сравнения следует по разности одновременно производимых этими величинами эффектов и по известной величине воспроизводимой меры.

· Замещения. Заключается в поочередном измерении искомой величины и измерения этим же прибором меры воспроизводящей однородную с измеряемой величиной.

· Совпадений. Разность между измеряемой величиной и величиной воспроизводимой мерой измеряют используя совпадение отметок шкал или периодических сигналов (штангенциркуль).

· Чередования. Две почти равные величины меняются местами при переходе от 1-го измерения ко второму.

· Анологии. Измерительную инф-ю получают от модели объекта.

· Повторений. Производится несколько повторений одной и той же величины разными процедурами.

· Перечислений. Заключается в определении отношений двух величин путем подсчета.

3. СРЕДСТВА ИЗМЕРЕНИЙ. ТОЧНОСТЬ ИЗМЕРЕНИЙ.

С.И.-техничекие средства, используемые при измерениях и имеющие нормированные метрологические характеристики.

Классификация по сложности:

1) меры – средства измерений предназначенные для воспроизведения физической величины заданного размера.

2) Измерительные преобразователи. Предназначены для выработки измерительной инф-ии в форме удобной для передачи дальнейшего преобразования, обработки или хранения, по непосредственным наблюдениям не воспринимае6м.

3) Измерительные приборы. Средства, предназначенные для обработки сигнала измер-ой инф-ии в форме для доступной. Измерительная установка. Совокупность функциональна и конструктивно объединенных средств измерений и вспомогательных устройств, предназначенных для рациональной организации измерений.

4) Измер-ые инф-ые системы – совокупность средств измерений и вспомагательных устройств, предназначенных для автоматического сбора измерительной информации из ряда источников, передачи её на расстояние по каналам связи и представления в том или ином виде.

Классификация по точности измерений:

Влияние окружающей среды.

В момент измерения на средства измерения оказывает влияние окружающая среда, оператор, объект измерения и источник вспомогательной энергии (Влияние взаимное).

Хар-ки окружающей среды, в которых проводится измерение называют условием измерения (климатические условия (t°, p, влажность), электрические, магнитные поля, механические и акустические факторы, ионизирующие излучения, газовый состав атмосферы), т.к. оказывают влияние на результат измерений, то для средств измерения в нормативной технической документацией указываются условия, в которых нормированы их метрологические характеристики. Метрологические характеристики средств измерений нормируют раздельно для нормальных и рабочих средств измерения.

Нормальные – условия, при которых изменение метрологических характеристик воздействием влияющих величин принято пренебрегать. В нормальных условиях инструментальную погрешность называют основной ….

Рабочие условия отличаются от нормальных более широким диапазоном изменений влияющих величин. Влияние условий учитываются с помощью ф-ций влияния, возникающую при этом значительную погрешность называют дополнительной.

Обозначение средств измерений:

M – мощность; Ч – частота; А – для силы тока; В – вольтметр; Ф – Фазометр

На корпусе прибора указывается класс точности, обозначение единиц измерений, род тока (-,

), прочность изоляции ( ) положение прибора ( ), принцип действия прибора ( ).

Характеристики средств измерений делят на 2 группы:

Хар-ки оказывающие влияние на точность измерений называют метрологические, нормирование хар-к является целью оценки точности измерений, сравнение средств измерений между собой для обеспечения требуемой точности и с целью достижения взаимозаменяемости.

Проверка метрологическим органом в соответствии с метрологическими характеристиками. Нормам и установления на этой основе пригодности средств измерений, к применению называется поверкой.

Метрологические характеристики:

Ф-ция преобразования. Зависимость между информационными параметрами выходных и входных параметров средств измерения.

Чувствительность. (Коэффицент преобразования) – отношение приращения выходного сигнала к вызвавшему его приращение к изменению.

Постоянная прибора. С=1/S.

Цена деления. Разность значений величины соотв. двум соседним отметкам шкалы.

Разрешающая способность – значение 1-ой единицы отсчетного устройства.

Порог чувствительности – наименьшее изменение входной величины, способное вызвать заметное изменение показаний приборов.

Диапазон измерений – область значений измеряемой величины, для к-ой нормировано допускаемые приборов.

Погрешность – отклонение показаний средств измерений от истинных значений измеряемой величины.

Точность – качество средств измерений, отражающее близость к нулю её погрешности. Хар-ется классом точности.

Время установления показаний – время установления выходного сигнала при скачкообразном изменении входного сигнала.

Неметрологические:

Помеха устойчивость – способность выполнить свои ф-ии без помех.

Надежность – способность сохранить свои эксплутационные показатели в течении требуемого промежутка времени.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник