Измерения тока измерения напряжения измерение мощности измерение сопротивления

Измерение тока, напряжения, сопротивления

Измерение тока, напряжения, сопротивления

Измерение напряжения
Для измерения напряжения употребляются вольтметры. Вольтметры включаются параллельно тому участку цепи, где необходимо измерить напряжение. Чтобы прибор не потреблял большой ток и не влиял на величину напряжения цепи, обмотка его должна иметь большое сопротивление. Чем больше внутреннее сопротивление вольтметра, тем точнее он будет измерять величину напряжения. Для этого обмотка вольтметра изготовляется из большого числа витков тонкой проволоки.
Для расширения пределов измерения вольтметров употребляются добавочные сопротивления, включаемые последовательно с вольтметрами. В этом случае напряжение сети распределяется между вольтметром и добавочным сопротивлением. Величину добавочного сопротивления необходимо подбирать с таким расчетом, чтобы в цепи с повышенным напряжением по обмотке вольтметра проходил тот же ток, что и при номинальном напряжении. Ток, на который рассчитана обмотка прибора,
I в =U/r в .
В цепи с напряжением в n раз большим ток вольтметра с добавочным сопротивлением r должен остаться прежним:
I в =nU/(r в + r) или U/r в =nU/(r в + r),
отсюда величина добавочного сопротивление равна
r= r в (n-1).
Добавочные сопротивления изготовляют из манганиновой проволоки, намотанной на гетинаксовый или фарфоровый каркас, и помещают внутри прибора или отдельно от него. Для измерения высоких напряжений переменного тока употребляются измерительные трансформаторы напряжения.

Измерение коэффициента мощности
Значение коэффициента мощности в сетях однофазного переменного тока можно определить по показаниям вольтметра, амперметра и ваттметра согласно формуле
cos φ=P/UI.
Теми же приборами коэффициент мощности в сетях трехфазного тока с равномерной нагрузкой можно определить по формуле
cos φ=P/UI√3,
где U и I – линейные напряжение и ток, а φ – угол сдвига между фазными напряжением и током.
Среднее значение коэффициента мощности cos φ ср за определенный промежуток времени можно определить по показаниям счетчиков активной и реактивной энергии за то же время согласно формуле
cos φ ср =А а /√(А а 2 + А p 2 ),
где А а — активная энергия;
А p — реактивная энергия.
Мгновенное значение коэффициента мощности на практике определяют при помощи специальных приборов – фазометров.

Измерение сопротивления мегомметром
Мегомметры служат для измерения сопротивления отдельных частей электротехнических установок по отношению к «земле» и друг относительно друга.
Согласно правилам сопротивление изоляции проводов должно быть не менее чем 1000 Ом на каждый вольт рабочего напряжения. Так, например, для сети с рабочим напряжением 220 В сопротивление изоляции должно быть не менее , или 0,22 МОм.
Измерение сопротивления изоляции должно производиться напряжением, по возможности равным рабочему, и во всяком случае напряжением, не меньшим 100 В.
Мегомметры, показания которых зависят от напряжения, состоят из источника напряжения и измерителя. Если последовательно в цепь включить регулируемое сопротивление r, то показания измерителя (вольтметра) будут зависеть от величины этого сопротивления (при постоянном напряжении цепи). При r=0 показание вольтметра будет небольшим, при r=∞ вольтметр покажет нуль. Включая различные сопротивления, можно отградуировать шкалу измерителя непосредственно в омах (килоомах, мегаомах). В дальнейшем таким прибором можно воспользоваться для измерения сопротивлений, если применить источник энергии с напряжением, равным напряжению при градуировке.

Источник

Измерение тока. Виды и приборы. Принцип измерений и особенности

Нагрузка в электрической цепи характеризуется силой тока, измерение тока в амперах. Силу тока иногда приходится измерять для проверки допустимой величины нагрузки на кабель. Для прокладки электрической линии применяются кабели разного сечения. Если кабель работает с нагрузкой выше допустимой величины, то он нагревается, а изоляция постепенно разрушается. В результате это приводит к короткому замыканию и замене кабеля.

Измерение тока рекомендуется делать в следующих случаях:
  • После прокладки нового кабеля необходимо измерить проходящий через него ток при всех работающих электрических устройствах.
  • Если к старой электропроводке подключена дополнительная нагрузка, то также следует проверить величину тока, которая не должна превышать допустимые пределы.
  • При нагрузке, равной верхнему допустимому пределу, проверяется соответствие тока, протекающего через электрические автоматы. Его величина не должна превышать номинальное значение рабочего тока автоматов. В противном случае автоматический выключатель обесточит сеть из-за перегрузки.
  • Измерение тока также необходимо для определения режимов эксплуатации электрических устройств. Измерение токовой нагрузки электродвигателей выполняется не только для проверки их работоспособности, но и для выявления превышения нагрузки выше допустимой, которая может возникнуть из-за большого механического усилия при работе устройства.
  • Если измерить ток в цепи работающего обогревателя, то он покажет исправность нагревательных элементов.
  • Работоспособность теплого пола в квартире также проверяется измерением тока.
Мощность тока

Кроме силы тока, существует понятие мощности тока. Этот параметр определяет работу тока, выполненную в единицу времени. Мощность тока равна отношению выполненной работы к промежутку времени, за которое эта работа была выполнена. Обозначают буквой «Р» и измеряют в ваттах.

Мощность рассчитывается путем перемножения напряжения сети на силу тока, потребляемого подключенными электрическими устройствами: Р = U х I. Обычно на электроприборах указывают потребляемую мощность, с помощью которой можно определить ток. Если ваш телевизор имеет мощность 140 Вт, то для определения тока делим эту величину на 220 В, в результате получаем 0,64 ампера. Это значение максимального тока, на практике ток может быть меньше при снижении яркости экрана или других изменениях настроек.

Измерение тока приборами

Для определения потребления электрической энергии с учетом эксплуатации потребителей в разных режимах, необходимы электрические измерительные приборы, способные выполнить измерение параметров тока.

  • Амперметр. Для измерения величины тока в цепи используют специальные приборы, называемые амперметрами. Они включаются в измеряемую цепь по последовательной схеме. Внутреннее сопротивление амперметра очень мало, поэтому он не влияет на параметры работы цепи.Шкала амперметра может быть размечена в амперах или других долях ампера: микроамперах, миллиамперах и т.д. Существует несколько видов амперметров: электронные, механические и т.д.

  • Мультиметр является электронным измерительным прибором, способным измерить различные параметры электрической цепи (сопротивление, напряжение, обрыв проводника, пригодность батарейки и т.д.), в том числе и силу тока. Существуют два вида мультиметров: цифровой и аналоговый. В мультиметре имеются различные настройки измерений.

Порядок измерения силы тока мультиметром:
  • Выяснить, какой интервал измерения вашего мультиметра. Каждый прибор рассчитан на измерение тока в некотором интервале, который должен соответствовать измеряемой электрической цепи. Наибольший допустимый ток измерения должен быть указан в инструкции.
  • Выбрать соответствующий режим измерений. Многие мультиметры способны работать в разных режимах, и измерять разные величины. Для замеров силы тока нужно переключиться на соответствующий режим, учитывая вид тока (постоянный или переменный).
  • Установить на приборе необходимый интервал измерений. Лучше установить верхний предел силы тока несколько выше предполагаемой величины. Снизить этот предел можно в любое время. Зато будет гарантия, что вы не выведете прибор из строя.
  • Вставить измерительные штекеры проводов в гнезда. В комплекте прибора имеются два провода со щупами и разъемами. Гнезда должны быть отмечены на приборе или изображены в паспорте.

  • Для начала измерения необходимо подключить мультиметр в цепь. При этом следует соблюдать правила безопасности и не касаться токоведущих частей незащищенными частями тела. Нельзя проводить измерения во влажной среде, так как влага проводит электрический ток. На руки следует надеть резиновые перчатки. Чтобы разорвать цепь для проведения измерений, следует разрезать проводник и зачистить изоляцию на обоих концах. Затем подсоединить щупы мультиметра к зачищенным концам провода и убедиться в хорошем контакте.
  • Включить питание цепи и зафиксировать показания прибора. В случае необходимости откорректировать верхний предел измерений.
  • Отключить питание цепи и отсоединить мультиметр.
  • Измерительные клещи. Если необходимо произвести измерение тока без разрыва электрической цепи, то измерительные клещи будут отличным вариантом для выполнения этой задачи. Этот прибор выпускают нескольких видов, и разной конструкции. Некоторые модели могут измерять и другие параметры цепи. Пользоваться измерительными токовыми клещами очень удобно.

Способы измерения тока

Для измерения силы тока в электрической цепи, необходимо один вывод амперметра или другого прибора, способного измерять силу тока, подключить к положительной клемме источника тока или блока питания, а другой вывод к проводу потребителя. После этого можно измерять силу тока.

При измерениях необходимо соблюдать аккуратность, так как при размыкании действующей электрической цепи может возникнуть электрическая дуга.

Для измерения силы тока электрических устройств, подключаемых непосредственно к розетке или кабелю бытовой сети, измерительный прибор настраивается на режим переменного тока с завышенной верхней границей. Затем измерительный прибор подключают в разрыв провода фазы.

Все работы по подключению и отключению допускается производить только в обесточенной цепи. После всех подключений можно подавать питание и измерять силу тока. При этом нельзя касаться оголенных токоведущих частей, во избежание поражения электрическим током. Такие методы измерения неудобны и создают определенную опасность.

Значительно удобнее проводить измерения токоизмерительными клещами, которые могут выполнять все функции мультиметра, в зависимости от исполнения прибора. Работать такими клещами очень просто. Необходимо настроить режим измерения постоянного или переменного тока, развести усы и охватить ими фазный провод. Затем нужно проконтролировать плотность прилегания усов между собой и измерить ток. Для правильных показаний необходимо охватывать усами только фазный провод. Если охватить сразу два провода, то измерения не получится.

Токоизмерительные клещи служат только для замеров параметров переменного тока. Если их использовать для измерения постоянного тока, то усы сожмутся с большой силой, и раздвинуть их можно будет только, отключив питание.

Источник

Измерение силы тока, напряжения и мощности в электрических цепях

В простейшей электрической цепи (рис. 1, а) нагрузка (сопротивление rн) подключена к зажимам источника питания с напряжением U. Режим работы этой цепи характеризуется силой тока I, протекающего по ней, напряжением U на нагрузке и мощностью Р. Для их измерения в проверяемую цепь включены соответствующие электроизмерительные приборы: амперметр А и токовая катушка ваттметра W последовательно с нагрузкой, а вольтметр V и катушка напряжения ваттметра W — параллельно нагрузке (рис. 1, б).

Рис. 1. Электрическая цепь: а — без измерительных приборов; б — с включенными приборами для измерения тока, напряжения и мощности

Только при правильном выборе электроизмерительных приборов и их включении в проверяемую цепь возможно с достаточной точностью измерить соответствующие величины.

При пусконаладочных работах обычно используют переносные приборы класса точности 0,5–1 и только в отдельных случаях, например при измерении параметров и характеристик электрических машин, электроизмерительные приборы повышенной точности. Для измерения в цепях постоянного тока следует применять магнитоэлектрические приборы, имеющие равномерную шкалу, обладающие высокой точностью и стабильностью показаний и не подверженные влиянию внешних магнитных полей. Для измерения силы тока и напряжения в цепях переменного тока, как правило, используют электромагнитные приборы, а для измерения мощности — электродинамические или ферродинамические ваттметры. Необходимо оценивать порядок измеряемой величины и подбирать прибор на такой предел измерения, чтобы показания его можно было снимать в конце шкалы или во второй ее половине.

Следует помнить, что любой электроизмерительный прибор имеет определенное электрическое сопротивление и, будучи включенным в электрическую цепь, потребляет некоторую мощность. Следовательно, включение электроизмерительных приборов в проверяемую электрическую цепь в какой-то мере изменяет ее параметры и режимы, а сами измерительные приборы покажут не действительные величины, определяющие режим работы проверяемой цепи, а характеризующие режим работы уже другой электрической цепи, образованной после включения в нее электроизмерительных приборов.

Магнитоэлектрические приборы (табл. 1) применяют для измерений в цепях постоянного тока. Они надежны в работе, позволяют получать измерения с большой точностью, имеют равномерную шкалу, не подвержены влиянию магнитных полей и колебаниям температуры окружающего воздуха. На основе этих приборов изготавливают приборы, предназначенные для измерения в цепях переменного тока, снабжая их выпрямителями или термопреобразователями.

Магнитоэлектрические приборы широко используют при общеналадочных работах, не требующих высокой точности измерения, при специальных видах наладочных работ, связанных с определением параметров отдельных видов оборудования, а также для проверки других электроизмерительных приборов, при которых требуется повышенная точность измерения.

Таблица 1. Характеристика магнитоэлектрических приборов

Наименование и тип прибора

Ток потребления и падение напряжения на приборе

Амперметр MI 104

0,75; 1,5; 3; 7,5; 15; 30; 75; 150 мА

27; 55; 68; 80; 80; 80; 80 мВ

Вольтметр MI 106

45 и 75 мВ; 0,15; 0,3; 0,75; 1,5; 3; 7,5; 15; 30; 75; 150; 750 В

Милливольтметр MI 105

Милливольтметр MI 105

Вольтамперметр MI 107

45; 75; 150; 300; 750 мВ

1,5; 3; 7,5; 15; 30; 75; 150; 300; 600 В

Вольтамперметр MI 108

1,5; 3; 7,5; 15; 30; 75; 150; 300 В

Вольтамперметр MI 109

1,5; 3; 7,5; 15; 30; 75; 150; 300 В

Вольтамперметр MI 109

0,15; 0,3; 0,6; 1,5; 6; 15; 60 мА

15; 45; 65; 65; 75; 75; 75 мВ

15; 30; 60; 150; 300;. 600; 1500; 3000 мВ

0,015; 0,03; 0,075; 0,15; 0,3; 0,75; 1,5; 3; 7,5; 15; 30 А

32–47 мВ; 48–68 мВ; 87–175 мВ

150; 300; 750; 1500; 3000 мВ

3; 7,5; 15; 30; 75; 150; 300; 600 В

45 и 75 мВ 3; 15; 75; 150; 300 В

4,5 и 4 мВ соответственно 3 мА

0,75; 1,5; 3; 7,5; 15; 30 А

50; 100; 500; 1000 мкА

10; 50; 200; 1000 мкА, 49,5–490 мВ

10; 50; 200; 1000 мВ

45; 75; 150; 3000 мВ

75; 150; 300; 600 В

То же, с универсальным шунтом Р4

Для расширения пределов измерения постоянного тока применяют шунты. Последовательно с нагрузкой Н включают шунт, а уже к нему подсоединяют амперметр (рис. 2). Очевидно, зная сопротивление шунта rш, сопротивление обмотки прибора rА, можно определить коэффициент К, показывающий, во сколько раз возможно расширить предел измерения по току из соотношения:

Рис. 2. Схема включения амперметра с шунтом

Если же известны коэффициент К и сопротивление обмотки прибора, можно, пользуясь тем же соотношением, определить сопротивление шунта.

Для расширения пределов измерения вольтметров на постоянном токе применяют добавочные резисторы. Если вольтметр без добавочного резистора рассчитан на измерение напряжения до U В и имеет сопротивление rвОм, то для измерения напряжения, в К раз большего, необходимо, чтобы общее сопротивление обмотки вольтметра и добавочного резистора было также в К раз больше сопротивления обмотки вольтметра. Промышленностью выпускаются различные шунты (табл. 2) и добавочные резисторы (табл. 3) для расширения пределов измерения приборов постоянного тока.

Электромагнитные приборы используют преимущественно для измерения в цепях переменного тока. Они надежны в эксплуатации, просты по конструкции и недороги, а также позволяют производить измерения при выполнении большинства общеналадочных работ с достаточной точностью.

Таблица 2. Номинальные параметры шунтов

Номинальное падение напряжения, В

Номинальный ток, А

0,15–0,3–0,75; 1,5–3; 7,5–15; 30

Двухнедельные: 0,3–0,75; 1,5–7,5; 15–30; однопредельные: 75; 150

75; 100; 150; 200; 300; 500; 750; 1000; 1500; 2000; 3000; 4000; 5000; 6000; 7500

2000; 3000; 4000; 5000; 6000

Таблица 3. Номинальные параметры добавочных резисторов к вольтметрам

Тип сопротив­ ления

Номинальное напряжение сопротивления, В

Однако для специальных наладочных работ, связанных с определением точных параметров отдельных видов оборудования, и проверок других измерительных приборов, при которых требуется повышенная точность измерения, электромагнитные приборы не используют.

Приборы Э59 электромагнитной системы класса точности 0,5, имеющие шкалу с зеркальным отсчетом — многопредельные, — выпускаются для измерения напряжения (вольтметры Э59/1, Э59/2 и Э59/10) и силы тока (амперметры Э59/3, Э59/4, Э59/5, Э59/6 и миллиамперметры Э59/7, Э59/8, Э59/9). Нормальная область частот — 45–55 Гц. Вольтметр Э59/10 снабжен калиброванными проводниками с общим сопротивлением 0,035 Ом. Пределы измерения в этом приборе изменяются подключением калиброванных проводников к соответствующим зажимам.

Остальные приборы этой серии имеют поворотный переключатель пределов измерения. Основные данные приборов Э59 приведены в табл. 4.

Таблица 4. Основные данные приборов Э59

Электродинамические приборы используют при наладочных работах реже приборов магнитоэлектрической и электромагнитной систем, поскольку они, имея слабое внутреннее магнитное поле, при работе подвержены влиянию внешних магнитных полей и потребляют значительную мощность. Однако эти приборы пригодны для измерения силы тока, напряжения и, что особенно важно, мощности в цепях постоянного и переменного тока.

Комбинированные малогабаритные приборы (ампервольтомметры и вольтомметры) — универсальные многопредельные измерительные приборы детекторной системы. Они предназначены для измерения в цепях постоянного и переменного тока силы тока, напряжения и сопротивления (ампервольтомметры) или напряжения и сопротивления (вольтомметры).

Для удобства выбора прибора при проведении наладочных работ ниже приведена сводная таблица электрических характеристик комбинированных малогабаритных детекторных приборов (табл. 5).

Таблица 5. Комбинированные малогабаритные детекторные приборы

Класс точности при:

0,1–1–3– 10–30–100– 300–1000

0,075–3– 7,5–15–30– 150–300– 600

0,1–2,5– 10–25–100– 250

3–12–30– 300–600– 1200–6000

1–3–10–30– 100–300– 1000

3–7,5–15– 30–150– 300–600

2,5–10–25– 100–250– 500–

3–12–30– 300–600– 1200–6000

3–6–15– 60–150– 300–600

Ток, мА, постоянный

0,1–0,3– 3–30–300– 3000

0,15–3–15– 60–300– 1500

0,1–1–5– 25–100– 500–2500

0,06–0,3– 3–30– 120–1200– 12 000

Ток, мА, переменный

Измеряемое сопротивление, кОм

Внутреннее сопротивление при постоянном токе, кОм/В

Непосредственное измерение напряжения. Электромеханическими приборами, например авометрами, можно измерять напряжения в цепях с сопротивлением до нескольких сотен ом на 1 В рабочего напряжения. В рассматриваемом примере сопротивление всей проверяемой цепи равно 90 000 Ом, а напряжение источника питания этой цепи — 450 В. Таким образом, сопротивление проверяемой цепи, отнесенное к 1 В рабочего напряжения, составляет 90000 : 450 = 200 Ом. При пользовании прибором ТТ-3, у которого внутреннее сопротивление равно 10 000 Ом на 1 В, то есть в 50 раз больше, чем в проверяемой электрической цепи; погрешность, вносимая прибором, составила меньше одного процента. Если бы эта цепь питалась от источника с напряжением 4,5 В, то на 1 В рабочего напряжения приходилось бы уже 20 000 Ом и тот же прибор ТТ-3 на пределе измерения 3 В имел бы внутреннее сопротивление 30 кОм (те же 10 000 Ом на 1 В), но погрешность, вносимая прибором в результат измерения, была бы недопустимо большой.

В определенных случаях, в частности при наладке электронной аппаратуры, приходится измерять напряжение в контролируемых цепях, имеющих сопротивления десятки тысяч ом на 1 В рабочего напряжения (сеточные и анодные цепи электронных ламп, цепи коллекторов полупроводниковых триодов и др.). Для этого используют приборы с очень большим внутренним сопротивлением, обычно не изменяющимся при работе на разных пределах измерения. К таким приборам относятся электростатические вольтметры и электронные вольтметры на электронных лампах и полупроводниковых приборах.

Электростатический вольтметр С50, однопредельный прибор класса точности 1, предназначен для измерения напряжения в цепях постоянного тока и переменного тока с частотой от 20 Гц до 10 МГц. Приборы выпускают на 30, 75, 150, 300, 450, 600, 1000, 1500 и 3000 В. Входная емкость вольтметров на 30, 75–450 и 600–3000 В соответственно составляет 10,7 и 4 пФ. Активное сопротивление вольтметра не менее 10 000 МОм. Прибор имеет шкалу со световым указателем. Осветительное устройство питается от сети 127 и 220 В переменного тока или источника постоянного тока напряжением 6 В. Резистор, встроенный в корпус прибора, служит для ограничения тока при случайном замыкании его электродов. Аналогично прибору С50 устроены и другие электростатические приборы (С70, С71, С95 и С100), имеющие другие пределы измерения и обладающие очень большим внутренним сопротивлением (не менее 10 000 МОм). Однако относительно большая входная емкость препятствует их использованию при измерениях напряжений высокой частоты (например, в анодных цепях широкополосных усилителей).

Электронные вольтметры, имеющие достаточно высокое сопротивление и малую входную емкость, получили широкое распространение при измерениях в высокоомных и маломощных цепях, преимущественно при испытаниях электронных приборов и устройств.

Электронный вольтметр обычно включает входной делитель напряжения, усилитель мощности и показывающий магнитоэлектрический прибор. Выпускаются различные электронные вольтметры для измерения постоянного и переменного напряжения.

Прибор Ф505 служит для измерения напряжения в цепях переменного тока частотой 45–10 000 Гц, имеет класс точности 1,5 и шкалу со световым отсчетом. Пределы измерения — 0,75–1,5–3–7,5–15–30–60–150–300 В. Входное сопротивление на всех пределах — 1 МОм. Питание осуществляется от сети переменного тока 127 или 220 В промышленной частоты. Потребляемая мощность 35 В-А, масса 10 кг.

Транзисторный прибор Ф431 служит для измерения малых напряжений в цепях переменного тока частотой до 1 МГц. Имеет классы точности 2,5 на частотах 20–20 000 Гц, 4 на частотах 20–100 кГц и 10 на частотах 100 кГц — 1 МГц. Пределы измерения — 5–30–100–300–1000 мВ. Входное сопротивление — 100 кОм на 1 В. Входная емкость — 30–100 пФ. Прибор имеет дополнительный предел, обозначенный «Индикатор», на котором полное отклонение стрелки соответствует потреблению тока 1 мкА при входном сопротивлении 1,5 кОм. Питание осуществляется от встроенной батареи КБС-4 напряжением 4 В.

Транзисторный прибор Ф432 позволяет измерять силу тока и напряжение как постоянного, так и переменного тока частотой 45 Гц — 50 кГц, сопротивление постоянному току и коэффициент передачи.

Прибор ВК7-Б универсальный, предназначен для измерения напряжения переменного тока низкой (от 40 Гц до 2 кГц) и высокой частот (от 3 кГц до 400 МГц), напряжения и силы постоянного тока, а также сопротивления постоянному току. Пределы измерения: напряжения постоянного тока 100 мВ–1–3–10–30–100– 300–1000 В; напряжения переменного тока 1–3–10–30–100–300–1000 В, силы постоянного тока 1–10–100 мкА–1–10–100 мА–1 А, сопротивления постоянному току 1–10–100–1000–10 000–100 000 Ом (при использовании внешнего источника постоянного тока напряжением 10–15 В пределы измерения могут быть расширены до 50 МОм). Погрешности при измерении напряжения составляют до 10 % на пределе 100 мВ, 4 % на остальных пределах для постоянного тока и 6 % для переменного. Входное сопротивление при измерении напряжения постоянного тока 1 МОм на 1 В для пределов измерения 100 мВ — 1–3–30 В и 30 МОм на 1 В для пределов 100–300 и 1000 В.

Метод двух вольтметров. Сущность этого метода заключается в том, что напряжение на участке электрической цепи измеряют два раза, используя вольтметры V1и V2 (рис. 3) с разными внутренними сопротивлениями r1и r2, величина которых известна.

Сначала подключают параллельно контролируемому участку (между точками а и б) один вольтметр, например V1, и записывают его показания U1, затем — параллельно контролируемому участку второй вольтметр V2, переведя переключатель П в нижнее положение, и записывают показания U2 второго вольтметра. После этого истинное напряжение на контролируемом участке Uаб определяют по формуле:

Рис. 3. Измерение напряжения в высокоомной цепи двумя вольтметрами

Измерение можно производить не только двумя вольтметрами, но и многопредельным вольтметром на разных пределах измерения и одним однопредельным вольтметром, выполняя им второе измерение с включенным последовательно известным резистором, сопротивление которого соизмеримо с внутренним сопротивлением вольтметра. Методом двух вольтметров можно с допустимой точностью определять напряжение на контролируемом участке а — б, даже при небольших внутренних сопротивлениях используемых вольтметров, если оба измерения проводятся при одном и том же напряжении U, подводимом к проверяемой электрической цепи.

Компенсационный метод. Сущность этого метода измерения заключается в том, что напряжение на контролируемом участке а — б электрической цепи (рис. 4) сравнивают с известным напряжением вспомогательного источника постоянного тока. Установив движок реостата Р в такое положение, чтобы индикатор тока Г (гальванометр) показывал отсутствие уравнительного тока между контролируемым участком а — б электрической цепи и вспомогательным источником Б постоянного тока, снимают показания вольтметра V. Напряжение,

показываемое вольтметром V, очевидно, равно в этом случае измеряемому напряжению U контролируемого участка а — б.

Рис. 4. Компенсационный метод измерения напряжения

Измерение мощности переменного тока. Электрическая мощность — один из важнейших режимных параметров, характеризующий расход электроэнергии за единицу времени. В цепях постоянного тока мощность зависит от силы тока, протекающего по нагрузке, и напряжения, приложенного к последней, и связана с ними простым соотношением PU1. Поскольку имеется определенная зависимость между силой тока и напряжением (закон Ома), мощность, рассеиваемую на активном сопротивлении r, можно определить по формулам РРг, или Р = I·U, где Р — электрическая мощность, I — сила тока, U — напряжение.

В цепях переменного тока такие соотношения применяют только для нагрузок с чисто активным сопротивлением (лампы накаливания, печи сопротивления, электронагревательные бытовые приборы), а при наличии в электрических цепях индуктивных и емкостных сопротивлений приходится учитывать и фазовый сдвиг между током и напряжением, выражаемый через коэффициент мощности (cosφ). При этом различают мощности: активную Р, за счет которой совершается работа, связанная с преобразованием электрической энергии в другие виды энергии (механическую, тепловую, химическую и др.), реактивную (безваттную) Q, идущую на создание магнитного поля в цепях с индуктивностью (в электродвигателях, трансформаторах, воздушных линиях электропередачи, реакторах и др.), или электрического поля в цепях, обладающих электрической емкостью (кабельных и воздушных линиях электропередачи, конденсаторах и др.), полную (кажущуюся):

В цепях однофазного переменного тока, зная напряжение U, приложенное к нагрузке, силу тока I, протекающую по ней, и сдвиг фаз между напряжением U и силой тока I, активную, реактивную и полную мощности можно определить по формулам:

причем активную мощность, как и в цепях постоянного тока, измеряют в ваттах, киловаттах и мегаваттах; полную мощность — в вольт-амперах (В·А), киловольтамперах (кВ·А) и мегавольт-амперах (MB·А); реактивную мощность — в варах, киловарах и мегаварах.

Активное сопротивление в цепях переменного тока соответствует сопротивлению в цепях постоянного, но по величине может оказаться больше или меньше сопротивления постоянному току, определяемому для проводников электрического тока.

Это объясняется поверхностным эффектом, заключающимся в вытеснении переменного тока от центра проводника к его поверхности, в связи с чем как бы уменьшается эффективное сечение проводника, и дополнительными потерями в диэлектрике (диэлектрический гистерезис), стальных и магнитопроводах и магнитопроводящих материалах, окружающих проводники с током (магнитный гистерезис) и, наконец, с вихревыми токами, возникающими в массивных электропроводящих конструкциях, окружающих проводник с током.

При пусконаладочных работах применяют как непосредственный, так и косвенный методы измерения мощности. При непосредственном измерении мощности пользуются ваттметрами, а при косвенном сначала измеряют другие величины, а затем, используя известные зависимости между этими величинами и мощностью, определяют мощность.

Для непосредственного измерения мощности обычно применяют переносные однофазные и реже трехфазные ваттметры активной мощности. При подборе ваттметра и сборке измерительной схемы необходимо учитывать соотношение между сопротивлением нагрузки и внутренним сопротивлением обмоток ваттметра (токовой и напряжения). Если сопротивление нагрузки rн соизмеримо с сопротивлением токовой цепи ваттметра или меньше ее, ваттметр следует >включать по следующей схеме (рис. 5, а). Когда сопротивление нагрузки соизмеримо с сопротивлением цепи напряжения ваттметра или больше него, ваттметр нужно включать по следующей схеме (рис. 5, б).

Более точные результаты можно получить, учитывая мощность, потребляемую самим ваттметром. Для этого при включении ваттметра по схеме, изображенной на рис. 5, а, зная сопротивление rн цепи напряжения ваттметра и измерив напряжение U, приложенное к нагрузке, из показаний ваттметра надо вычесть мощность, потребляемую его цепью напряжения rн, определив ее по формуле или замерив тем же прибором при отключенной нагрузке.

При включении ваттметра по схеме, приведенной на рис. 5, б, зная сопротивление его токовой цепи r1 и измерив силу тока Iи, протекающего по нагрузке, из показаний ваттметра следует вычесть мощность PiPrj, потребляемую его токовой цепью.

Рис. 5. Схемы включения ваттметра: а, б — принципиальные; в — монтажная

При включении ваттметра в контролируемую цепь необходимо учитывать полярность его выводов (начала токовой обмотки и обмотки напряжения). Они обычно обозначаются звездочками. На рис. 5 показано правильное включение ваттметра при непосредственном включении его в проверяемую цепь, а ниже (рис. 6) — правильное включение ваттметра через измерительные трансформаторы. При правильном включении ваттметра, если мощность положительна, то есть направлена от источника питания к нагрузке, стрелка прибора отклонится вправо; если мощность отрицательна, то есть направлена в сторону источника питания, стрелка прибора сместится влево.

Рис. 6. Включение ваттметров через измерительные трансформаторы: а — через трансформаторы тока; б — через трансформаторы тока и напряжения

По этой причине, чтобы произвести отсчет показаний ваттметра, приходится менять местами провода, подходящие к его обмотке напряжения, а если ваттметр снабжен переключателем полярности, достаточно переключить последний в другое фиксированное положение. Обычно эти положения отмечены знаками «+» и «–». После этого стрелка ваттметра отклонится вправо, можно будет снять его показания, но записывать их следует уже со знаком «–».

Переносные ваттметры активной мощности обычно градуируют при коэффициенте мощности, равном единице. Предел измерения по мощности при этом равен произведению номинальных значений тока и напряжения.

Например, если номинальный ток ваттметра 5 А, а номинальное напряжение 300 В, предел измерения его по мощности будет 300 × 5 = 1500 Вт. Если шкала прибора разбита на 100 делений, каждое деление ваттметра (цена деления) будет соответствовать 15 Вт. Если, например, стрелка прибора остановилась против 40-го деления, то мощность, показываемая ваттметром, будет равна 15 × 40 = 600 Вт. Малокосинусные ваттметры градуируют при коэффициенте мощности, отличном от единицы. Цена деления и коэффициент мощности, при котором производилась градуировка, указываются заводом-изготовителем на шкале прибора и в его паспорте.

Косвенными методами измерения пользуются для определения полной (кажущейся) мощности S, измеряя силу тока и напряжение, реактивной мощности, измеряя активную мощность, силу тока и напряжение после подсчета полной мощности или подсчитывая непосредственно но формуле Q = y·U2P – Р2. Измерив силу тока I, напряжение U и коэффициент мощности cosφ, можно определить косвенным методом и активную мощность Р. Однако к косвенному измерению активной мощности прибегают очень редко.

Косвенный метод измерения мощности применяют также, когда требуется определить среднее значение мощности за длительный период времени, пользуясь счетчиками (активным для определения активной мощности и реактивным для определения реактивной мощности). Для этого разность показаний счетчика на начало и конец периода, для которого требуется определить среднюю мощность, следует разделить на длительность этого периода.

В трехпроводной сети трехфазного тока мощность измеряют обычно двумя однофазными ваттметрами или одним двухэлементным ваттметром трехфазного тока. При измерении активной мощности ваттметры включают по следующей схеме (рис. 7). При этом если Р1— показание первого ваттметра W1, а Р2— второго ваттметра W2, то мощность Р трехфазного тока определяется как алгебраическая сумма показаний обоих ваттметров:

Показания ваттметров записывают со знаком «+», если включение их точно соответствует приведенной схеме с учетом полярности выводов и при определенном положении переключателя полярности. При равномерной нагрузке фаз можно установить зависимость показаний ваттметров от коэффициента мощности. Если cosφ = l, оба ваттметра всегда показывают значения, одинаковые по знаку и величине (Рх= Р2). При cosφ = 0,5 показание одного ваттметра равно нулю (при индуктивной нагрузке Р1 = 0, при емкостной нагрузке Рr = 0).

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector