Измерение электрических параметров электрических машин

Измерение параметров электрических машин

Цель работы:

— изучить основные методы измерения параметров электрических машин;

-научиться выполнять замеры параметров электрических машин;

-научиться рассчитывать погрешности измерений.

1. В современных цифровых мультиметрах-тестерах есть полезная функция условно называемая «прозвонкой» Назначение её в возможности проверки проводов или дорожек печатных плат на целость. Для удобства в этот режим работы прибора встроен звуковой зуммер. Когда контакт между щупами прибора замкнут тестер пищит. Проверить эту функцию можно закоротив щупы прибора.

Схема простой « прозвонки» выглядит следующим образом:

Проверка наличия цепей и качества соединений под напряжением выполняется согласно « Методике проведения проверки правильности монтажа схем, электрических соединений».

6.1. Проверка под напряжением схем управления, автоматики, сигнализации.

6.1.1. Проверка данных схем под напряжением проводится по­сле проверки их правильности монтажа, проверки работы аппаратов этих схем без напряжения и проверки сопротивления изоляции цепей, проверки надежности всех зажимов в схемах шатанием руками и отверткой. Проверка схем производятся при снятом напряжении силовой цепи, чтобы не включались электроприемники.

6.1.2. При первой подаче напряжения в схему может сгореть предохранитель в цепи питания схемы или сработать автомат из-за короткого замыкания на корпус (землю). В этом случае нужно найти короткое замыкание при отключении схемы от сети, что можно сделать повторным измерением сопротив­ления изоляции схемы относительно корпуса в разных точ­ках схемы, с рассоединением частей схемы, если это необ­ходимо.

6.1.3. После подачи напряжения в схему проверяется работа всех ее аппаратов при всех режимах работы, предусмотрен­ных схемой.

6.1.4. Возможна имитация аварийных режимов работы схемы путем замыкания контактов реле защиты, технологических датчиков для проверки работы защиты, сигнализации и авто­матики.

6.1.5. При проверке электрических схем под напряжением воз­можны отказы в работе отдельных элементов схем и блоков. Эти отказы очень многообразны, но могут быть сведены к нескольким видам:

· отсутствие контакта там, где он должен быть,— наруше­ния в работе контактов аппаратов, слабые зажимы, поврежде­ния проводов;

· наличие контакта там, где его не должно быть,— наруше­ния в работе контактов аппаратов, замыкание между токоведущими частями, замыкания токоведущих частей на корпус обо­рудования (замыкание на землю);

· наличие обходной цепи для тока (шунтирование) — напри­мер пробой по корпусу кнопочного поста мимо кнопки. Ход вызывает самовключение аппарата, что может быть при сыро­сти и токопроводящей пыли;

· несоответствие схеме некоторых аппаратов или их частей, например катушка аппарата на другое напряжение, чем напря­жение в схеме управления.

6.1.6. Все эти неисправности могут проявляться периодически, что затрудняет их поиски.

6.1.7. Методы наладки в таких случаях зависят от особенностей схемы.

6.1.8. На рис. 4 показана часть схемы управления, где можно проследить за поисками неисправности при нарушениях в ра­боте пускателя КМЗ.

· Допустим, пускатель КМЗ не включается. Тогда еще раз нужно проверить включение автомата 5F в цепи управления. При его включении нужно проверить наличие напряжения на выходе автомата индикатором однополюсным или двух­полюсным.

· Выключатель SA нужно поставить в положение ННа­ладка, так как в этом положении пускатель можно включить независимо от других.

· Если при нажатии кнопки Пуск пускатель не включается, то нужно проверить наличие напряжения на зажиме 1 катуш­ки, можно однополюсным индикатором.

· Напряжение есть. В этом случае нужно проверить целость подходящего нулевого провода, проверив напряжение на катушке пускателя двухполюсным индикатором между точка­ми N и 1.

· Напряжение есть. Тогда нужно проверить плотность зажи­мов на катушке пускателя или контактов касания, если нужно, с ее выниманием, зачистить зажимы от окислов, проверить целость обмотки катушки. После этого исправная катушка должна работать.

· Напряжения на катушке нет при определении двухпо­люсным индикатором, однополюсный индикатор показывает напряжение в точке 1. В этом случае нужно проверить це­лость подходящего к катушке нулевого провода, подход нуле­вого провода ко всей цепи управления проверкой напря­жения индикатором на выходе из автомата SF относитель­но корпусов.

· Напряжение в точке 1 отсутствует. Проверить напряжение в точке 2. Если оно есть, то проверить зажимы и целость провода 1—2.

· Напряжения в точке 2 нет. Проверить напряжение в, точ­ке 3. Если оно есть, то проверить контакты реле КК зажимы реле КК.

· Напряжения в точке 3 нет. Проверить напряжение в точ­ке 4, и если оно есть, то проверить целость провода 3—4, его зажимы.

· Напряжения в точке 4 нет. Проверить контакты и зажимы кнопки Пуск, и если напряжения нет, то проверять далее по направлению к автомату SF.

· Все проверки до кнопки Пуск от катушки пускателя долж­ны производиться при нажатой кнопке Пуск или присоедине­нием параллельно ей провода.

· После устранения неисправности в положении переключа­теля ННаладка можно пробовать включать пускатель в положении переключателя РРабота. При этом вводится зависимость включения пускателя КМЗ от включения пускате­лей КМ1 и КМ2, поэтому при проверке они должны быть включены.

· Если КМЗ не включается, то нужно проверить таким же образом цепь от точки 7 до точки 17 (7—8—9—10—11—12— 15-17).

· Вместо нуля второй полюс цепи управления может иметь фазу, т. е. напряжение цепи управления — 380 В. Тогда при измерении или проверке напряжения в разных точках цепи катушка должна быть отсоединена справа от нее на схеме.

·

Рис 4. Часть принципиальной электрической схемы управления электроустановкой: точки пронумерованные — места проверки наличия напряжения; пунктир — обход кнопки Пуск по корпусу кнопочного элемента при сырости или пыли

При наличии обхода кнопки Пуск по корпусу кнопочно­го элемента (штриховая линия на рис. 4) будет самовключе­ние пускателя при положении переключателя Наладка и Ра­бота, если включены пускатели КМ1 и КМ2. В этом случае поможет чистка корпуса кнопочного поста от влаги и пыли, если на нем нет прогоревших дорожек по материалу корпуса от пробоя его по поверхности. При наличии таких дорожек или следов обгорания корпус нужно заменить, что равносиль­но замене всего элемента.

6.2. Определение полярности обмоток.

6.2.1. Полярность выводов обмоток при данном направлении магнитного потока в магнитопроводе, на котором они рас­положены, зависит от направления намотки витков обмоток и взаимного расположения обмоток на магнитопроводе.

6.2.2. При пропускании постоянного тока через одну из магнитосвязанных обмоток в других обмотках индуктируется ЭДС, которую можно измерить магнитоэлектрическим милливольт­метром. При этом при касании провода от одного и того же зажима прибора одноименные выводы обмоток будут иметь один знак — стрелка прибора от­клонится в одном направлении.

6.2.3. Можно произвольно промарки­ровать выводы одной из обмоток и присоединить к одному из них «+» источника тока, ко второй обмотке присоединить гальванометр так, что­бы стрелка отклонялась вправо при замыкании цепи источника тока. Тогда выводы обмоток, присоеди­ненные к «+» источника тока и к «4-» гальванометра, будут одинако­выми — рис. 5.

Рис.5 Схема определения выводов выводов обмоток

6.2.4. В качестве чувствительных приборов могут применяться гальванометры и милливольтметры.

Для трехфазных машин определение начала и конца обмоток производится по схеме:

В этом случае подводят к одной из обмоток аппарата или машины переменное напряжение и замеряют на других обмотках правильность соотношения напряжений. Если лампа горит обмотки соединены согласно, не горит – встречно. Величина напряжения соответствует половине номинального напряжения лампы. Измерение сопротивления изоляции выполняется по методике МУ ЭИ 1.1 Контрольные вопросы: 1.Какое устройство используют для прозвонки цепей? 2. Как проверяют правильность монтажа схемы? 3. Как измеряется сопротивление изоляции электрической машины? 4. Как определяется начало и конец обмотки трехфазного двигателя? 2.ПРАКТИЧЕСКОЕ ЗАНЯТИЕ 1. Студенты прозванивают тестором-прозвонкой схему с асинхронным двигателем, определяя правильность сборки и качество монтажа схемы. Для этого каждый элемент схемы изучается по каталогу и выявляется его схема. Прозвонка каждого элемента производится согласно схеме элемента. Затем прозваниваются параллельные цепи схемы. 2. Производится измерение сопротивления изоляции двигателя мегомметром 3. Выполняется определение начала и конца обмоток двигателя согласно схемы 3. ОФОРМЛЕНИЕ ОТЧЕТА 1. Ответы на вопросы по п.1 2.Рисунки схем измерений, данные замеров 3. Выводы 4. Защита Студенты отвечают на вопросы преподавателя и сдают готовый отчет о работе.

2

Источник

Методика испытания и измерения электродвигателей переменного тока

Целью проведения пуско-наладочных работ является проверка возможности включения электродвигателей в работу без предварительной ревизии и сушки, а также снятие электрических характеристик на холостом ходу и под нагрузкой .

Применяемые приборы: Мегаомметры М4100/4, Ф4102/2, мост Р333, токоизмерительные клещи Ц4505, испытательная установка АИД-70, набор щупов.

Испытания и измерения электродвигателей переменного тока может производить бригада в составе не менее 2 человек из лиц ЭТЛ. Производитель работ при высоковольтных испытаниях и измерениях должен иметь группу по электробезопасности не ниже IV, а остальные не ниже III группы.

Перед началом испытаний должен быть проведен внешний осмотр электродвигателя. При этом проверяют состояние и целостность изоляции, отсутствие вмятин на корпусе, затяжку контактных соединений, а также комплектность машины (наличие всех деталей, паспортного и клеммного щитков и необходимых указаний на них; заполнение подшипников до заданного уровня и отсутствие течи масла; состояние коллектора, токосъемных колец, щеткодержателей и щеток; наличие заземляющей проводки и качество соединения ее с электродвигателем).

1. Измерение сопротивления изоляции.

Для измерения сопротивления изоляции применяются мегаомметры на 250, 500, 1000 и 2500 В.

Измерение сопротивления изоляции вспомогательных измерительных цепей производят мегаомметром на 250 В.

Сопротивление изоляции измеряется при номинальном напряжении обмотки до 0,5 кВ включительно мегаомметром на напряжение 500 В, при номинальном напряжении обмотки свыше 0,5 кВ до 1 кВ мегаомметром на напряжение 1000 В, а при номинальном напряжении обмотки выше 1 кВ – мегаомметром на напряжение 2500 В.

Во время подключения прибора испытываемое оборудование должно быть заземлено. Отсчет производится через 15 и 60 секунд после нажатия кнопки «Высокое напряжение», или начала вращения рукоятки мегаомметра со скоростью 120 оборотов в минуту.

Измерение сопротивления изоляции производят при отсутствии электрического напряжения на обмотках машины по методике испытания изоляции.

После измерений сохранившийся на обмотке потенциал следует разделить на корпус проводником, предварительно соединенным с корпусом. Продолжительность разряда для обмоток с номинальным напряжением 3000 В и выше должна быть не менее 15 сек для машин до 1000 кВт и 60 сек для машин мощностью больше 1000 кВт.

Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производит поочередно для каждой электрически независимой цепи при соединении всех прочих цепей с корпусом машины.

Показания мегаомметра зависят от времени приложения напряжения к проверяемой обмотке. Чем больше время, предшествующее от момента приложения напряжения к изоляции до момента отчета (15 и 60с), тем больше получается измеренное значение сопротивления изоляции.

При измерении сопротивления изоляции необходимо измерять и температуру обмотки. С повышением температуры сопротивление изоляции уменьшается. Измерение изоляции следует выполнять при температуре обмотки, соответствующей номинальному режиму работы машины или привести к температуре 75°С. Температура обмотки, при которой производят измерения , не должна быть ниже 10°С. Если температура ниже указанной, то обмотку перед измерением необходимо подогреть.

Наименьшее значение сопротивления изоляции при рабочей температуре обмоток и через 60 сек. после приложения напряжения определяется по формуле:

R60 = Uн / (1000 + Pн / 100)

где Uн – номинальное напряжение обмотки, В;

Pн – номинальная мощность, кВт, для машин переменного тока, кВА.

О степени влажности изоляции судят по величине коэффициента абсорбции, который представляет собой отношение показаний мегаомметра после приложения напряжения через 15 и 60 сек:

Следует учесть, что величина Ка даже при хорошем состоянии изоляции в значительной степени зависит от температуры машины и вида применяемых изоляционных материалов. С повышением температуры коэффициент абсорбции для машин, имеющих неувлажненную изоляцию, уменьшается. Для неувлажненной обмотки при температуре 10-30 °С коэффициент абсорбции Ка = 1,3¸2,0, для увлажненной обмотки коэффициент абсорбции близок к единице.

Допустимые значения сопротивления изоляции и коэффициента абсорбции приводятся в таблицах 5.1.; 5.2.; 5.3. РД 34.45-51.

Электродвигатели переменного тока включаются без сушки, если сопротивления изоляции обмоток и коэффициента абсорбции не ниже указанных в табл. 5.1. – 5.3.

2. Испытание повышенным напряжением промышленной частоты.

Испытания электрической прочности изоляции обмоток относительно корпуса и между обмотками производят синусоидальным переменным напряжением частотой 50 Гц, используя установку АИД-70. Продолжительность испытания 1 минута.

Испытательное напряжение подводится к каждой фазе обмотки, при заземленном корпусе электродвигателя и двух других фазах. При невозможности выделить испытываемую фазу производится испытание всех 3х фаз одновременно, относительно корпуса электродвигателя. Испытательные напряжения для обмоток электродвигателей переменного тока приведены в табл. 5.4. РД 34.45-51.

Испытания должны проводить лица, прошедшие специальную подготовку и имеющие практический опыт проведения испытаний.

Перед началом испытания необходимо проверить стационарное заземление корпусов испытываемого оборудования и надежно заземлить испытательную установку. Место испытаний, а также соединительные провода , находящиеся под испытательным напряжением, должны быть ограждены или у места испытания должен быть выставлен наблюдающий.

Провод, с помощью которого повышенное напряжение от испытательной установки подводится к испытываемому оборудованию, должен быть надежно закреплен с помощью промежуточных изоляторов, изолирующих подвесок и т.п., чтобы было исключено случайное приближение этого провода к находящимся под рабочим напряжением токоведущим частям или сокращения воздушных промежутков, которые должны быть не менее следующих значений:

Испытательное напряжение, кВ до 20 30 40 50 60

Расстояние до заземленных предметов, см 5 10 20 25 30

до токоведущих частей, см 25 25 30 30 35

Присоединение установки к сети напряжением 380/220 В должно осуществляться через коммутационный аппарат с видимым разрывом, допускается присоединение через штепсельную вилку, расположенную у испытательной установки.

При сборке испытательной схемы, прежде всего, выполняются защитное и рабочее заземления испытательной установки. Перед присоединением испытательной установки к сети 380/220 В на вывод высокого напряжения установки накладывается заземление с помощью специальной заземляющей штанги. Сечение медного провода, с помощью которого заземляется вывод, должно быть не менее 4 мм 2 .

Перед подачей испытательного напряжения на испытательную установку производитель работ обязан:

— проверить все ли члены его бригады находятся на местах, указанным им производителем работ, удалены ли посторонние лица, можно ли подавать испытательное напряжение на оборудование;

— предупредить бригаду о подаче напряжения словами «Подано напряжение» и, убедившись, что предупреждение услышано всеми членами бригады, снять заземление с вывода испытательной установки и подать на нее напряжение 280/220 В.

С момента снятия заземления вся испытательная установка, включая испытываемое оборудование и соединительные провода считается находящейся под напряжением, и проводить какие-либо пересоединения в испытательной схеме и на испытываемом оборудовании запрещается.

После окончания испытаний производитель работ должен снизить напряжение испытательной установки до нуля, отключить ее от сети 380/220 В, заземлить (или дать распоряжение о заземлении) вывод установки и сообщить об этом бригаде словами «Напряжение снято». Только после этого можно пересоединять провода на испытательной установке или в случае полного окончания испытания отсоединить их и снимать ограждения.

До испытания изоляции, а также после испытания необходимо разрядить испытываемое оборудование на землю и убедиться в полном отсутствии на нем заряда. Наложение и снятие заземления заземляющей штангой, подсоединение и отсоединение проводов от испытательной установки и испытываемого оборудования должны проводиться одним и тем же лицом и выполняться в диэлектрических перчатках.

Провод, соединяющий испытательную установку с испытуемым оборудованием должен быть удален от электрооборудования, находящегося под рабочим напряжением до 10 кВ, на расстоянии не менее 1 м.

3. Измерение сопротивления обмоток постоянному току.

3.1. Общие замечания.

Измерение сопротивлений производят с целью проверки соответствия сопротивления расчетному значению, проверки надежности паек определения повышения температуры над температурой окружающей среды. Сопротивление может быть измерено в холодном и нагретом состоянии. Холодным состоянием считают такое состояние обмотки, при котором температура обмотки и окружающей среды отличается не больше чем на 3°С. нагретое состояние – это состояние обмоток при рабочей температуре. При определении температуры в холодном состоянии или необходимо за 30 мин до испытания заложить в машину термометры. В практике наладочных работ применяют следующие методы измерения сопротивления постоянному току: амперметра-вольтметра, одинарного моста и двойного моста. Основным методом измерения является метод амперметра-вольтметра.

Для измерения применяют электроизмерительные приборы магнитоэлектрической системы: вольтметры класса не ниже 0,5 со встроенными добавочными сопротивлениями или наружным добавочным сопротивлением класса 0,1 и милливольтметры класса не ниже 0,5 с шунтами класса не ниже 0,1.

По схеме 4 а производят измерение малых сопротивлений.

Точный расчет измеряемого сопротивления, Ом, производят по формуле:

где Rв – внутреннее сопротивление вольтметра.

Измерение больших сопротивлений рекомендуется производить по схеме 4 б. Сопротивление рассчитывают по формуле:

где Rа – внутреннее сопротивление амперметра.

3.2. Измерений сопротивлений обмоток машин переменного тока.

Измерение сопротивлений многофазных обмоток при наличии выводов начала и конца всех фаз следует производить пофазно. В случае, если фазы обмотки статора соединены в «звезду» и не имеют вывода нулевой точки (рис. 5 а), то измерение сопротивления производится между каждыми двумя выводами (фазами).

Результат измерений дает сумму сопротивлений двух фаз:

Сопротивление каждой фазы в отдельности:

В случае соединения фаз в «треугольник» (рис. 5 б) сопротивление каждой фазы:

Если расхождение измеренных значений не превышает 2 % при соединении фаз в “звезду” и 1,5 % при соединении фаз в «треугольник», то сопротивление одной фазы можно определить упрощенно:

При соединении в «звезду»

при соединении фаз в “треугольник”

Измерение сопротивления обмотки ротора в двигателях с фазным ротором производят аналогично измерениям обмоток статора. Соединение обмоток ротора может быть в «звезду» и в «треугольник». Напряжение измеряют в контактных кольцах, чтобы исключить влияние переходного сопротивления контактов щеток.

Согласно ПУЭ предельно допустимые отклонения сопротивления постоянному току обмотки различных фаз статора для генераторов мощностью меньше 100 МВт не должны отличаться друг от друга больше чем на 2 %.

Измеренные сопротивления обмотки ротора не должны отличаться от заводских данных больше чем на 2 %. Сопротивления гашения поля пускорегулирующие сопротивления проверяют на всех ответвлениях. Значения сопротивлений не должны отличаться от заводских данных больше чем на 10 %.

4. Проверка электродвигателя на холостом ходу или с ненагруженным механизмом.

Проверка производится в электродвигателях напряжением 3 кВ и выше. Значение тока ХХ для вновь вводимых электродвигателей не нормируется.

Значение тока холостого хода после капитального ремонта электродвигателя не должно отличаться больше чем на 10 % от значения тока, измеренного перед его ремонтом, при одинаковом напряжении на выводах статора.

Продолжительность проверки электродвигателей должна быть не менее 1 часа.

5. Измерение воздушного зазора между сталью ротора и статора.

Измерение зазоров должно производиться, если позволяет конструкция электродвигателя. При этом у электродвигателей мощностью 100 кВт и более, у всех электродвигателей ответственных механизмов, а также у электродвигателей с выносными подшипниками скольжения величины воздушных зазоров в местах, расположенных по окружности ротора и сдвинутых друг относительно друга на угол 90°, или в местах, специально предусмотренных при изготовлении электродвигателя, не должны отличаться больше чем на 10 % от среднего значения.

6. Измерение зазоров в подшипниках скольжения.

Увеличение зазоров в подшипниках скольжения более значений, приведенных в табл. 5.5. РД 34.45-51, указывает на необходимость перезаливки вкладыша.

7. Измерение вибрации подшипников электродвигателя.

Измерение производится у электродвигателей напряжением 3 кВ и выше, а также у всех электродвигателей ответственных механизмов.

8. Измерение разбега ротора в осевом направлении.

Измерение производится у электродвигателей, имеющих подшипники скольжения.

9. Проверка работы электродвигателя под нагрузкой.

Проверка производится при неизменной мощности, потребляемой электродвигателем из сети не менее 50 % номинальной, и при соответствующей установившейся температуре обмоток.

Проверяется тепловое и вибрационное состояние электродвигателя.

10. Гидравлическое испытание воздухоохладителя.

Испытание производится избыточным давлением 0,2-0,25 МПа в течение 5-10 мин, если отсутствуют другие указания завода –изготовителя.

11. Проверка исправности стержней короткозамкнутых роторов.

Проверка производится у асинхронных электродвигателей при капитальных ремонтах осмотром вынутого ротора или специальными испытаниями, а в процессе эксплуатации по мере необходимости – по пульсациям рабочего или пускового тока статора.

Измерения по п.п. 5-8, 10, 11 выполняют подразделения технологических служб, связанных с монтажом и ремонтом электрических машин.

НТД и техническая литература:

  • Межотраслевые правила по охране труда (ПБ) при эксплуатации электроустановок.
  • ПОТ Р М — 016 — 2001. — М.: 2001.
  • Правила устройства электроустановок Глава 1.8 Нормы приемосдаточных испытаний Седьмое издание
  • Объем и нормы испытаний электрооборудования. Издание шестое с изменениями и дополнениями — М.:НЦ ЭНАС, 2004.
  • Наладка и испытания электрооборудования станций и подстанций/ под ред. Мусаэляна Э.С. -М.:Энергия, 1979.
  • Сборник методических пособий по контролю состояния электрооборудования. — М.: ОРГРЭС, 1997.

Рубрики блога

  • База тестов по Электробезопасности для ДНД ЭБ и ТБ 4
  • Другие материалы 22
  • Методики испытаний (измерений) 54
  • Новости 99
  • Программы испытаний (измерений) 25
  • Руководство по программе ДНД ЭТЛ Профессионал .Нет 15
  • Справка по работе с программным комплексом ДНД Конструктор Однолинейных Схем 3
  • Справка по работе с программой ДНД Наряд-Допуск ПРО 15
  • Справка по работе с программой ДНД Электробезопасность и ТБ 7
  • Справка по работе с программой ДНД ЭТЛ Профессионал .Нет 24
  • Справка по работе с редактором тестов к ДНД Электробезопасность и ТБ 4
  • Статьи 6

Последнее видео на нашем YouTube канале

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector