Меню

Измерения прямые косвенные совместные совокупные абсолютные относительные



Измерения. Прямые, косвенные, совокупные и совместные. Относительные и абсолютные. Методы измерений

Измерение — нахождение значения физической величины (параметра) опытным путем с помощью специальных технических средств.

Средства измерений — технические средства, используемые при измерениях и имеющие нормированные метрологические характеристики. В число средств измерений входят меры, измерительные приборы и измерительные установки. К ним относятся также измерительные преобразователи и измерительные принадлежности, которые не могут применяться самостоятельно, но служат для расширения диапазона измерений, повышения точности, передачи результатов на расстояние и т. п.

Особую роль в метрологии играют меры как носители единиц физических величин.

Мера — средство измерений в виде тела или устройства, предназначенного для воспроизведения величины одного или нескольких размеров, значения которых она содержит с необходимой для измерений точностью. Мерами являются, например, гири, мерные колбы, концевые меры длины. Мера позволяет воспроизвести величины, значения которых связаны с принятой единицей этой величины известным соотношением. Некоторые измерительные приборы могут применяться только с мерами.

По способу получения числового значения измеряемой величины все измерения подразделяют на четыре основные вида: прямые, косвенные, совокупные и совместные.

Прямые — это измерения, при которых значение физической величины находят непосредственно из опытных данных, сравнивая измеряемую величину с мерой этой величины или используя измерительные средства, непосредственно дающие значения измеряемой величины (например, измерение длины линейкой, температуры — термометром, массы — взвешиванием и т.д.).

Косвенные — это измерения, при которых размер искомой величины определяют путем прямых измерений других величин, связанных с искомой величиной определенными зависимостями. Например, прочность бетона определяют путем измерения разрушающего усилия и площади поперечного сечения образца или путем измерения времени прохождения через бетон ультразвукового импульса и расстояния между излучателем и приемником.

Совокупные — это производимые одновременно измерения нескольких одноименных величин, при которых искомую величину определяют решением уравнений, получаемых при прямых измерениях различных сочетаний этих величин. Например, состав бетонной смеси определяют путем отбора из одного замеса двух проб, одну из которых взвешивают до и после прокаливания (определяют расход воды), а вторую пробу взвешивают до и после рассева с промывкой и высушиванием (определяют расход песка и щебня). Расход цемента определяют по результатам двух измерений, решая уравнение.

Совместные — это производимые одновременно измерения двух или нескольких неодноименных величин для нахождения зависимостей между ними. Например, для измерения с необходимой точностью прочности бетона ультразвуковым методом предварительно проводят совместные измерения: измеряют скорость ультразвука в бетонных образцах и затем измеряют прочность этих образцов разрушающим методом. С учетом полученной зависимости проводят градуировку ультразвукового прибора или строят градуировочную кривую, которой пользуются в дальнейшем при проведении измерений.

По условиям, определяющим точность результата, измерения делятся на три класса.

1. Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.

В зависимости от способа выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютными называют измерения, которые основаны на прямых измерениях одной или нескольких основных величин или на использовании значений физических констант. Примерами абсолютных измерений являются: определение длины в метрах, силы электрического тока в амперах, ускорения свободного падения в метрах на секунду в квадрате.

Относительными называют измерения, при которых искомую величину сравнивают с одноименной величиной, играющей роль единицы или принятой за исходную. Примерами относительных измерений являются: измерение диаметра обечайки по числу оборотов мерного ролика, измерение относительной влажности воздуха, определяемой как отношение количества водяных паров в 1 куб.м воздуха к количеству водяных паров, которое насыщает 1 куб.м воздуха при данной температуре.

В зависимости от способа определения значений искомых величин различают два основных метода измерений метод непосредственной оценки и метод сравнения с мерой.

Метод непосредственной оценки — метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия. Примерами таких измерений являются: измерение длины с помощью линейки, размеров деталей микрометром, угломером, давления манометром и т. д.

Метод сравнения с мерой — метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, для измерения диаметра калибра оптиметр устанавливают на нуль по блоку концевых мер длины, а результат измерения получают по показанию стрелки оптиметра, являющегося отклонением от нуля. Таким образом, измеряемая величина сравнивается с размером блока концевых мер.

Читайте также:  При измерении венозного давления используют

Существуют несколько разновидностей метода сравнения:

а) метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, позволяющий установить соотношение между этими величинами, например измерение сопротивления по мостовой схеме с включением в диагональ моста показывающего прибора;

б) дифференциальный метод, при котором измеряемую величину сравнивают с известной величиной, воспроизводимой мерой. Этим методом, например, определяют отклонение контролируемого диаметра детали на оптиметре после его настройки на нуль по блоку концевых мер длины;

в) нулевой метод — также разновидность метода сравнения с мерой, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля. Этим методом измеряют электрическое сопротивление по схеме моста с полным его уравновешиванием;

г) при методе совпадений разность между измеряемой величиной и величиной, воспроизводимой мерой, определяют, используя совпадения отметок шкал или периодических сигналов. Например, при измерении штангенциркулем используют совпадение отметок основной и нониусной шкал.

В зависимости от способа получения измерительной информации, измерения могут быть контактными и бесконтактными.

В зависимости от типа, применяемых измерительных средств, различают инструментальный, экспертный, эвристический и органолептический методы измерений.

Инструментальный метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

Экспертный методоценки основан на использовании суждений группы специалистов.

Эвристические методы оценки основаны на интуиции.

Органолептические методыоценки основаны на использовании органов чувств человека. Оценка состояния объекта может проводиться поэлементными и комплексными измерениями. Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности. Например, эксцентриситета, овальности, огранки цилиндрического вала. Комплексный метод характеризуется измерением суммарного показателя качества, на который оказывают влияние отдельные его составляющие. Например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.; контроль положения профиля по предельным контурам и т. п.

studopedia.org — Студопедия.Орг — 2014-2021 год. Студопедия не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования (0.003 с) .

Источник

Виды измерений (абсолютные и относительные, однократные и многократные)

Виды измерений (прямые и косвенные, совокупные и совместные измерения).

Видом измерений названа часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

Измерение физической величины (измерение величины; измерение) – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины ( РМГ 29 – 99).

Метод измерений – совокупность приемов использования принципов и средств измерений.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

Прямые измерения — искомое значение величины определяют непосредственно по устройству отображения измерительной информации применяемого средства измерений. Формально без учета погрешности измерения они могут быть описаны выражением Q = х, где Q – измеряемая величина, х – результат измерения.

Косвенные измерения – измерения, при которых искомое значение величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям. Формальная запись такого измерения Q = F (X, Y, Z ), где X, Y, Z – результаты прямых измерений.

Принципиальной особенностью косвенных измерений является необходимость обработки (преобразования) результатов вне прибора (на бумаге, с помощью калькулятора или компьютера) — (нахождение значения угла треугольника по измеренным длинам сторон)

Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин.

При совокупных измерениях осуществляется измерение нескольких одноименных величин, например, длин L1, L2, L3 и т.д.

Совместные измерения — проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними. Подразумевают измерение нескольких не одноименных величин (X, Y, Z и т.д.) — нахождения температурного коэффициента линейного расширения.

Для отображения результатов, получаемых при измерениях, могут быть использованы разные оценочные шкалы. В соответствии с этим принято различать абсолютные и относительные измерения .

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Это крайне неудачное определение сопровождается примером (измерение силы F = mg основано на измерении основной величины — массы m и использовании физической постоянной g в точке измерения массы), который подтверждает нелепость предложенной трактовки. В примечании сказано, что понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

Пример — Измерение активности радионуклида в источнике по отношению к активности радионуклида в однотипном источнике, аттестованном в качестве эталонной меры активности.

По числу повторных измерений одной и той же величины различают однократные и многократные измерения , причем многократные измерения проводят или для страховки от грубых погрешностей или для последующей математической обработки результатов (расчет средних значений, статистическая оценка отклонений и др.). В зависимости от поставленной цели число повторных измерений может колебаться в пределах 10

Читайте также:  Как можно измерить длину любого отрезка

Однократное измерение – измерение, выполненное один раз.

Многократное измерение (измерения с многократными наблюдениями) – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.

Источник

Прямые, косвенные, совокупные и совместные измерения

Виды и методы измерений

Классификация видов измерений приведена на рис. 2.2.

С точки зрения общих способов получения результатов измерения разделяют на

Наиболее часто используются прямые измерения , состоящие в том, что искомое значение величины находят из опытных данных путем экспериментального сравнения. Например, длину измеряют непосредственно линейкой, температуру — термометром, силу— динамометром. Уравнение прямого измерения: у = Сх, где С — цена деления СИ.

Если искомое значение величины находят на основании известной зависимости между этой величиной и величинами, найденными прямыми измерениями, то этот вид измерений называют косвенным . Например, объем параллелепипеда находят путем умножения трех линейных величин (длины, ширины и высоты); электрическое сопротивление — путем деления падения напряжения на величину силы электрического тока. Уравнение косвенного измерения y = f(x1,x2. xn), где xii-й результат прямого измерения.

Совокупные измерения осуществляются путем одновременного измерения нескольких одноименных величин, при которых искомое значение находят решением системы уравнений, получаемых в результате прямых измерений различных сочетаний этих величин. При определении взаимоиндуктивности катушки М, например, используют два метода: сложения и вычитания полей. Если индуктивность одной из них L1, а другой — L2, то находят L01=L1+L 2+2M и L01= L1+L2-2M . Откуда M = (L01L02)/4.

Совместными называют производимые одновременно (прямые и косвенные) измерения двух или нескольких неодноименных величин. Целью этих измерений, по существу, является нахождение функциональной связи между величинами. Например, измерение сопротивления Rt проводника при фиксированной температуре t по формуле

Rt = R(1+aDt),

где R и a — сопротивление при известной температуре to (обычно 20 °С) и температурный коэффициент — величины постоянные, измеренные косвенным методом; Dt = tto — разность температур; t — заданное значение температуры, измеряемое прямым методом.

Рис. 2.2. Классификация видов измерений

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.
Статистические измерения
связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т д.
Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.
Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.
Статические и динамические измерения в идеальном виде на практике редки.
По количеству измерительной информации различают однократные и многократные измерения.
Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.
Многократные измерения -характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.

Приведенные виды измерений включают различные методы, совокупность приёмов использования принципов и средств измерений

Методика — это технология выполнения измерений с целью наилучшей реализации метода.

В соответствии с РМГ 29—99 различают:

1. Метод непосредственной оценки, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора, например измерение давления пружинным манометром, массы — на весах, силы электрического тока — амперметром.

2. Метод сравнения с мерой, где измеряемую величину сравнивают с величиной, воспроизводимой мерой. Например, измерение массы на рычажных весах с уравновешиванием гирей; измерение напряжения постоянного тока на компенсаторе сравнением с ЭДС параллельного элемента.,

3. Метод дополнения , если значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.

4. Дифференциальный метод характеризуется измерением разности между измеряемой величиной и известной величиной, воспроизводимой мерой. Метод позволяет получить результат высокой точности при использовании относительно грубых средств измерения.

Пример 2.1.Измерить длину х стержня, если известна длина l(l

·метод совпадений, где разность между сравниваемыми величинами измеряют, используя совпадение отметок шкал или периодических сигналов.

Например, при измерении длины штангенциркулем наблюдают совпадение отметок на шкалах штангенциркуля и нониуса; при измерении частоты вращения стробоскопом — метки на вращающемся объекте с момента вспышек известной частоты.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

27.2. Виды измерений

Измерения различают по способу получения информации, по характеру изменений измеряемой величины в процессе измерений, по количеству измерительной информации, по отношению к основным единицам.

Читайте также:  Методы измерения величин давления

По способу получения информации измерения разделяют на прямые, косвенные, совокупные и совместные.

Прямые измерения — это непосредственное сравнение физической величины с ее мерой. Например, при определении длины предмета линейкой происходит сравнение искомой величины (количественного выражения значения длины) с мерой, т.е. линейкой.

Косвенные измерения отличаются от прямых тем, что искомое значение величины устанавливают по результатам прямых измерений таких величин, которые связаны с искомой определенной зависимостью, Так, если измерить силу тока амперметром, а напряжение вольтметром, то по известной функциональной взаимосвязи всех трех названных величин можно рассчитать мощность электрической цепи.

Совокупные измерения сопряжены с решением системы уравнений, составляемых по результатам одновременных измерений нескольких однородных величин. Решение системы уравнений дает возможность вычислить искомую величину.

Совместные измерения — это измерения двух или более неоднородных физических величин для определения зависимости между ними.

Совокупные и совместные измерения часто применяют в измерениях различных параметров и характеристик в области электротехники.

По характеру изменения измеряемой величины в процессе измерений бывают статистические, динамические и статические измерения.

Статистические измерения связаны с определением характеристик случайных процессов, звуковых сигналов, уровня шумов и т.д.

Статические измерения имеют место тогда, когда измеряемая величина практически постоянна.

Динамические измерения связаны с такими величинами, которые в процессе измерений претерпевают те или иные изменения.

Статические и динамические измерения в идеальном виде на практике редки.

По количеству измерительной информации различают однократные и многократные измерения.

Однократные измерения — это одно измерение одной величины, т.е. число измерений равно числу измеряемых величин. Практическое применение такого вида измерений всегда сопряжено с большими погрешностями, поэтому следует проводить не менее трех однократных измерений и находить конечный результат как среднее арифметическое значение.

Многократные измерения характеризуются превышением числа измерений количества измеряемых величин. Обычно минимальное число измерений в данном случае больше трех. Преимущество многократных измерений — в значительном снижении влияний случайных факторов на погрешность измерения.

По отношению к основным единицам измерения делят на абсолютные и относительные.

Абсолютными измерениями называют такие, при которых используются прямое измерение одной (иногда нескольких) основной величины и физическая константа. Так, в известной формуле Эйнштейна Е=тс 2 масса (m) — основная физическая величина, которая может быть измерена прямым путем (взвешиванием), а скорость света (c) — физическая константа.

Относительные измерения базируются на установлении отношения измеряемой величины к однородной, применяемой в качестве единицы. Естественно, что искомое значение зависит от используемой единицы измерений.

С измерениями связаны такие понятия, как «шкала измерений», «принцип измерений», «метод измерений».

Шкала измерений — это упорядоченная совокупность значений физической величины, которая служит основой для ее измерения. Поясним это понятие на примере температурных шкал.

В шкале Цельсия за начало отсчета принята температура таяния льда, а в качестве основного интервала (опорной точки) — температура кипения воды. Одна сотая часть этого интервала является единицей температуры (градус Цельсия). В температурной шкале Фаренгейта за начало отсчета принята температура таяния смеси льда и нашатырного спирта (либо поваренной соли), а в качестве опорной точки взята нормальная температура тела здорового человека. За единицу температуры (градус Фаренгейта) принята одна девяносто шестая часть основного интервала. По этой шкале температура таяния льда равна + 32°F, а температура кипения воды + 212°F. Таким образом, если по шкале Цельсия разность между температурой кипения воды и таяния льда составляет 100°С, то по Фаренгейту она равна 180°F. На этом примере мы видим роль принятой шкалы как в количественном значении измеряемой величины, так и в аспекте обеспечения единства измерений. В данном случае требуется находить отношение размеров единиц, чтобы можно было сравнить результаты измерений, т.е. t o F/t°C.

В метрологической практике известны несколько разновидностей шкал: шкала наименований, шкала порядка, шкала интервалов, шкала отношений и др.

Шкала наименований — это своего рода качественная, а не количественная шкала, она не содержит нуля и единиц измерений. Примером может служить атлас цветов (шкала цветов). Процесс измерения заключается в визуальном сравнении окрашенного предмета с образцами цветов (эталонными образцами атласа

цветов). Поскольку каждый цвет имеет немало вариантов, такое сравнение под силу опытному эксперту, который обладает не только практическим опытом, но и соответствующими особыми характеристиками зрительных возможностей

Шкала порядка характеризует значение измеряемой величины в баллах (шкала землетрясений, силы ветра, твердости физических тел и т.п.).

Шкала интервалов (разностей) имеет условные нулевые значения, а интервалы устанавливаются по согласованию. Такими шкалами являются шкала времени, шкала длины.

Шкала отношений имеет естественное нулевое значение, а единица измерений устанавливается по согласованию. Например, шкала массы (обычно мы говорим «веса»), начинаясь от нуля, может быть градуирована по-разному в зависимости от требуемой точности взвешивания. Сравните бытовые и аналитические весы.

Источник