Меню

Измерение эффективной площади рассеивания



Теоретические основи радиолокации

Эффективная площадь рассеяния

Рисунок 1: Круговая диаграмма ЭПР самолета В-26 для частоты 3 ГГЦ (по Сколнику).

Рисунок 1: Круговая диаграмма ЭПР самолета В-26 для частоты 3 ГГЦ (по Сколнику).

Эффективная площадь рассеяния

Способность радиолокационной цели (РЛЦ) отражать падающую на нее электромагнитную энергию характеризуется эффективной площадью рассеяния ( σ ). Единицей измерения этого параметра является квадратный метр (м²). В литературе по радиолокации также можно встретить и другие названия: эффективная поверхность рассеяния, эффективная поверхность цели, эффективная площадь цели, эффективная поверхность вторичного излучения, радиолокационное поперечное сечение. Далее будем использовать термин эффективная площадь рассеяния (ЭПР).

Определение.

Под ЭПР понимают площадь эквивалентного изотропного рассеивателя, который, будучи помещен в точку нахождения цели, создает на раскрыве приемной антенны такую же плотность потока мощности, что и реальная цель. Таким образом, ЭПР является абстракцией, моделью, дающей, однако возможность оценить отражательную способность РЛЦ. Очевидно, что ЭПР может использоваться и для оценки радиолокационной заметности цели.

На величину ЭПР влияет множество факторов, к основным из которых относятся следующие:

  • размеры и геометрическая форма цели;
  • ракурс наблюдения цели, который определяет, какая именно часть поверхности цели облучается зондирующей электромагнитной волной (ЭМВ);
  • рабочая частота радиолокатора, а точнее, соотношение между длиной волны локатора и характерными размерами цели;
  • электрические свойства материала, из которого выполнена конструкция цели.

Влияние перечисленных факторов является комплексным и поэтому учитывать их нужно тоже совместно.

Рисунок 2. Самолет F-117, построенный с применением технологии снижения радиолокационной заметности “Stealth”

Самолет F-117 разработан с применением технологии снижения радиолокационной заметности “Stealth” . Особенности его конструкции и свойства применяемых покрытий обеспечивают низкие значения ЭПР для сантиметровых длин волн, которые используются радиолокаторами зенитных ракетных (артиллерийских) комплексов. Однако радиолокаторы метрового диапазона длин волн (П-12 « Енисей » и П-18 «Терек») успешно обнаруживают такие самолеты. Данная ситуация имела место на практике во время боевых действий в бывшей Югославии (1999).

Расчет ЭПР

Аналитические выражения для расчета значений ЭПР могут быть получены лишь для ограниченного набора целей, имеющих простую форму поверхности. Большинство РЛЦ имеют сложную геометрическую форму поверхности и для определения их ЭПР применяются натурные измерения, а также методы физического или математического моделирования.

На Рисунке 1 изображена полученная экспериментально круговая диаграмма ЭПР самолета В-26 для частоты 3 ГГЦ (по Сколнику). Исходное математическое выражение для расчета ЭПР в случае совмещенного приема (однопозиционной локации) может быть представлено в виде:

где

σ = 4·π·r 2 ·Sr r : расстояние между приемо-передающей антенной радиолокатора и целью
Sr : плотность потока мощности падающей волны в точке нахождения цели
St : плотность потока мощности рассеянной волны у антенны радиолокатора.
(1)
St

Ниже, в Таблице 1, приведены формулы для расчета ЭПР некоторых объектов простой формы. Формулы получены для случаев, когда длина волны λ радиолокатора намного меньше характерного размера цели, а поверхность объекта является идеально проводящей.


формула для расчета ЭПР сферы радиуса R
σmax = π ·R 2 (2)

формула для расчета ЭПР цилиндра длины h с радиусом основания r
σmax = 2·π·r·h 2 (3)
λ

формула для расчета ЭПР прямоугольной пластины со сторонами b и h , расположенной перпендикулярно направлению зондирования.
σmax = 4·π·b 2 ·h 2 (4)
λ 2

Таблица 1: Формулы для расчета ЭПР некоторых объектов простой формы

Рисунок 3: Круговая диаграмма ЭПР самолета типа бомбардировщик для длины волны от 3 до 5 м

Рисунок 3: Круговая диаграмма ЭПР самолета типа бомбардировщик для длины волны от 3 до 5 м

На последнем рисунке Таблицы 1 изображена ситуация, когда плоская пластина располагается под углом к направлению зондирования. В данной ситуации рассеянная таким объектом ЭМВ практически не отражается в направлении радиолокатора и, следовательно, его ЭПР будет иметь малые значения. Именно такой метод снижения радиолокационной заметности применен в самолете F-117 (Рисунок 2), поверхность которого составлена из большого количества наклонных пластин. Эти пластины ориентированы таким образом, чтобы при падении на них ЭМВ из передней полусферы (оттуда, где, как правило, находятся средства противовоздушной обороны противника) отраженные волны направлялись бы в заднюю полусферу.

Для обнаружения подобных целей более эффективным является использование бистатических радиолокационных систем, в которых передающие и приемные пункты разнесены в пространстве.

ЭПР точечных целей

Геометрические размеры РЛЦ большинства типов не превышают размеров импульсного объема радиолокатора, предназначенного для их обнаружения. Цели, имеющие такие размеры, называют точечными. ЭПР таких целей определяется взаимодействием ЭМВ, отраженных от так называемых «блестящих» точек. «Блестящими» точками называют элементы поверхности цели, которые при заданных условиях наблюдения (длина волны радиолокатора, ракурс зондирования) вносят наибольший вклад в рассеянное объектом поле, а значит и в ЭПР. В зависимости от взаимного расположения «блестящих» точек, а также направления наблюдения, отраженные ими волны могут иметь различные фазовые соотношения: от синфазного (тогда интенсивность результирующего отражения возрастает) до противофазного (интенсивность отражения уменьшается). Именно этот эффект определяет осциллирующий характер ЭПР в зависимости от ракурса наблюдения, при этом круговая диаграмма ЭПР имеет изрезанный характер (см. Рисунок 3).

Тип цели ЭПР [м 2 ] ЭПР [дБ]
Птица 0.01 -20
Человек 1
Катер 10 10
Автомобиль 100 20
Грузовой автомобиль 200 23
Уголковый отражатель 20379 43.1

Таблица 2: ЭПР точечных целей

Следует отметить, что быстрота осцилляции ЭПР в зависимости от угла наблюдения определяется соотношением между длиной волны радиолокатора и характерными размерами цели: чем меньше длина волны по сравнению с размерами цели, тем сильнее осцилляция ЭПР (Рисунок 3).

Учитывая значительные колебания величины ЭПР, в некоторых случаях оказывается удобным представлять ее значения в логарифмическом масштабе, например, в децибелах (дБ) относительно единичной площади (1 м²).

В Таблице 2 приведены значения ЭПР (в квадратных метрах и в децибелах) некоторых типовых РЛЦ для «Х»-диапазона.

Издатель: Кристиан Вольф, Автор: Андрей Музыченко
Текст доступен на условиях лицензий: GNU Free Documentation License
а также Creative Commons Attribution-Share Alike 3.0 Unported License,
могут применяться дополнительные условия.
(Онлайн с ноября 1998 года)

Источник

Эффективная площадь рассеяния

Эффективная площадь рассеяния (ЭПР; англ. Radar Cross-Section, RCS; в некоторых источниках — эффективная поверхность рассеяния, эффективный поперечник рассеяния, эффективная поверхность отражения, ЭПО) в радиолокации — площадь некоторой фиктивной поверхности, являющейся идеальным изотропным отражателем, который, будучи помещённым в точку расположения цели, создаёт в точке расположения радиолокационной станции ту же плотность потока мощности, что и реальная цель.

ЭПР является количественной мерой свойства объекта рассеивать электромагнитную волну. Наряду с энергетическим потенциалом и КУ антенн РЛС, ЭПР входит в уравнение дальности радиолокации и определяет дальность, на которой объект может быть обнаружен радиолокатором. Повышенное значение ЭПР означает бо́льшую радиолокационную заметность объекта, снижение ЭПР затрудняет обнаружение (см. стелс-технология) .

ЭПР конкретного объекта зависит от его формы, размеров, материала, из которого он изготовлен, от его ориентации (ракурса) по отношению к антеннам передающей и приемной позиций РЛС (в том числе, и от поляризации электромагнитных волн), от длины волны зондирующего радиосигнала. ЭПР определяется в условиях дальней зоны рассеивателя, приемной и передающей антенн радиолокатора.

Поскольку ЭПР — формально введенный параметр, то ее значение не совпадает ни со значением полной площади поверхности рассеивателя, ни со значением площади его поперечного сечения (англ. Cross-Section). Расчет ЭПР — одна из задач прикладной электродинамики, которая решается с той или иной степенью приближения аналитически (только для ограниченного ассортимента тел простой формы, например, проводящей сферы, цилиндра, тонкой прямоугольной пластины и т. п.) или численными методами. Измерение (контроль) ЭПР проводится на полигонах и в радиочастотных безэховых камерах с использованием реальных объектов и их масштабных моделей.

ЭПР имеет размерность площади и обычно указывается в кв.м. или дБкв.м.. Для объектов простой формы — тестовых — ЭПР принято нормировать к квадрату длины волны зондирующего радиосигнала. ЭПР протяженных цилиндрических объектов нормируют к их длине (погонная ЭПР, ЭПР на единицу длины). ЭПР распределенных в объеме объектов (например, дождевого облака) нормируют к объему элемента разрешения РЛС (ЭПР/куб. м.). ЭПР поверхностных целей (как правило, участка земной поверхности) нормируют к площади элемента разрешения РЛС (ЭПР/кв. м.). Иными словами, ЭПР распределенных объектов зависит от линейных размеров конкретного элемента разрешения конкретной РЛС, которые зависят от расстояния РЛС — объект.

ЭПР можно определить следующим образом (определение эквивалентно приведенному в начале статьи):

Эффективная площадь рассеяния (для гармонического зондирующего радиосигнала) — отношение мощности радиоизлучения эквивалентного изотропного источника (создающего в точке наблюдения такую же плотность потока мощности радиоизлучения, что и облучаемый рассеиватель) к плотности потока мощности (Вт/кв.м.) зондирующего радиоизлучения в точке расположения рассеивателя.

ЭПР зависит от направления от рассеивателя на источник зондирующего радиосигнала и направления в точку наблюдения. Поскольку эти направления могут не совпадать (в общем случае источник зондирующего сигнала и точка регистрации рассеянного поля разнесены в пространстве), то определенная таким образом ЭПР называется бистатическая ЭПР (двухпозиционная ЭПР, англ. bistatic RCS).

Диаграмма обратного рассеяния (ДОР, моностатическая ЭПР, однопозиционная ЭПР, англ. monostatic RCS, back-scattering RCS) — значение ЭПР при совпадении направлений от рассеивателя на источник зондирующего сигнала и на точку наблюдения. Под ЭПР часто подразумевают ее частный случай — моностатическую ЭПР, то есть ДОР (смешивают понятия ЭПР и ДОР) из-за малой распространенности бистатических (многопозиционных) РЛС (по сравнению традиционными моностатическими РЛС, оснащенными единой приемо-передающей антенной). Тем не менее, следует различать ЭПР(θ, φ; θ, φ) и ДОР(θ, φ) = ЭПР(θ, φ; θ=θ, φ=φ), где θ, φ — направление на точку регистрации рассеянного поля; θ, φ — направление на источник зондирующей волны (θ, φ, θ, φ — углы сферической системы координат, начало которой совмещено с рассеивателем).

В общем случае для зондирующей электромагнитной волны с негармонической временной зависимостью (широкополосный в пространственно-временно́м смысле зондирующий сигнал) эффективная площадь рассеяния — отношение энергии эквивалентного изотропного источника к плотности потока энергии (Дж/кв.м.) зондирующего радиоизлучения в точке расположения рассеивателя.

Содержание

Расчёт ЭПР

Рассмотрим отражение волны, падающей на изотропно отражающую поверхность, площадью равной ЭПР. Отражённая от такой цели мощность — это произведение ЭПР на плотность падающего потока мощности:

, (1)

где — ЭПР цели, — плотность потока мощности падающей волны данной поляризации в точке расположения цели, — мощность, отражённая целью.

С другой стороны, излучённая изотропно мощность

, (2)

где R — расстояние от РЛС до цели, — плотность потока мощности отражённой от цели волны данной поляризации в точке расположения РЛС.

Подставляя выражение (2) в (1), получаем выражение для ЭПР цели:

. (3)

Или, используя напряженности поля падающей волны и отраженной волны :

. (4)

Мощность на входе приёмника:

, (5)

где — Эффективная площадь антенны.

Можно определить поток мощности падающей волны через излучённую мощность и Коэффициент направленного действия антенны D для данного направления излучения.

. (6)

Подставляя (6) и (2) в (5), для мощности на входе приёмника РЛС имеем:

. (7)
, (8)

где .

. (9)

Физический смысл ЭПР

ЭПР имеет размерность площади [м²], но не является геометрической площадью(!), а является энергетической характеристикой, то есть определяет величину мощности принимаемого сигнала.

Аналитически ЭПР можно рассчитать только для простых целей. Для сложных целей ЭПР измеряется практически на специализированных полигонах, или в безэховых камерах.

ЭПР цели не зависит ни от интенсивности излучаемой волны, ни от расстояния между станцией и целью. Любое увеличение ведёт к пропорциональному увеличению и их отношение в формуле не изменяется. При изменении расстояния между РЛС и целью отношение меняется обратно пропорционально и величина ЭПР при этом остается неизменной.

ЭПР распространённых точечных целей

Эта статья или раздел нуждается в переработке.

Для большинства точечных целей сведения о ЭПР можно найти в справочниках по радиолокации [источник не указан 1289 дней]

Выпуклой поверхности

Поле от всей поверхности S определяется интегралом Необходимо определить E2 и отношение при заданом расстоянии до цели…

, (10)

1) Если объект небольших размеров, то — расстояние и поле падающей волны можно считать неизменными. 2) Расстояние R можно рассматривать как сумму расстояния до цели и расстояния в пределах цели:

  • — расстояние от РЛС до объекта
  • — местное расстояние
, (11)
, (12)
, (13)
, (14)

Плоской пластины

Плоская поверхность — частный случай криволинейной выпуклой поверхности.

(15)

Если плоскость с площадью 1 м², а длина волны 10 см (3 ГГц), то

Для шара 1-ой зоной Френеля будет зона, ограниченная экватором.

(16)

Уголкового отражателя

Уголковый отражатель представляет собой три перпендикулярно расположенных поверхности. В отличие от пластины уголковый отражатель даёт хорошее отражение в широком диапазоне углов.

Треугольный

Если используется уголковый отражатель с треугольными гранями, то ЭПР

, (17)

где a — размер ребра.

Четырёхугольный

Если уголковый отражатель составлен из граней четырёхугольной формы, то ЭПР

, (18)

Применение уголковых отражателей

Уголковые отражатели применяются

  • в качестве ложных целей
  • как радио-контрастные ориентиры
  • при проведении экспериментов сильного направленного излучения

Дипольного отражателя

Дипольные отражатели используются для создания пассивных помех работе РЛС.

Величина ЭПР дипольного отражателя зависит в общем случае от ракурса наблюдения, однако, ЭПР по всем ракурсам:

Дипольные отражатели используются для маскировки воздушных целей и рельефа местности, а также как пассивные радиолокациионные маяки.

Сектор отражения дипольного отражателя составляет

ЭПР сложных целей (реальных объектов)

ЭПР сложных реальных объектов измеряются на специальных установках, или полигонах, где достижимы условия дальней зоны облучения.

# Тип цели [м²]
1 Авиация
1.1 Самолёт истребитель 3-12 [1]
1.2 Малозаметный истребитель 0,3-0,4 [1]
1.3 Фронтовой бомбардировщик 7-10
1.4 Тяжёлый бомбардировщик 13-20
1.4.1 Бомбардировщик В-52 100 [2]
1.4 Транспортный самолёт 40-70
2 Суда
2.1 Подводная лодка в надводном положении 30-150 [источник не указан 395 дней]
2.2 Рубка подводной лодки в надводном положении 1-2 [источник не указан 395 дней]
2.3 Катер 50
2.4 Ракетный катер 500
2.5 Эсминец 10000
2.6 Авианосец 50000 [3]
3 Наземные цели
3.1 Автомобиль 3-10(волна около 1 см) [4]
3.2 Танк Т-90 (длина волны 3-8 мм) 29 [5] [6]
4 Боеприпасы
4.1 Крылатая ракета ALСM (длина волны 0,8 мм) 0,07-0,8 [6]
4.2 Головная часть оперативно-тактической ракеты 0,15-1,6 [7]
4.3 Ядерная боеголовка БРПЛ(TN-75/TN-71) 0,01/0,1-0,25 [8]
5 Прочие цели
5.1 Человек 0,8-1
6 Птицы [9] (со сложенными крыльями, длина волны 5 см) (максимальная граница ЭПР)
6.1 Грач (Corvus frugilegus) 0,0048
6.2 Лебедь-шипун (Cygnus olor) 0,0228
6.3 Большой баклан (Phalacrocorax carbo) 0,0092
6.4 Красный коршун (Milvus Korshun) 0,0248
6.5 Кряква (Anas platyrhynchos) 0,0214
6.6 Серый гусь (Anser anser) 0,0225
6.7 Серая ворона (Corvus cornix) 0,0047
6.8 Полевой воробей (Passer montanus) 0,0008
6.9 Обыкновенный скворец (Sturnus vulgaris) 0,0023
6.10 Озёрная чайка (Larus ridibundus) 0,0052
6.11 Белый аист (Ciconia ciconia) 0,0287
6.12 Чибис (Vanellus vanellus) 0,0054
6.13 Гриф-индейка (Cathartes aura) 0,025
6.14 Сизый голубь (Columba livia) 0,01
6.15 Домовый воробей (Passer domesticus) 0,0008

ЭПР сосредоточенной цели

Двуточечной целью будем называть пару целей, находящуюся в одном объёме разрешения РЛС. Используя формулу (4) можем найти амплитуды полей отражённой волны:

(19)
(20)

Временные задержки можно расcчитать:

(21)
(22)

(23)

(24)
(25)
(26)

Диаграмма обратного рассеяния

Зависимость ЭПР от угла отражения — называется диаграммой обратного рассеяния (ДОР). ДОР будет иметь изрезанный характер и явно многолепестковый. При этом нули ДОР будут соответствовать противофазному сложению сигналов от цели в точке расположения РЛС, а ток — синфазному значению. При этом ЭПР может быть как больше, так и меньше ЭПР каждой из отдельных целей. Если волны приходят в противофазе, то будет наблюдаться минимум, а если в фазе, то максимум:

Пусть , тогда:

Реаьные объекты имеют несколько колеблющихся точек.

, а значит .

Тогда суммарное поле:

— определяется, как изменение фазовых структур отражённой волны.

Фазовый фронт отражённой волны отличается от сферического.

Определение ЭПР распределённых целей

Распределённая цель — цель, размеры которой выходят за пределы разрешающего объёма РЛС

Условие распределённости цели

Нарушение любого из условий вводит цель в класс распределённых

  • — Размер разрешающего объёма РЛС по дальности;
  • — Размер разрешающего объёма РЛС по ширине (углу азимута);
  • — Размер разрешающего объёма РЛС по высоте (углу места);

Тоесть, линейные размеры цели должны полностью находиться внутри элемента разрешения РЛС.

Если это не так, то в этом случае ЭПР цели будет суммой ЭПР каждого элементарного участка цели:

.

Если распределённый объект состоит из изотропных однотипных отражателей с одинаковыми свойствами, то общее ЭПР можно найти, как произведение ЭПР на число отражателей:

Но число элементов такой цели обычно неизвестна!

Удельное ЭПР

В этом случае целесообразно ввести удельное ЭПР (σуд) — это ЭПР единичной площади (dS), или единичного объёма (dV) распределённой цели.

(27)
(28)

  • — удельная ЭПР единичной поверхности ;
  • — удельная ЭПР единичного объёма ;
  • S — одновременно отражающая поверхность
  • V — одновременно отражающий объём.

S и V целиком определяются размерами ширины диаграммы направленности и элементом разрешения по дальности, тоесть параметрами излучёного сигнала.

См. также

  • Технологии снижения заметности (Стелс)

Примечания

  1. 12ФУНДАМЕНТАЛЬНЫЕ И ПРИКЛАДНЫЕ ПРОБЛЕМЫ СТЕЛС-ТЕХНОЛОГИЙ
  2. MASTER OF DEFENCE STUDIES RESEARCH PROJECT PASSIVE MULTISTATIC RADARS IN ANTI-STEALTH AIR DEFENCE
  3. Система управления вооружением СУВ-ВЭП «Меч» для истребителей серии Су-27, Су-30
  4. «Визир» следует запретить! — 19 Марта 2009 — ПРИКОЛЫ НА ДОРОГАХ
  5. Маскировка — Комплекс поглощающих материалов и покрытий
  6. 12А.М. Сотников, Р.Г. Сидоренко, Г.В. РыбалкаОценка отражающих свойств наземных и воздушных объектов с пассивной защитой на основе композитных радиоизотопных покрытий (рус.) (pdf). Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков (15.01.2009). — Получены численные оценки отражающих свойств наземных и воздушных объектов с композитными радиоизотопными покрытиями. Проведенные численные исследования показывают принципиальную возможность и целесообразность применения композитных радиозотопных покрытий для защиты вооружения и военной техники от радиолокационных систем самонаведения сантиметрового и миллиметрового диапазона волн. Расчеты выполнены для однослойной и двухслойной структуры построения композитных радиозотопных покрытий.. Архивировано из первоисточника 27 февраля 2012.Проверено 18 мая 2009.
  7. Е. Л. Казаков, А. Е. КазаковАнализ целесообразности использования ложных целей для прорыва противоракетной обороны противника (рус.) (pdf). Харьковский университет Воздушных Сил им. И. Кожедуба, Харьков (22 декабря 2008). Архивировано из первоисточника 27 февраля 2012.Проверено 18 мая 2009.
  8. Ядерный арсенал Франции
  9. А.В.МацюраИспользование различных типов радаров в орнитологических исследованиях (рус.) (pdf). Мелитопольский государственный педагогический университет (25.04.05). Архивировано из первоисточника 27 февраля 2012.Проверено 23 августа 2009.

Ссылки

  • Что такое ЭПР — заметка в блоге dxdt.ru [неавторитетный источник?]

Wikimedia Foundation . 2010 .

Смотреть что такое «Эффективная площадь рассеяния» в других словарях:

Эффективная поверхность рассеяния — Пример диаграммы ЭПР () Эффективная площадь рассеяния (в некоторых учебниках Эффективная поверхность рассеяния) в радиолокации площадь некоторой фиктивной поверхности, являющейся идеальным изотропным отражателем, и, будучи помещённым в точку… … Википедия

ЭФФЕКТИВНАЯ ПОВЕРХНОСТЬ (ПЛОЩАДЬ) РАССЕЯНИЯ — характеристика отражающей способности цели, выражаемая отношением мощности эл. магн. энергии, отражаемой целью в направлении приёмника, к поверхностной плотности потока энергии, падающей на цель. Зависит от… … Энциклопедия РВСН

Основное уравнение радиолокации — (англ. radar equation) формула, описывающая дальность действия радиолокатора. Содержание 1 Принимаемая мощность 2 … Википедия

ЭПР — эндоплазматический ретикулюм биол. Источник: Грин, Стаут, Тейлор. Общая биология ЭПР Эйнштейн Подольский Розен ЭПР парадокс квантовая механика физ. ЭПР электропарамагнитный резонанс электронный парамагнитный резонанс … Словарь сокращений и аббревиатур

Радиолокация — (от Радио. и лат. locatio размещение, расположение) область науки и техники, предметом которой является наблюдение радиотехническими методами (радиолокационное наблюдение) различных объектов (целей) их обнаружение, распознавание,… … Большая советская энциклопедия

Уголковый отражатель — искусственная локационная цель (в радиолокации (См. Радиолокация) и оптической локации (См. Оптическая локация)) с большой величиной эффективной площади рассеяния, слабо зависящей от угла падения электромагнитных волн. Эффективная площадь … Большая советская энциклопедия

Радиолокация — Содержание 1 Классификация 2 Принцип действия … Википедия

Радиопоглощающие материалы и покрытия — Передняя кромка поворотного ПГО многоцелевого истребителя Eurofighter Typhoon выполнена из радиопоглощающего материала … Википедия

Радиопоглощающие материалы — или РПМ и Радиопоглощающие покрытия или РПП представляют класс материалов, применяемых в технологии снижения заметности («стелс технология») для маскировки средств вооружения и военной техники от обнаружения радиолокационными средствами… … Википедия

Дипольные отражатели — Содержание 1 История 2 См. также 3 Литература … Википедия

Источник

Читайте также:  Метод измерения длины тела

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.