Как определить мощность, частоту вращения, начало и конец обмоток двигателя без бирки.
Что делать, если вы купили или достали каким-то образом эл.двигатель, на котором отсутствует бирка или шильдик с обозначением его мощности, частоты вращения и т.п.?
Либо на старом движке эти данные стерлись и стали нечитабельны.
При этом паспорта или какой-то другой технической документации у вас под рукой нет. Можно ли в этом случае узнать параметры двигателя самостоятельно?
Конечно же да, причем несколькими способами. Давайте рассмотрим самые популярные из них.
Первоначально для точного определения мощности потребуется выяснить синхронную частоту вращения вала, а перед этим узнать, где у нас начало каждой обмотки, а где ее конец.
По ГОСТ 26772-85 обмотки трехфазных асинхронных двигателей должны маркироваться буквами:
По старому госту обозначение было несколько иным:
Еще раньше можно было встретить надписи Н1-К1 (начало-конец обмотки №1), Н2-К2, Н3-К3.
На некоторых движках для облегчения распознавания концов обмоток их выводят из разных отверстий на одну или другую сторону. Как например на фото снизу.
Но не всегда можно доверять таким выводам. Поэтому проверить все вручную никогда не помешает.
Если никаких обозначений и букв на барно нет, и вы не знаете, где у вас начало, а где конец обмотки, читайте инструкцию под спойлером.
В помощники берете мультиметр и устанавливаете его в режим замера сопротивления.
Одним щупом дотрагиваетесь до любого из шести выводов, а другим поочередно прикасаетесь к остальным пяти проводам, тем самым, ища соответствующую пару.
При ее нахождении на табло мультиметра должна высветиться цифра, показывающее некое сопротивление в Омах.
В остальных случаях с другими проводами сопротивление будет равняться бесконечности (обрыв).
Отмечаете данную обмотку бирками и переходите к оставшимся проводам. Таким нехитрым способом буквально за одну минуту можно «вызвонить» концы всех обмоток.
Однако это еще не все. Главная проблема заключается в том, что вы пока не знаете, какой из двух выводов является началом обмотки, а какой ее концом.
Для того, чтобы это выяснить, соединяете между собой по два вывода от разных обмоток. То есть, условное начало V1 первой обмотки, соединяем с условным концом второй обмотки — U2.
При этом у вас пока нет точной информации начало это или конец. Вы их сами так промаркировали для себя, чтобы сделать последующие замеры.
На другие концы этих двух обмоток (U1 и V2) подаете переменное напряжение 220В или меньше. Зависит это от того, на какое напряжение рассчитан ваш движок.
Смысл всего этого действия – замерить какое напряжение появится на концах третьей обмотки W1-W2. Это так называемый метод трансформации.
Если между W1-W2 будет какое-то значение (10-15В или больше), значит первые две обмотки у вас включены согласовано, то есть правильно. Все подписанные концы V1-V2, U1-U2 вы угадали верно.
Бирки на них менять не нужно.
Если же напряжение между W1-W2 будет очень маленьким или его вообще не будет, то получается, что первые две обмотки вы включили по встречной схеме (неправильно). Бирки на одной из обмоток придется поменять местами.
Разобравшись с двумя фазами переходим к третьей. Здесь процедура та же самая. Соединяете между собой условные начало и конец W1 и U2, а на U1 и W2 подаете 220V.
Замеры делаете между выводами V1 и V2. Если угадали, то двигатель может даже запуститься на двух фазах, ну или по крайней мере между V1 и V2 будет несколько вольт.
Если нет, то просто поменяйте местами бирки W1 и W2.
Второй метод определения начала и конца обмоток еще более простой.
Сперва находите три разные обмотки, как было указано выше. Соединяете их последовательно (условный конец первой с началом второй U2-V1, а конец второй с началом третье V2-W1).
На два оставшихся вывода U1-W2 подаете напряжение 220В. После этого поочередно подносите лампочку к концам каждой из обмоток (U1-U2, V1-V2, W1-W2).
Если она горит везде с одинаковой яркостью, то вы угадали со всеми выводами.
Если яркость будет отличаться, это говорит о том, что данная обмотка перевернута по отношению к двум другим.
На ней бирки нужно поменять местами. Вообще-то по ТБ с лампочкой в качестве контрольки уже давно запрещено работать, поэтому вместо нее лучше используйте мультиметр с функцией замера напряжения.
Для определения частоты по первому способу вам потребуется обычный китайский стрелочный мультиметр (аналоговый, не электронный!).
Определять частоту нужно при положении переключателя мультиметра в режиме измерения тока (100мА). Далее подключаете измерительные щупы в соответствующие разъемы:
Источник
Измерение частоты вращения
Измерение частоты вращения проводят с помощью механических, гидравлических, индукционных, частотных и электрических устройств.
К механическим измерителям частоты вращения относят центробежные тахометры. При вращении вала тахометра на грузы действует центробежная сила, под действием которой они расходятся, деформируя пружину и перемещая муфту.
В динамическом отношении центробежные тахометры – колебательные звенья.
Параметры их передаточных функций зависят от конструкции измерительного устройства.
К механическим измерителям относят также гироскопы.
Гидродинамические измерители преобразуют угловую скорость вращения в давление жидкости, создаваемое насосом.
В индукционных измерителях входной вал соединен с постоянным магнитом. При вращении магнита в металлическом диске индуктируется ЭДС, которая порождает вихревые токи. От их взаимодействия с полем постоянного магнита возникает момент вращения, значение которого пропорционально частоте вращения входного вала.
Действие электромашинных измерителей частоты вращения (электрических тахометров) основано на зависимости развиваемой генератором постоянного тока ЭДС U от частоты вращения ротора п.
В динамическом отношении электрический тахометр подобен безынерционному звену с коэффициентом преобразования
где kк – коэффициент, зависящий от конструкции: числа пар полюсов, числа проводников обмотки якоря и числа параллельных ветвей;
Ф — магнитный поток, Вб.
Обычно значение коэффициента передачи тахогенератора находится в пределах 0,06. 1,15 В ∙ с/рад.
При измерении частоты вращения рабочих органов мобильных сельскохозяйственных агрегатов часто применяют импульсные измерители скорости, преобразующие угловую скорость в частоту следования импульсов некоторого значения (тока, светового потока, излучения и т.д.). В динамическом отношении эти измерительные устройства также подобны безынерционному звену с коэффициентом передачи К = n / 2π, где n – число зубцов или отверстий вращающегося диска.
Оптические ИП
В оптических ИП используются свойства контролируемых величин влиять на характеристики светового потока, пропускаемого через анализируемую среду.
Принцип действия фотоэлектрических измерительных преобразователей (фотоэлементов) основан на использовании фотоэлектрического эффекта, т.е. они реагируют на изменение светового потока и преобразуют световой поток в выходной электрический сигнал.
В зависимости от поведения электронов, высвобождающихся под действием светового потока, различают три группы фотоэлементов: с внешним и внутренним фотоэффектом и с запирающим слоем (вентильные).
Рис. Фотоэлектрические датчики: а – с внешним фотоэффектом;
б – с внутренним фотоэффектом, в – вентильные
Фотоэлемент с внешним фотоэффектом (рис. а) представляет собой вакуумную двухэлектродную лампу. Катод 1 образован светочувствительным слоем (цезий или сплав сурьмы с цезием) и нанесен на внутреннюю поверхность лампы, а анод 2 выполняется в виде кольца или пластины. Нередко в лампу вводят некоторое количество нейтрального газа (аргона), который не окисляет поверхность металла, но способен ионизироваться под ударами летящих электронов и увеличивать за счет своих ионов значение протекающего тока. Под действием световой энергии с поверхности выбиваются электроны, образующие электрический ток (внешний фотоэффект). Промышленность выпускает фотоэлементы следующих типов: ЦГ – цезиевый газонакопленный; СЦВ – сурьмяноцезиевый вакуумный; ЦВ – цезиевый вакуумный.
Фотоэлементы с внешним фотоэффектом обладают высокой чувствительностью и высокой температурной стабильностью. Для них характерна линейная зависимость фототока от светового потока. К числу недостатков рассмотренных фотоэлементов, которые ограничивают их применение в автоматических системах управления, относятся: необходимость в повышенном напряжении питания; хрупкость стеклянного баллона; старение и утомляемость, т. е. снижение чувствительности при сильной освещенности.
Фотоэлементы с внутренним фотоэффектом (фоторезисторы) чувствительнее элементов первого типа, использующих фотоэффект со свободной поверхности металла. Фотоэлементы с внутренним фотоэффектом не нуждаются во вспомогательной энергии и им может быть придана весьма разнообразная и очень удобная форма. Недостатками их являются: подверженность влиянию окружающей температуры, утомляемость и высокая инерционность. Последнее ограничивает применение фотоэлементов с внутренним фотоэффектом при частоте прерывания светового потока в несколько десятков герц.
Фоторезисторы (рис. б) представляют собой стеклянную пластинку 1 с нанесенным тонким слоем селена или сернистых соединений различных металлов (таллия, висмута, кадмия, свинца). К пластине прикреплены электроды 2, имеющие контакт с полупроводниковым слоем. Размеры фоторезисторов очень невелики. При подаче к электродам напряжения через фоторезистор будет протекать ток, значение которого пропорционально освещенности. Зависимость тока от освещения имеет нелинейную величину. Однако чувствительность фоторезисторов в сотни раз превышает чувствительность вакуумных элементов, что позволяет их использовать в автоматических устройствах без усилителей.
У вентильных преобразователей свободные электроны, изменяя свою энергию под действием светового потока, остаются в веществе. В промышленности получили наибольшее распространение селеновые и меднозакисные фотоэлементы.
Селеновый фотоэлемент (рис. в) имеет четыре рабочих слоя. Первый слой образован тонкой пленкой золота 1, далее идут запирающий слой 2, селеновый слой 3 и стальная подкладка 4. Запирающий слой, обладая детекторным свойством, пропускает электроны, выделившиеся из пленки золота, и препятствует прохождению электронов противоположного направления. Таким образом, световой поток, проходя через пленку золота, создает вентильный фотоэффект. Электроны из освещенного слоя переходят в неосвещенный, что приводит к возникновению разности потенциалов Uвых.
Фотоэлектрические датчики просты по устройству и достаточно надежны в работе. Они находят широкое применение в системах автоматики в литейных и термических цехах: для автоматического управления освещением цехов, измерения температуры жидкого металла и нагретых деталей (фотоэлектрический пирометр), определения прозрачности жидкостей или газов, подсчета форм и изделий, проходящих по конвейеру, для контроля пламени в топках топливных печей. Они применяют в системах защиты обслуживающего персонала от травм и т. п.
К недостаткам оптических датчиков относятся зависимость точности преобразования от влияния внешних факторов и нестабильность характеристик источников света и фотоэлементов.
Источник
Датчики частоты вращения
Содержание
Датчики частоты вращения служат для определения числа оборотов вала двигателя за единицу времени и применяются в регулируемых приводных системах. По принципу действия датчики подразделяются на механические, гидравлические и электрические (тахогенераторы). Первые два типа сегодня применяются крайне редко и в основном используются на старых судах.
Отношение выходного напряжения к частоте вращения ротора называют «чувствительностью тахогенератора» или «коэффициентом преобразования» или «крутизной тахогенератора» и обычно указывается в технической спецификации тахогенератора в милливольтах на оборот в минуту. По этому параметру и выходному напряжению можно определить частоту вращения ротора по формуле:
где ω – частота вращения ротора в оборотах в минуту, UВых – выходное напряжение тахогенератора, k – коэффициент преобразования.
Требования, предъявляемые к тахогенераторам:
1. Линейность выходной характеристики.
2. Большая крутизна выходной характеристики (чувствительность, при небольшом напряжении частоты вращения выходное напряжение изменяется очень сильно).
3. Малая амплитудная погрешность.
4. Малая фазовая погрешность (для тахогенераторов переменного тока).
5. Минимальная пульсация выходного напряжения (для тахогенераторов постоянного тока).
6. Малый момент инерции ротора.
7. Минимальная масса и габариты.
8. Выходное напряжение должно принимать одинаковые абсолютные значения при вращении вала тахогенератора в разных направлениях (по или против часовой стрелке) на одинаковых частотах, т.е. быть симметричными.
9. Напряжение на выходе тахогенератора при ω=0 должно принимать минимальное значение. Это напряжение принято называть остаточным.
10. Пульсации выходного напряжения должны быть минимальными и не создавать помех, вызываемых электромагнитными процессами во время его работы.
11. Выходная мощность должна соответствовать подключаемой к нему нагрузке (прибора, устройства, схемы и т. п.), или быть достаточной для нормальной работы.
Механические датчики частоты вращения
Механический датчик центробежного типа (рисунок 2.64) состоит из вращающихся грузов 4, укрепленных на траверсе 6, приводимой во вращение от вала машины. На вращающиеся грузы действует центробежная сила Fцб, которая через рычаги 5 и муфту 3 сжимает пружину 2. Выходным сигналом датчика является величина перемещения муфты. Винтом 1 регулируется степень предварительного сжатия пружины 2 и зависимость закона перемещения муфты от частоты вращения.
В точке касания рычага 5 и муфты 3 действуют поддерживающая P и восстанавливающая V силы. Поддерживающая сила Р прямо пропорциональна центробежной Fцб и зависит от величины z перемещения муфты
Графики сил V и Р приведены на рисунке 2.65.
- невысокая точность из-за трения между элементами;
- необходимость дополнительного преобразователя перемещения для подачи сигнала в систему управления;
- чувствительность к вибрациям и крену судна;
- нелинейная выходная характеристика.
Гидравлические датчики частоты вращения
Гидравлический датчик частоты вращения приведён на рисунке 2.66. Масляный насос 1 приводится во вращение машиной с частотой ω. В напорной магистрали, содержащей цилиндр 3 и дроссель 2, создаётся давление, которое перемещает поршень цилиндра. Это перемещение является выходным сигналом датчика.
Уровень давления р в цилиндре пропорционален частоте вращения насоса. Коэффициент пропорциональности между ω и p регулируется степенью открытия дросселя 3 , через который в ванну 4 возвращается масло.
Тахогенераторы постоянного тока
Принцип действие тахогенераторы постоянного тока аналогично работе генератора. Тахогенератор на рисунке 2.67 а представляет собой маломощный генератор постоянного тока, на обмотку возбуждения ОВ которого подаётся постоянное напряжение Uов , а с обмотки якоря, приводимой во вращение машиной, снимается напряжение UВых величиной
где С – постоянный коэффициент; В – индукция магнитного поля ОВ, пропорциональная Uов.
- меньшие габаритные размеры и масса (в 2-3 раза) при большей выходной мощности, чем у асинхронных;
- отсутствие фазовой погрешности;
- возможно возбуждение постоянными магнитами, что позволяет обойтись без источника питания для цепи возбуждения.
- сложность конструкции;
- высокая стоимость;
- наличие скользящего контакта между щетками и коллектором, что приводит к снижению надежности тахогенератора и к нестабильности выходной характеристики;
- наличие зоны нечувствительности;
- пульсации выходного напряжения;
- не могут измерять очень медленное вращение из-за того, что амплитуда генерируемого сигнал становится очень малой;
- напряжение на выходе зависит от сопротивления измеряемой цепи;
- помехи радиоприему, для подавления которых в некоторых случаях приходится применять специальные меры.
Асинхронный тахогенератор – двухфазный асинхронный двигатель (микроэлектрическая машина), представлена на рисунке 2.68 а.
Полый ротор выполняется из высокоомных материалов (латунь, константан). За счет применения этих материалов достигается высокая температурная стабильность. Обмотка возбуждения создает пульсирующий магнитный поток, направленный по продленной оси машины (продленная ось машины совпадает с осью полюсов обмоток на статоре сердечника). При неподвижном роторе магнитный поток возбуждения индуцирует в роторе трансформаторную ЭДС. Сам полый ротор можно считать состоящим из отдельных элементов, проводников, которые замкнуты на торцах. Так как они замкнуты под действием трансформаторной ЭДС, протекают токи, направление которых совпадает с поперечной осью машины.
Эти токи создают магнитный поток, направленный навстречу потоку возбуждения. В результате результирующий поток направлен по продольной оси. В выходной обмотке (генераторной) ЭДС равно 0 (при неподвижном роторе), т. к. магнитный поток скользит по обмотке. При вращении ротора элементарные проводники ротора пересекают магнитные силовые линии потока возбуждения. Напряжение индуцируется в проводниках ЭДС – вращения. Под действием этой ЭДС в элементарном проводнике будут течь токи, создающие магнитное поле, направленное по поперечной оси. Этот поток пропорционален частоте вращения. Поток по поперечной оси сцепляется с выходной обмоткой и в ней индуцируется выходная ЭДС, пропорциональная скорости вращения. Выходное напряжение будет зависеть от сопротивления нагрузки:
Линейность характеристики зависит от полного сопротивления нагрузки. При высоких скоростях характеристика нелинейная. Для уменьшения скоростных погрешностей ТГ выбирают с такой синхронной скоростью, при которой значение относительной частоты вращения ротора составляет s=0,3.
- большая надежность;
- отсутствие скользящих контактов;
- малоинерционность, обусловленная малым моментом инерции ротора;
- наличие малого момента сопротивления (трения в подшипниках и тормозящего электромагнитного) вследствие отсутствия радиальных и аксиальных сил, действующих на ротор;
- устойчивость к вибрациям.
- неплохая стабильность характеристик.
- нелинейность выходной характеристики;
- наличие фазовой погрешности;
- наличие нулевого (остаточного) напряжения;
- малая выходная мощность, что приводит к необходимости увеличения габаритных размеров (асинхронный тахогенератор в 2. 4 раза больше тахогенератора постоянного тока с такой же
- выходной мощностью);
- низкий cosφ;
- напряжение на выходе зависит от сопротивления измеряемой цепи;
- не могут измерять очень медленное вращение из-за того, что амплитуда генерируемого сигнал становится очень малой;
- большие масса–габаритные показатели.
Синхронные тахогенераторы переменного тока
Представляют собой бесколлекторные синхронные машины с ротором, подмагниченным постоянным магнитом. На статоре расположены одна или несколько обмоток (см. рисунок 2.68 б). Такой тахогенератор преобразует скорость вращения ротора в переменное напряжение, амплитуда и частота которого прямо пропорциональны скорости вращения ротора.
Этот тип тахогенератора можно охарактеризовать переменной частотой, это представляет затруднение для применения в схемах стандартного предназначения, переменного тока. Он отличается нечувствительностью к изменению направления вращения вала двигателя. В синхронных тахогенераторах используется большое количество пар полюсов. По этой причине, синхронные тахогенераторы применяются для электроприводов с небольшой скоростью вращения вала. Часто ротор выполняют в виде многополюсного постоянного магнита, поэтому на 1 оборот ротора генерируется несколько периодов выходного сигнала.
Измерения скорости вращения допустимо двумя способами – частотным и амплитудным.
Частотный способ определения скорости вращения
Частотный метод для СТГ является самым точным, т. к. на частоту выходного сигнала не оказывают влияния такие факторы как, изменения температуры, величина зазора между статором и ротором, уменьшение магнитного потока, вызванное старением магнитов и т.д.
Но, к сожалению, при определении скорости вращения частотным способом требуется время для определения частоты выходного сигнала UВых путём накопления импульсов, что не даёт возможности получать мгновенно информацию об изменениях скорости.
После определения частоты fВых выходного сигнала UВых , скорость вращения ротора вычисляют по формуле:
где fВых – частота сигнала UВых на выходе тахогенератора, Гц; p – число пар полюсов ротора тахогенератора.
Для более точного определения частоты вращения ротора необходимо большее количество времени, в течение которого частота может изменяться. А изменение частоты во время накопления импульсов для её определения вносит погрешность в измерения. Это плохо сказывается на динамичности системы управления в целом, т.к. её схема управления, в таких случаях, более медленно компенсирует уменьшение или увеличение скорости вращения. Чтобы как-то уменьшить вышеуказанный недостаток, используют синхронные тахогенераторы с большим количеством полюсов. Это даёт возможность сократить время для определения выходной частоты, что в свою очередь позволяет сократить время реакции схемы управления.
Частоту выходного сигнала можно определять по следующей формуле:
где N – число накопленных импульсов; Т – длина каждого периода.
Амплитудный способ определения скорости вращения
Амплитудный способ выгодно отличается от частотного простотой схемы управления, но не очень точен из-за: температурных колебаний; зазоров между статором и ротором; старения магнитов ротора, влияющее на величину магнитного потока; частотной модуляции, оказывающей воздействие на реактивные элементы электрической цепи. Как и в других типах тахогенераторов, при увеличении скорости вращения ротора возрастает и генерируемая в обмотке статора ЭДС. Для «считывания» значений этой ЭДС обычно используют выпрямитель (одно- или двухполупериодный) и НЧ фильтр, назначение которого сглаживать пульсации.
- отсутствие посторонний источник питания для обмотки возбуждения;
- возможность точного определения частоты вращения частотным способом;
- остальные преимущества такие же, как и у асинхронного тахогенератора.
- напряжение на выходе зависит от сопротивления измеряемой цепи;
- не симметрия воздушного зазора, она способствует возникновению низкочастотных пульсаций;
- магнитный поток сопровождается зубцовыми пульсациями;
- параметры машины зависят от температурных изменений;
- определение скорости вращения частотным способом требуется время для определения частоты выходного сигнала;
- не могут измерять очень медленное вращение из-за того, что амплитуда генерируемого сигнал становится очень малой;
- невозможность определения направления вращения.
Условия и меры, применяемые при эксплуатации синхронных тахогенераторов для компенсации погрешностей аналогичны мерам, используемым для тахогенераторов постоянного тока. Пульсации выпрямленного напряжения выравниваются за счет изготовления конструкции ротора с полюсами специального профиля, благодаря этому получается необходимая ЭДС. Снижение зубцовых пульсаций происходит за счет использования сглаживающего фильтра.
С развитием электроники тахогенераторы все чаще заменяются на импульсные датчики, например, схемы с оптронами открытого типа, формирующие импульсы при отражении пучка света от контрастных меток на валу или на прерывания луча света обтюратором – датчики угла поворота (энкодеры), либо импульсные индукционные датчики, датчики Холла и прочие подобные импульсные электронные датчики.
Литература
Элементы и функциональные устройства судовой автоматики — Авдеев Б.А. [2018]
Источник