Меню

Измерения оптических волокон мэк



Измерения оптических волокон мэк

ГОСТ Р МЭК 60793-1-44-2013

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Методы измерений и проведение испытаний. Длина волны отсечки

Optical fibres. Part 1-44. Measurement methods and test procedures. Cut-off wavelength

Дата введения 2015-01-01

Предисловие

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский, проектно-конструкторский и технологический институт кабельной промышленности» (ОАО «ВНИИКП») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 46 «Кабельные изделия»

4 Настоящий стандарт идентичен международному стандарту МЭК 60793-1-44:2011* «Волокна оптические. Часть 1-44. Методы измерений и проведение испытаний. Длина волны отсечки» (IEC 60793-1-44:2011 «Optical fibres — Part 1-44: Measurement methods and test procedures — Cut-off wavelength», IDT).
_________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДA

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Апрель 2020 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. № 162-ФЗ «О стандартизации в Российской Федерации» . Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт устанавливает единые требования к измерению длины волны отсечки одномодового оптического волокна (далее — волокно), таким образом содействуя оценке пригодности волокон и кабелей для использования их в коммерческих целях.

В настоящем стандарте указаны методы измерения длины волны отсечки оптического волокна и кабеля.

Для измерения кабельной длины волны отсечки применяют два метода:

— метод А — с использованием отдельного волокна (не встроенного в кабель);

— метод В — с использованием волокна, помещенного в кабель.

Для измерения волоконной длины волны отсечки используют только один метод (метод С).

Метод испытания в настоящем стандарте описывает процедуры для определения длины волны отсечки образца волокна либо в отдельном состоянии ( ), либо помещенного в кабель ( ). В настоящем стандарте приведены три стандартные конфигурации; любая другая конфигурация будет указана в подробной спецификации на волокно/кабель. Эти процедуры применяют ко всем категориям волокон классов В и С (см. нормативные ссылки).

Во всех методах требуется проведение эталонного измерения. Существуют две методики эталонного сканирования, любая из которых может быть применена во всех методах:

— методика эталонного изгиба;

— методика с использованием многомодового волокна категории А1, принимаемого за эталонное.

2 Нормативные ссылки

3 Предварительная информация

4 Обзор методов

Все вышеуказанные методы основаны на методе передаваемой мощности, заключающемся в измерении изменения при изменении длины волны передаваемой мощности испытуемого волокна по сравнению с эталонным сканированием зависимости передаваемой мощности от длины волны. Эталонное сканирование нормирует флуктуации, зависящие от длины волны, в измерительном оборудовании в целях соответствующего определения моды и точного определения длины волны отсечки.

Для получения эталонного сканирования применяют одну из двух методик:

— с использованием образца с дополнительным изгибом меньшего радиуса;

— с использованием отдельного многомодового волокна категории А1.

При проведении данной процедуры определяют длину волны отсечки образца волокна, либо помещенного в кабель, либо расположенного отдельно. Для каждого метода установлена своя стандартная конфигурация; конфигурация, отличающаяся от стандартной, будет указана в подробной спецификации на волокно/кабель.

Волоконная длина волны отсечки , измеряемая при стандартной длине и условиях изгиба, указанных в настоящем стандарте, как правило, больше чем . При стандартном расположении отрезков кабеля измеренное значение , как правило, превышает передающую длину волны системы. Следовательно, кабельная длина волны отсечки представляет собой более полезную характеристику функциональных возможностей системы.

В коротких кабелях, например пигтейле меньшей длины (и, возможно, с большим радиусом изгиба), чем указано в данном методе, может возбуждаться модовый шум в области значений длин волн, близких к длине волны отсечки при наличии в составе кабеля неразъемных соединений, вносящих шумы более 0,5 дБ.

5 Отображающие функции

Отображающая функция представляет собой формулу, которая с использованием измеренных значений для одного типа длины волны отсечки позволяет прогнозировать значения для другого типа длины волны отсечки.

Эмпирическая отображающая функция индивидуальна для конкретного типа и конструкции волокна. Формируют отображающую функцию путем проведения опыта, для которого отбирают образцы волокна, представляющие спектр значений длин волн отсечки для данного типа волокна, затем измеряют значения, используя два метода, для которых нужно построить отображающую функцию. Линейная регрессия соответствующих значений часто позволяет построить удовлетворительную отображающую функцию. При установлении критерия для выбора волокна учитывают остаточные погрешности регрессии.

Потребитель и изготовитель должны достигнуть согласия относительно степени достоверности каждой установленной отображающей функции.

6 Эталонный метод испытаний

Метод А для кабельной длины волны отсечки, при котором используется отдельное волокно, принят в качестве эталонного метода испытания (RTM). Этот метод применяют при разрешении спорных ситуаций.

Испытательное оборудование для каждого метода указано в разделе 7.

7 Испытательное оборудование

7.1 Источник излучения

Используют источник отфильтрованного белого света с шириной линии не более 10 нм, стабильный по положению и интенсивности излучения. Источник света должен функционировать в диапазоне длин волн 1000-1600 нм, соответствующем диапазону большинства волокон класса В. Возможность функционирования источника света в диапазоне 800-1700 нм предусматривают для некоторых волокон категорий В4 и В5 или некоторых волокон класса С.

7.2 Модуляция

Световое излучение источника модулируют в целях предотвращения влияния рассеянного света на результаты испытания и содействия в восстановлении сигнала. Для этих целей используют механический модулятор с эталонным выходным сигналом.

7.3 Оптика возбуждения

Оптику возбуждения, например систему линз или многомодовое волокно, используют для переполнения испытуемого волокна сверх полного диапазона измеряемых длин волн. Данное возбуждение относительно нечувствительно к положению входного торцевого конца одномодового волокна и достаточно для возбуждения в образце основной моды и мод более высокого порядка.

При использовании многомодового волокна переполнение эталонного волокна может вызывать нежелательный волновой эффект в области спектра передаваемой мощности. Возбуждение ограничивают для исключения волнового эффекта. Один пример ограниченного возбуждения представлен в методе А, затухание в волокне методом его обрыва — в МЭК 60793-1-40. Другим примером ограничения возбуждения служит использование модового фильтра в виде оправки с намотанным на него волокном с достаточным вносимым затуханием (приблизительно 4 дБ).

7.5 Фильтр оболочечных мод

Принимают меры для удаления из образца мощности оболочечных мод. При некоторых обстоятельствах покрытие волокна выполняет эту функцию, в противном случае должны быть применены методы или устройства для извлечения мощности оболочечных мод на входном и выходном концах волокна.

Читайте также:  Как измерить предмет штангенциркулем

7.6 Оправка для размещения волокна

7.6.1 Общие положения

Обеспечивают устойчивое положение входного и выходного концов образца во время проведения измерения. Концы волокна поддерживают таким образом, чтобы они могли неоднократно и устойчиво располагаться по отношению к оптике возбуждения и детектирования, при этом в образце не должно возникать микроизгибов.

Размещение и длина образца, а также оборудование для поддержки волокна являются ключевыми элементами метода измерений. Они характеризуют типы длины волны отсечки.

Дополнительно могут быть использованы альтернативные способы размещения волокна, если полученные опытным путем результаты эквивалентны результатам, полученным при стандартном размещении в пределах 10 нм, или они больше значений, полученных при стандартных конфигурациях.

7.6.2 Кабельная длина волны отсечки. Метод А

На каждом конце образца образуют петлю диаметром 80 мм и петлю диаметром более или равным 280 мм в центральной части образца (см. рисунок 1).

Примечание — Две петли на одном конце могут быть заменены на одну петлю на каждом конце.

7.6.3 Кабельная длина волны отсечки. Метод В

На каждом конце образца образуют петлю диаметром 80 мм (см. рисунок 2).

Примечание — Две петли на одном конце могут быть заменены на одну петлю на каждом конце.

7.6.4 Волоконная длина волны отсечки. Метод С

Используют круглую оправку для первоначального размещения волокна для измерения длины волны отсечки (см. рисунок 4а). В качестве альтернативы для размещения волокна используют разрезную, полукруглую оправку радиусом 140 мм, части которой могут перемещаться, не допуская провисания волокна (рисунки 3 и 4b).

Рисунок 1 — Размещение кабеля для измерения длины волны отсечки по методу А

Рисунок 2 — Размещение кабеля для измерения длины волны отсечки по методу В

Примечание — Допускается минимальный изгиб кабеля, достаточный для соединения двух концов целого образца с измерительным устройством.

Источник

Измерения оптических волокон мэк

ГОСТ Р МЭК 60793-1-31-2010

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

Методы измерений и проведение испытаний.

Прочность при разрыве

Optical fibres. Part 1-31. Measurement methods and test procedures. Tensile strength

Дата введения 2012-01-01

Предисловие

1 ПОДГОТОВЛЕН Открытым акционерным обществом «Всероссийский научно-исследовательский, проектно-конструкторский и технологический институт кабельной промышленности» (ОАО «ВНИИКП») на основе собственного перевода на русский язык англоязычной версии стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 46 «Кабельные изделия»

4Настоящий стандарт идентичен международному стандарту МЭК 60793-1-31:2010* «Волокна оптические. Часть 1-31. Методы измерений и проведение испытаний. Прочность при разрыве» (IEC 60793-1-31:2010 «Optical fibres — Part 1-31: Measurement methods and test procedures — Tensile strength», IDT).
________________
* Доступ к международным и зарубежным документам, упомянутым в тексте, можно получить, обратившись в Службу поддержки пользователей. — Примечание изготовителя базы данных.

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

6 ПЕРЕИЗДАНИЕ. Апрель 2020 г.

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации» . Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

Введение

Распределения значений разрушающего напряжения могут быть использованы для прогнозирования надежности оптического волокна в различных условиях. В МЭК/ТО 62048 на основе математических расчетов показано, как это может быть реализовано. Для установления прогноза по надежности при испытаниях, проводимых для измерения характеристик распределения, контролируют:

— параметры оптического волокна, например наличие защитного покрытия, стадию производства волокна, диаметр;

— измерительную базу образца, те. длину испытуемой части волокна;

— значения приложенного напряжения или установленной скорости растяжения;

— внешние факторы;

— условия предварительного кондиционирования образцов или старения;

— объем выборки образцов.

Данным методом измеряют прочность оптического волокна при определенной постоянной скорости растяжения. Это испытание проводят с разрушением оптического волокна и не считают альтернативным испытанию по определению прочности волокна при перемотке под натяжением.

Данным методом испытывают типовые оптические волокна, для которых медианное значение разрушающего напряжения составляет более 3,1 ГПа для образцов с измерительной базой 0,5 м при наибольшей установленной скорости растяжения в 25% /мин. Для оптических волокон с меньшим медианным значением разрушающего напряжения условия, указанные в настоящем стандарте, не позволяют получить достаточную точность.

Типовые испытания проводят на «коротких отрезках» длиной до 1 м или на «длинных отрезках» от 10 до 20 м при числе образцов в выборке от 15 до 30.

Внешние факторы при проведении испытания и предварительное кондиционирование или старение имеют решающее значение для результатов данного испытания. Не существует единого мнения относительно модели экстраполяции результатов, полученных при одних внешних факторах, на другие внешние факторы. Однако для разрушающего напряжения при заданном напряжении или скорости растяжения по мере повышения относительной влажности значение разрушающего напряжения уменьшается. Увеличение или уменьшение значений наблюдают в измеренных параметрах распределения прочности в результате предварительного кондиционирования при повышенной температуре и влажности в течение одного или двух дней.

Данное испытание основано на теории механики разрушения хрупких материалов и принципе разрастания дефекта по степенному закону (см. МЭК/ТО 62048). Несмотря на то, что другие теории также применимы, теория механики разрушения/степенного закона наиболее распространена.

Типовым представителем считают оптическое волокно, которое специально не было повреждено или не было подвергнуто старению под воздействием внешних факторов. Типовое оптическое волокно имеет номинальный диаметр 125 мкм и защитное покрытие из акрилата номинальным диаметром 250 мкм или менее. Для таких типовых представителей не применяют кондиционирование. К нетиповым представителям может быть отнесено волокно с альтернативным защитным покрытием, волокно, подвергнутое старению под воздействием внешних факторов, или специально поврежденное волокно, или волокно без защитного покрытия. Указания для нетиповых представителей также приведены.

1 Область применения

Настоящий стандарт содержит описание метода определения прочности при разрыве образцов оптических волокон (далее — волокно) и устанавливает единые требования к механической характеристике волокна — его прочности при разрыве. Данным методом испытывают отдельные отрезки вне состава кабеля и нескрученных стеклянных волокон. Отрезки волокна разрывают, прилагая управляемое нарастающее напряжение или усилие, равномерно распределенное по всей длине волокна и поперечному сечению. Напряжение или усилие увеличивают с установленной постоянной скоростью до разрыва волокна.

Читайте также:  Система мер измерения информации

Распределение значения прочности при разрыве данного волокна строго зависит от длины образца, скорости увеличения нагрузки и условий окружающей среды. Настоящее испытание может быть использовано для контроля качества, если требуются статистические данные о прочности волокна. Результаты фиксируют в виде статистического распределения контроля качества.

Как правило, испытание проводят после кондиционирования образца при установленной температуре и влажности. Однако в некоторых случаях может быть достаточным измерение значений в условиях температуры и влажности окружающей среды.

Настоящий метод распространяется на волокна категорий А1, А2, A3, В и С.

Примечание — Данное испытание предусматривает растяжение отрезков волокна до разрыва. После разрыва стеклянные фрагменты могут разлетаться по участку проведения испытания. Рекомендуется использовать защитные экраны. Защитные очки следует носить все время пребывания в зоне проведения испытания.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты. Для датированных ссылок применяют только указанное издание ссылочного стандарта, для недатированных — последнее издание (включая все его изменения):

IEC 60793-1-20, Optical fibres — Part 1-20: Measurement methods and test procedures — Fibre geometry (Волокна оптические. Часть 1-20. Методы измерений и проведение испытаний. Геометрия волокна)

IEC 60793-1-21, Optical fibres — Part 1-21: Measurement methods and test procedures — Coating geometry (Волокна оптические. Часть 1-21. Методы измерений и проведение испытаний. Геометрия покрытия)

3 Испытательное устройство

3.1 Общие положения

В настоящем разделе рассмотрены основные требования к оборудованию для испытания волокна на динамическую прочность.

Существует много устройств, удовлетворяющих данным требованиям. Схематические изображения некоторых устройств приведены в приложении А. Выбор определенного устройства зависит от следующих факторов:

— измерительной базы образца;

— диапазона прилагаемого напряжения или скорости растяжения;

— внешних факторов;

— прочности образца.

3.2 Закрепление концов волокна

Закрепляют оба конца испытуемого волокна и растягивают его до разрушения в области измерительной базы. Крепление не должно допускать проскальзывания волокна до разрушения и должно минимизировать возможность разрушения в области крепления.

Разрыв, который происходит в области крепления, регистрируют, но не используют его в последующих расчетах. Из-за того, что во время испытания увеличивается растяжение волокна, в местах крепления происходит некоторое проскальзывание волокна. При более высоких уровнях напряжения, связанных с короткими измерительными базами, проскальзывание может вызывать повреждение и разрушение волокна в области крепления, которое трудно установить. Частота таких разрушений изменяется в зависимости от значения приложенного напряжения или скорости растяжения. Требуется тщательный осмотр или другой способ контроля мест разрыва волокна для предотвращения возможности включить в анализ разрушение волокна в области крепления.

Для закрепления волокна используют натяжной барабан, как правило покрытый оболочкой из эластомера [см. рисунок А.1 (приложение А)]. Часть волокна, которую не будут подвергать испытанию, наматывают на барабан несколькими витками и фиксируют волокно на концах, например эластичной лентой. Волокно наматывают без перехлестов. Поверхность барабана должна быть достаточно твердой, чтобы при полной нагрузке волокно не врезалось в нее. Степень проскальзывания волокна и степень повреждения барабана зависят от взаимодействия оболочки волокна и материала поверхности барабана и его толщины, а также от числа витков. Требуется провести тщательное предварительное испытание для подтверждения правильности выбора покрытия барабана.

Диаметры барабана и шкива выбирают такими, чтобы волокно не разламывалось на барабане вследствие напряжения изгиба. Для типового волокна с кварцевым покрытием значение напряжения изгиба не должно превышать 0,175 ГПа. (Для типового кварцевого волокна размерами 125/250 мкм минимальный диаметр барабана равен 50 мм.) Конкретный способ закрепления волокна приведен в приложении В.

3.3 Крепление образца

Образец подсоединяют к двум захватам. Измерительная база — это длина волокна между осями натяжных барабанов, к которым крепят волокно до его растяжения. Для уменьшения зоны, требуемой для проведения испытания на образцах с длинной измерительной базой, допускается использовать один или более шкив для поддержки образца [см. рисунок А.4 (приложение А)]. Шкивы должны быть соответствующей конструкции и иметь чистую поверхность, чтобы не повреждать волокно. Остальная часть волокна, вне шкивов и натяжных барабанов, не должна ни с чем соприкасаться.

Если несколько волокон испытывают одновременно, как показано на рисунке А.5 (приложение А), требуется разделительное устройство для предотвращения перехлеста или иного взаимодействия оборвавшегося волокна с другими испытуемыми волокнами.

3.4 Растяжение волокна

Волокно растягивают при фиксированной скорости растяжения до его обрыва. Номинальную скорость растяжения выражают как процентное увеличение длины относительно измерительной базы за минуту.

Существует два основных альтернативных метода растяжения волокна:

— метод А. Увеличивают расстояние между натяжными барабанами с захватами путем их разведения с фиксированной скоростью при начальном расстоянии, равном измерительной базе [рисунок А.2 (приложение А)];

— метод В. Вращают натяжной барабан с фиксированной скоростью, наматывая волокно и растягивая участок волокна между барабанами [рисунки А.3-А.5 (приложение А)]. Вращение не должно приводить к перехлесту витков волокна на барабане.

Скорость растяжения калибруют в пределах ±10% номинальной скорости растяжения. Оборудование некоторых типов управляется компьютером, поэтому допускается динамическое управление движением натяжного барабана для достижения постоянной скорости изменения напряжения. Примеры практической реализации этого оборудования приведены в приложении С.

Скорость растяжения должна быть согласована между потребителем и изготовителем. Как правило, используют скорость растяжения от 2,5% до 5% или от 15% до 25%.

3.5 Измерение усилия при разрушении

Измеряют растягивающую нагрузку (силу при растяжении) в момент разрушения для каждого образца с помощью калиброванного динамометрического датчика с погрешностью не более ±1% значения действительной нагрузки. Это может быть выполнено разными методами:

— с помощью регистратора с записью диаграммы на ленте;

— с помощью прибора, измеряющего и фиксирующего значения растягивающей силы;

— методом компьютерной дискретизации.

Представляют средние значения измеренной растягивающей нагрузки как функцию времени для определения скорости изменения напряжения. Этого не требуется для каждого отдельного испытания, но это следует выполнять с определенным интервалом времени.

Калибруют динамометрический датчик с погрешностью не более 0,5% значения разрушающей или максимальной нагрузки для каждого диапазона разрушающих нагрузок, настраивая его таким же образом, как и при испытании волокна. Данную процедуру проводят с использованием троса, к которому присоединен груз известной массы для испытуемого образца. Для метода В вместо натяжного барабана может быть использован легкий шкив, имеющий низкое трение и не присоединенный к динамометрическому датчику. Трос, один конец которого присоединен к барабану динамометрического датчика, а другой — к грузу известной массы, должен дублировать направление испытуемого образца и иметь диаметр, сравнимый с диаметром испытуемого образца. Рекомендуется применять минимальный из трех калиброванных грузов, обеспечивающий типовые разрушения волокна.

3.6 Оборудование контроля внешних воздействующих факторов

Известно, что измеряемые разрушающее напряжение и характеристики усталости изменяются при изменении температуры и влажности волокна, которые следует контролировать как при предварительной подготовке образцов, так и при их испытании. Требуемый контроль может быть обеспечен использованием оборудования многих видов, включая контроль во всем помещении, в котором проводят испытания.

Читайте также:  Факторы вызывающие погрешности измерений

Типовые требования для контроля:

— температура: (23±2)°С;

— относительная влажность: (50±5)%.

Воздействие других внешних факторов, таких как высокая влажность при неконденсированной влаге, может быть достигнуто заключением испытуемого образца в изолированную камеру с инжекцией водных паров. На рисунке А.5 (приложение А) показано комплектное испытательное устройство с ограждением поверх ванны с циркулирующей водой.

4 Подготовка образца

4.1 Определение

Выборка представляет собой одно волокно или более для данной категории волокна. Требуемый результат испытаний каждой выборки обеспечивают разделением ее на меньшие отрезки, называемые образцами. Результаты испытаний на этих образцах суммируют с целью получить общий результат для выборки. Термин «объем выборки» используют для обозначения числа образцов, испытуемых в соответствии с настоящим стандартом.

Для ленточного волокна выбирают образцы, имеющие однородную в поперечном сечении структуру ленты. Следует осторожно извлекать волокна из ленты во избежание случайного уменьшения прочности.

4.2 Объем выборки и измерительная база образца

Результат испытания представляет собой статистическое распределение значений разрушающего напряжения. Следовательно, все регистрируемые параметры относятся к статистическим с присущей им изменчивостью как функцией от объема выборки и изменения размера дефекта в пределах выборки. В слабейшем месте или при наибольшем дефекте в пределах образца происходит разрушение, а типовое значение разрушающего напряжения при этом уменьшается по мере увеличения измерительной базы.

Испытуемое волокно может иметь дефекты, порождаемые многими причинами. В качестве примера на графике Вейбулла на рисунке 1, а также в 6.2 показано бимодальное комплексное распределение, полученное для испытуемого волокна с измерительной базой 20 м. Узкую область вертикального распределения в правой части (около 5 ГПа) называют внутренней областью; более широкую область для значений ниже 5 ГПа называют внешней областью.

Рисунок 1 — График бимодального распределения Вейбулла для прочности при разрыве испытуемого волокна с измерительной базой 20 м при скорости растяжения 5%/мин

Испытания на образцах с измерительными базами 0,5 м, как правило, не позволяют получить типичных результатов измерения дефектов во внешней области. Иногда, однако, разрушающее напряжение для области внешнего дефекта фиксируют и классифицируют при этом как «выпадающее значение». Если выпадающее значение включают в анализ данных, в параметрах будут появляться ошибки. Для типовых испытаний рекомендуется единая методика исключения выпадающих значений.

Для испытаний, которые предназначены для измерения характеристик во внешней области, рекомендуются большие объемы выборок (сотни образцов) и большие измерительные базы (20 м). Для того чтобы охарактеризовать внутреннюю область согласно настоящему стандарту, как правило, используют измерительную базу 0,5 м. Для динамической прочности часто используют объем выборки, равный 30. Любое отклонение от этих значений должно быть указано в технических условиях.

С целью подтвердить получение требуемой точности может быть проведен статистический анализ.

4.3 Дополнительные измерения

Вычисления разрушающего напряжения требуют преобразования растягивающей нагрузки в напряжение в поперечном сечении стеклянной части волокна. Диаметр покрытия, измеренный по МЭК 60793-1-20, используют в этих вычислениях для расчета площади поперечного сечения. Защитное покрытие также принимает на себя часть растягивающей нагрузки, что уменьшает напряжение в стеклянной части поперечного сечения. В 6.1 приведены формулы для вычисления напряжения.

Поправочный коэффициент для защитного покрытия зависит от толщины покрытия, измеренной по МЭК 60793-1-21, модуля Юнга каждого слоя покрытия и модуля стекла.

Модуль Юнга термообработанного покрытия, как правило, указывает изготовитель. Для типового волокна покрытием воспринимается менее 5% общей нагрузки, и компенсация (следовательно, и измерение) для покрытия не требуется (см. 6.1). Если это учтено, зарегистрированное разрушающее напряжение больше действительного на определенный процент. При компенсации влияния покрытия для всех образцов могут быть использованы средние и номинальные значения. Степень влияния модуля Юнга покрытия на разрушающее напряжение может изменяться с изменением напряжения или скорости растяжения. Если степень влияния при любых значениях напряжения или скорости растяжения более 5% общей нагрузки, тогда влияние покрытия учитывают в расчетах.

4.4 Внешние воздействующие факторы

Рассмотрены две основные группы учитываемых внешних воздействующих факторов: внешние факторы, способствующие старению волокна, и внешние факторы, при которых проводят испытания.

Иногда требуется провести старение волокна. Даже короткое ускоренное старение может привести к увеличению или уменьшению измеряемой прочности волокон некоторых типов. Причины этих явлений не всегда ясны. Как следствие, методы экстраполяции воздействия внешних факторов, способствующих ускоренному старению, на другие внешние воздействующие факторы находятся в стадии рассмотрения.

После интенсивного старения коэффициент трения поверхности защитного покрытия может измениться. После любого старения и перед любыми испытаниями образцы волокна должны быть подвергнуты предварительному кондиционированию в условиях окружающей среды, в которых будет проведено испытание, в течение не менее 12 ч.

Типовые условия проведения испытания: температура (23±2)°С и относительная влажность (50±5)%. Воздействие других внешних факторов, таких как высокая относительная влажность при неконденсированной влаге, может привести к существенно различающимся значениям разрушающего напряжения.

5 Проведение испытания

5.1 Предварительные условия

a) При необходимости образцы подвергают старению.

b) Образцы подвергают предварительному кондиционированию.

5.2 Порядок проведения испытания для одного образца

a) Закрепляют образец на натяжных барабанах, не допуская перекрещивания витков волокна и повреждения волокна при монтаже в пределах измерительной базы.

b) Проверяют настройку оборудования для требуемой номинальной скорости растяжения.

c) Возвращают в исходное состояние индикатор, регистрирующий натяжение.

d) Приводят в движение натяжной барабан. Для номинальных скоростей растяжения 0,03%/мин и менее образец может быть предварительно растянут со скоростью 0,3%/мин приблизительно до половины ожидаемого значения разрушающего напряжения при более низкой скорости. Ожидаемое разрушающее напряжение может быть спрогнозировано по результатам, полученным при более высоких скоростях растяжения. Если при испытании волокно может быть повреждено, то предварительное растяжение волокна не рекомендуется, если только ожидаемое время до разрыва не превышает 4 ч.

e) При разрыве останавливают натяжной барабан, регистрируют значение разрушающей нагрузки и, при необходимости, скорости изменения напряжения.

f) Констатируют, что разрыв волокна не произошел на натяжном барабане. В противном случае отмечают это измерение для того, чтобы его результаты не были использованы в расчетах.

g) Удаляют остатки волокна с натяжных барабанов и при необходимости выполняют любое из дополнительных измерений, указанных в 4.3.

5.3 Порядок установления для всех образцов требуемой номинальной скорости растяжения

a) Фиксируют номинальную скорость растяжения и обозначения каждой выборки испытуемых волокон.

b) Определяют, будет ли компенсировано влияние покрытия. Если будет, то фиксируют соответствующие параметры покрытия (см. 6.1). Фиксируют номинальный диаметр покрытия, если его используют для расчета напряжения.

c) Выполняют операции по 5.2 для каждого образца.

d) Используя преобразования по 6.1, рассчитывают разрушающее напряжение для каждого образца и располагают полученные значения в порядке возрастания.

6 Расчеты

6.1 Преобразование растягивающей нагрузки в разрушающее напряжение

Используют следующие обозначения и единицы измерения:

Источник