Меню

Измерение индукции магнитных полей магнитов



Измерение магнитной индукции и напряженности магнитного поля

Приборы для измерения магнитной индукции и напряженности магнитного поля (далее — МП) называются тесламетрами (Тм), по аналогии с измеряемой величиной. Процесс измерения магнитных величин более сложный, чем определение электрических величин, соответственно и приборы и схемы тоже сложнее.

Наиболее распространенными магнитоизмерительными приборами для определения индукции и напряженности являются: Тм с преобразователем Холла, ферромодуляционный и ядерно-резонансный тесламетр.

Тм с преобразователем Холла определяют параметры средних (от 10-5 до 10-1 Тл) и сильных (10-1 до102 Тл) МП. Принцип работы таких тесламетров основан на появлении ЭДС в полупроводниках, помещенных в зону влияния МП.

При этом вектор магнитной индукции искомого МП должен быть перпендикулярен пластине полупроводника.

Через тело полупроводника протекает электрический ток I. В результате на боковых гранях пластины образуется разность потенциалов, которую называют ЭДС Холла. ЭДС определяется компенсационным методом или милливольтметром, шкала которого градуирована в теслах. На практике ЭДС Холла зависит от следующих параметров:

где С – коэффициент, учитывающий конструктивные параметры пластины полупроводника; I – сила тока, А; В – магнитная индукция, Тл.

Зная силу тока I, коэффициент С и значение Ех, прибор градуируют в единицах измерения МП, при условии, что сила тока постоянна.

Тм с преобразователем Холла просты в применении, имеют небольшие размеры, что позволяет применять их при измерениях в малых зазорах. С их помощью определяют параметры постоянных, переменных и импульсных полей.

Пределы измерения обычного прибора от 2*10-3 до 2 Тл, с относительной погрешностью ±1,5–2,5%.

Вторым видом приборов для определения характеристик МП является ферромодуляционный тесламетр (ФМТ). Используют ФМТ для измерения слабых и средних, постоянных и переменных (до 1кГц) МП.

В основу работы ФМТ заложено свойство пермаллоевых сердечников С, изменять свое магнитное состояние, при одновременном воздействии на них постоянного и переменного МП.

Наиболее широкое применение в схеме измерения рис.2 нашли дифференциальные ферромодуляционные преобразователи. Генератор Г служит для создания переменного МП, которое посредствам катушек ω влияет на сердечники С.

В связи с тем, что эти катушки включены встречно, т. е. конец одной совпадает с другой, ЭДС в цепи индикаторной катушки ωи отсутствует.

Если внести сердечники С в постоянное МП (измеряемое поле), так чтобы вектор магнитной индукции был параллелен оси сердечников, в измерительной обмотке появится ЭДС. Это явление происходит благодаря физическим свойствам пермаллоя, изменять свое магнитное состояние под воздействием двух разнородных полей.

Итак, под влиянием поля В_ , на входе избирательного усилителя ИУ, на ряду с нечетными гармониками, появятся четные. В частности ЭДС второй гармоники имеет прямую зависимость от напряженности МП Н и магнитной индукции В_.

где k и k1 – коэффициенты, учитывающие конструкционные особенности сердечников, частоту и напряженность поля возбуждения ω; Н – измеряемая напряженность МП; В_ — измеряемая индукция.

Синхронный выпрямитель получает с выхода ИУ усиленный сигнал ЭДС второй гармоники, преобразует ЭДС в пропорциональный ей (а значит и Н и В_) ток компенсации .

Ток компенсации, протекая по компенсирующим обмоткам ωк, создает компенсирующее поле Вк, которое стремится уравновеситься с В_, и имеет встречное направление. Миллиамперметр, по которому также протекает ток , градуирован в теслах.

Ферромодуляционные тесламетры имеют высокую чувствительность, точность, и могут быть использованы для непрерывных измерений параметров магнитного поля. Пределы измерения ФМТ от 10-6 до 1 мТл, с погрешностью от 1 до 5%.

Тесламетры с квантовыми магнитоизмерительными преобразователями используют для измерения средних и слабых МП, постоянных и переменных частотой до 20 кГц полей. Принцип действия квантовых магнитоизмерительных преобразователей заключается во взаимодействии ядер молекул вещества с МП.

На рис.3 представлена схема распространенного ядерно-резонансного преобразователя. В колбе находится рабочее вещество. По средствам генератора высокой частоты ГВЧ и катушки, охватывающей витками колбу, к рабочему веществу приложено переменное МП.

Взаимодействие ядер с МП называется прецессией. Итак, в колбе частицы прецессируют вокруг вектора магнитной индукции переменного поля.

Под прямым углом, на колбу с рабочим веществом, начинает действовать измеряемое постоянное МП В_. Плавно изменяя частоту переменного поля, добиваются ядерного магнитного резонанса – совпадения частоты прецессии с частотой переменного поля. Резонанс заключается в увеличении амплитуды прецессии.

Этот процесс сопровождается поглощением части энергии переменного ВЧ поля, что приводит к изменению добротности катушки, а соответственно и изменению напряжения на ее концах.

Явление резонанса можно наблюдать на экране электронного осциллографа ЭО, на горизонтальный вход которого подается напряжение ГНЧ, а на вертикальный – выпрямленное напряжение рабочей катушки. ГНЧ питает током низкой частоты катушку модуляции Км, которая служит для модуляции магнитной индукции В_.

Ядерно-резонансные тесламетры являются самыми точными, их относительная погрешность составляет 0,001–0,1%, в области значений 10-2–10 Тл.

Источник

Магниты и магнитные поля

Естественное магнитное поле Земли, на её дневной поверхности, в средних широтах европейской части России, имеет значения полного вектора – приблизительно 0.05 мТл (индукция, в миллитеслах) = 50 мкТл (микротесл) = 50×10 -6 Тл (Тесл), что в старых единицах СГС составляет 0.5 Гаусс. Напряженность поля, при пятидесяти микротеслах, равна 40 А/м (ампер на метр). С первого тысячелетия нашей эры, величина земного, геомагнитного поля уменьшилась более чем вдвое и человеческий организм испытывает синдромы его дефицита (магнитодефицит), который можно восполнить благодаря магнитотерапии с помощью внешних источников магнитного поля.


Рис.1 Силовые линии магнитного поля Земли.

Силовые линии нормального магнитного поля планеты – направлены на север и вниз (они входят в землю почти отвесно, под углом, порядка I = 70°, с небольшим, в десяток градусов, склонением на восток; это в Московской области, а в других районах страны – параметры геомагнитного поля могут отличаться).

Приблизительный угол склонения можно посмотреть на карте. Точные, актуальные параметры поля, определяются с помощью специальных вычислительных программ. На специализированных сайтах есть онлайн-калькуляторы и справочные данные.
Ссылки (убрать пробелы):
https:// geomag.nrcan.gc.ca/calc/mfcal-en.php – калькулятор для расчёта компонент (там, в результатах расчётов, запятая – разделитель тысячных, т.е. порядок величин горизонтальных и вертикальных составляющих – тысячи и десятки тысяч нанотесл).
https:// www.ngdc.noaa.gov/geomag/data/poles/ pole_locations.txt – на этой интернет-странице имеются исторические сведения о смещении магнитных полюсов планеты, в виде списка координат, начиная с 1590 года и до современности).

wdc.kugi.kyoto-u.ac.jp/poles/polesexp.html – мировой центр данных в Киото, Япония.

—> Основные угловые элементы поля:
D (magnetic declination) – угол магнитного склонения от географического меридиана (восточнее – плюсовые значения).
I (magnetic inclination) – угол наклонения полного вектора геомагнитного поля, относительно горизотали.

Читайте также:  Канал пятое измерение медитации

// Соотношение величин:
0.05 мТл (магнитная индукция в ед.СИ) = 0.5 Гаусс (магнитн. индукц. в ед. СГС – внесистемная) = 0.5 Эрстед (напряженность поля в единицах С Г С)

1мТл = 0.8 кА/м (килоампер на метр)
1Тл = 800 кА/м
1000 кА/м = 1.25 Т (Тесл)

Таблица 1 Современные виды постоянных магнитов и их приблизительные характеристики
(значения индукции на их полюсной поверхности, максимальные рабочие температуры и т.д.):

• Магниты с полимерным наполнителем, применяемые в медицине эластичные магнитофоры (магнитопласты, магнитоэласты).
Br = до 0.05 Тесл (50 миллитесл = 500 Гаусс).

Магнитопласты на основе наполнителя (например, порошка анизотропного NdFeB). Поддаются механической обработке, благодаря пластичности (как резина) и возможности изготовления сложных форм методом литья под давлением (в том числе, с монтажными отверстиями и средствами крепления). Не нагреваются при работе в переменных электромагнитных полях (нечувствительны к воздействию вихревых токов). Максимальная рабочая температура – до 120-220 градусов Цельсия, в зависимости от теплостойкости связующего материала.
Br = 0.5 – 0.6 Тл (5000 – 6000 Гаусс) (Nd-Fe-B).

Ферриты (прессованные керамические ферритобариевые и ферритостронциевые, недорогие ферромагниты чёрного цвета). В отличие от «железных» магнитов, имеют очень высокое электрическое сопротивление (поэтому феррит бария используют в цепях, подвергающихся действию высокочастотных полей), хорошую механическую прочность, коррозионную стойкость, меньший вес, по сравнению с железными – в 1.5-2 раза. Есть возможность осуществлять у них многополюсное намагничивание на цельном изделии. Имеют неплохую устойчивость к воздействию внешних магнитных полей. По стоимости – на порядок дешевле ЮНДК, имея, при этом, более высокие показатели коэрцитивной силы. Широко применяются в двигателях постоянного тока, в генераторах, в профессиональных и домашних аудио-системах (повышенную индукцию – набирают склейкой двух колец). Недостатки ферромагнитов – хрупкость и твёрдость (обрабатывать можно только шлифованием и при помощи алмазной резки) и уменьшение коэрцетивной силы при охлаждении ниже -20°С (что снижает, на морозе, стойкость к размагничиванию маг.полем; зимой, при -60 градусах – магнитные свойства необратимо теряются и не восстанавливаются при возврате к нормальным термическим условиям) или при нагреве (особенно чувствительны бариевые). Если температура изменяется быстрее 5-10°C/мин – на феррите образуются трещины, что ухудшает его физические свойства.
Максимальное энергетическое произведение – в несколько раз хуже, чем у SmCo.
Температурный коэффициент остаточной магнитной индукции – раз в десять хуже, т.е. больше, чем у литых магнитов.
Br = 0.1 – 0.4 Тл (1000 – 4000 Гаусс). Современные – от 0.2 до 0.43Тл
Tc of Br

-0.20% на °C (Температурный коэффициент)
Tmax/Tcur = 250-300 / 450 °С (Максимальная рабочая температура / Точка Кюри)
Hcb = 2-4 кЭ (Коэрцитивная сила по индукции, килоэрстед)
Диапазон максимальной энергии (энергетическое произведение) – от 1,1 до 4,5 МГЭ
На сайте http://www.ferrite.ru/products/magnets/hardferrite – подробные сравнительные таблицы с продукцией зарубежных фирм (Япония, Франция, Германия), с указанием полных наименований и расшифровкой кода на корпусе.

• Термостабильные литые или спечённые магниты «Альнико» (AlNiCo, российское название – ЮНДК) на основе сплавов железо-аллюминий-никель-медь-кобальт. Они легче редкоземельных самарийкобальтовых, при примерно одинаковых параметрах индукции, и заметно дешевле их. Имеют высокую коррозионную и радиационную стойкость. Используются в акустических системах и динамических студийных микрофонах (ставят Alnico V), в гитарных звукоснимателях, в электродвигателях и электрогенераторах, в приборостроении (сенсоры, реле и т.д.) Типовые формы: пластины, призмы, кольца и трубки, диски и стержни. Недостаток – AlNiCo хрупкие (обрабатываются полированием, шлифованием, резкой абразивным кругом) и легко размагничиваются (низкая коэрцитивная сила) под воздействием внешнего магнитного поля, что делает неверными показания стрелочных приборов, в которых они установлены.
Br = 0.7 – 1.3 Тл.
Tc of Br

-0.02% на °C (это очень хороший показатель)
Tmax/Tcur = 250-550/800-850 °С
Hc = 0.6 – 1.9 кЭ
Диапазон максимальной энергии – от 1,4 до 7,5 МГсЭ

• Термоустойчивые деформируемые магниты типа ХК (железо-хром-кобальт, Fe-Cr-Co). Прочность и пластичность современных типов этого сплава – на порядок превосходит аналогичные показатели ЮНДК24 (Алнико 5) при сопоставимых магнитных свойствах. Могут быть получены в виде холоднокатаного листа, горячекатаного и кованого прутка для последующей механической и термомагнитной обработки. В последние годы, осваиваются новые, перспективные наноструктурные, магнитотвёрдые FeCrCo-сплавы с улучшенными характеристиками. Максимальные рабочие температуры достигают 450 °С
Br = 1.1 – 1.5 Тл.
Tc of Br = от -0,015 до -0,028 % на °C (ГОСТ 24897-81)
Нсb – больше 0.5 кЭ

• Спечённые редкоземельные магниты на основе сплавов самарий-кобальт(SmCo, долговечная металлокерамика). Имеют лучшую коррозионную стойкость (то есть, не ржавеют, поэтому и не нуждаются в защитном покрытии) по сравнению с остальными редкоземельными материалами и большие значения максимальной рабочей температуры (термостабильные до 350°С) и коэрцитивной силы (то есть, магнитотвёрдые – устойчивые к размагничиванию). По сравнению с ЮНДК – на порядок большая коэрцетивная сила по намагниченности. Недостатки – хрупкость и высокая цена. Применяются в космических аппаратах и мобильных телефонах, в мотоциклах и газонокосилках, в авиационной и компьютерной технике, в медицинском оборудовании, в миниатюрных электромеханических приборах и устройствах (наручных часах, наушниках и т.д.) Используются в современном приборостроении.
Br = 0.8 – 1.1 Тл.
Tc of Br

-0.035% на °C
Tmax/Tcur = от -60 до 250-500 / >700-800 °С
Hcb = 8-10 кЭ
Диапазон максимальной энергии – от 18 до 32 МГс.Э

Неодимовые – редкоземельные супермагниты на основе сплавов неодим-железо-бор (Nd-Fe-B, NdFeB). Диапазон рабочих температур – от -60 до +150-220°C Они хрупкие и чувствительные к температуре (предел допустимого нагрева – зависит от марки магнита). После сильного перегрева – необратимо и полностью теряется намагниченность (восстановить можно перемагничиванием на специальной установке). Имеют невысокую коррозионную стойкость – легко окисляются (ржавеют), если повреждёно антикоррозионноее покрытие (краска, лак, тонкая металлическая плёнка из никеля, меди или цинка). В виде порошка – могут воспламениться, с выделением ядовитого дыма. Лучше поддаются механической обработке – гибкие Nd-магнитопласты (NdFeB). Спечённые неодимовые магниты имеют преимущество – наибольшую, по сравнению с остальными видами, силу остаточной магнитной индукции и очень высокое энергетическое произведение. Максимальная рабочая температура будет выше – при добавлении кобальта вместо железа, но это ведёт к удорожанию материала. Широко применяются в компьютерной технике (двигатели электроприводов дисков, устройства считывания и записи информации), в моторах и датчиках.
Br = 1.0 – 1.4 Тл (10000 – 14000 Гаусс).
Tc of Br = от -0.07 до -0.13% на °C
Tmax/Tcur = 80(Nxx)-120(NxxH)-150(NxxS/U)-200(xxEH)-220 / 310-330
Hc = 12 кЭ
Диапазон макс. энергии – от 1 до 50 МГЭ

Читайте также:  Измерение тока с помощью катушки сопротивления

Сверхпроводящие магниты, относящиеся к категории сверхмощных, могут иметь максимальные значения индукц. Br > 5 Тесл

// Для усиления (концентрации силовых линий) магнитного поля – используют полюсные наконечники в виде сужающихся конусов, что значительно увеличивает индукцию в малом объёме.


Рис.2 Формы и размеры – от магнитиков на холодильник до супермагнитов

«Железные кобальтовые» магниты – более стойкие к механическим воздействиям, к размагничиванию (их коэрцитивная сила) и высоким температурам, чем керамические и неодимовые.

Из нескольких магнитов, соединяя их последовательно (разноимёнными полюсами) – можно собирать магнитные батареи. В итоге – повышение мощности и более протяжённые и линейные (на достаточном расстоянии) силовые линии поля.

Основные характеристики постоянных магнитов:

Остаточная магнитная индукция (Br, Тесл или Гаусс, G) – намагниченность, оставшаяся после намагничивания материала, из которого изготовлен постоянный магнит, измеренная на его поверхности, в замкнутой системе. Единица измерения – Тесла, в системе СИ или Гаусс, в сист. СГС. Это основная характеристика м а г н и т а. Иногда, эту величину называют – «сила магнита».

Магнитная индукция, B / Br (Тесл или Гаусс, G) – результат приборного измерения (гауссметром / тесламетром или магнитометром) реального, фактического поля магнита на каком-то расстоянии от него или на его поверхности.

Коэрцитивная сила по индукции, Hcb (кА/м) – величина внешнего магнитного поля, требуемого для полного размагничивания магнита, намагниченного до состояния насыщения. Характеризует устойчивость к размагничиванию (ГОСТ 19693).

Максимальное энергетическое произведение, (BH)maxМГсЭ (МГауссЭрстед, в системе СГС) – мощность магнита.

Температурный коэффициент остаточной магнитной индукции, Tc of Br (ТКВr) (% на °C) – характеризует изменение магнитной индукции от температуры.

Максимальная рабочая температура, Tmax (градусов по Цельсию) – предел температуры, при которой магнит временно теряет часть своих магнитных свойств. При последующем охлаждении – все магн.-е свойства восстанавливаются (в отличие от точки Кюри). Превышение нагрева на несколько десятков градусов больше Tmax – может вызвать частичное размагничивание магнетика (после остывания, оставшаяся сила притяжения будет меньше изначальной; при этом, точные измерительные стрелочные приборы и т.п. – уже не годятся для работы).

Точка Кюри, Tcur (°C) – температура, выше которой исчезает намагниченность ферромагнетиков.
Никель – +358 °C
Железо – +769 °C.
Кобальт – +1121 °C

У компаса – на географический север (там располагается магнитный Юг, см. рисунок 1) показывает северный полюс его стрелки. С учётом того, что разноимённые полюса притягиваются, можно определить полярность магнита. Цветовая маркировка магнитов может отличаться или отсутствовать, поэтому используют дублирующие стандартные символы полюсности – N (Север, North) и S (Юг, South), W (Запад, West) и E (Восток, East) для ориентировки по сторонам света и работы с топографической картой. Если имеется магнитик с точно известным значением индукции, то можно приблизительно, с невысокой точностью померить силу других магнитов, проведя относительные измерения (по углу отклонения стрелки компаса на определённом расстоянии от тестируемого образца).


Рис.4 Определение полярности магнита с помощью компаса

Применение магнитов в медицине

Магнитотерапия (лечебное использование постоянных, импульсных и переменных магнитных полей) применяется в медицине для профилактики и лечения многих заболеваний. Индукция (у поверхности полюса) применяемых в лечебных целях магнитов (постоянных керамических магнитофоров или индукторов – электромагнитов) составляет, стандартно, порядка 25-40 миллитесл (соответствует 250-400 Гаусс) для постоянного, до 50 мТл – для пульсирующего и 1-5 мТл (в геометрическом центре цилиндрического индуктора-соленоида) для переменного магнитного поля. Продолжительность воздействия, обычно – 10-20 мин. Процедуры проводят 4-6 раз в неделю в количестве 15-20 на курс лечения.

// для применения гражданами в домашних условиях, без контроля врача, официально разрешённый Минздравом РФ уровень магнитных полей – до 30 миллитесл (мТл).

Аппликатором магнитным, с индукцией постоянного поля 10 миллитесл (100 Гауссов) – воздействуют по 8-10 часов в сутки. Его крепят пластырем к биологически активным точкам (БАТ), носят в виде кулона или клипс, а также на поясе. Для магнитопунктуры (акупрессура, точечный массаж с помощью магнитного аппликатора с индукц. до 50 мТл) применяют игольчатые или шаровидные насадки на магнит, воздействуя на биоточки в течение 20-30 секунд (нажатием 5-7 раз на каждую БАТ, последовательно меняя полярность). Полюса магнитов действуют по-разному, в зависимости от полярности и времени суток. Южный полюс магнита – оказывает успокаивающее действие, северный – тонизирующее.

// если нет, под рукой, стандартного магнитного иппликатора, для точечного массажа, его может заменить любая подходящая по форме и размеру железка, если её намагниченность не превышает 30мТл (это, а ещё и полярность, легко можно выяснить с помощью обычного походного, туристического компаса (смотри рисунок 4) – если есть превышение тридцатки, по индукции, то его стрелка начнёт реагировать, отклоняться с расстояния, дальше 15 сантиметров).

Суммарная индукция всех установленных пациенту магнитных индукторов постоянного поля – не должна превышать 50 миллитесл (примерная сила магнитов от обоих наушников обычного плеера), при пятнадцатиминутной непрерывной процедуре. Импульсные источники – до 500-1400 мТл в сотые доли секунды.

Показания к магнитотерапии: атеросклероз, заболевания нервной системы, гипертония, боли в сердце и сердцебиение, язвенная болезнь желудка и двенадцатиперстной кишки, отёки, заболевания кожи, неврозы и др. Магнитотерапия улучшает реологические свойства крови: повышается её текучесть.

ПРОТИВОПОКАЗАНИЯ к применению магнитов: ранний постинфарктный период, выраженная гипотония, склонность к кровотечениям, системные заболевания крови, беременность, тяжелое течение ишемической болезни сердца, инсульт, злокачественные новообразования, послеоперационный период (при опасности кровотечений), наличие металлических имплантантов, острые инфекционные заболевания и лихорадочные состояния неясной этиологии, индивидуальная непереносимость. Изделия с магнитами нельзя использовать людям с кардиостимулятором или другими электронными приборами в организме и детям до двух лет.

Из новостных лент стало известно, что американские военные испытывают электромагнитную пушку (излучатель), которая вызывает у людей приступы эпилепсии и превращает их в «овощей». Этот вид оружия поступит на вооружение в армию США.

Омагничивание воды

При магнитной (на больших градиентах, в постоянном, переменном или пульсирующем магн. поле; для этого можно использовать электромагниты и соленоиды) активации жидкостей, в том числе и воды, при их турбулентном движении (что, эквивалентно действию переменного магнитн. поля), в результате обработки – происходит размалывание кластеров (это легче осуществляется при достаточно высоких температурах рабочего вещества). Омагниченные жидкости приобретают повышенную текучесть, более однородную структуру и высокую растворяющую способность.

// Турбулентность – вихревые потоки (вортексы, Vortex), деформирующие водяные ассоциаты / кластеры разных размеров (особенно – массивных).

Читайте также:  Диапазон измерений хроматографы газовые

// Существуют старинные способы «оживления» воды. Например, в японской традиции чайной церемонии, напиток взбивают-перемешивают бамбуковыми палочками, в китайской культуре чаепития – переливают с большой высоты (для «дыхания» в о д ы) и т.д.

Намагниченная вода (с микрокластерной структурой – мелкоструктурная, содержащая больше мономолекул Н2О) – легче усваивается организмом, улучшает проницаемость биологических мембран тканевых клеток, чистит сосуды, снижает избыточное количество холестерина в крови и печени, регулирует артериальное давление, нормализует обмен веществ, способствует выведению камней из почек, поэтому – широко применяется в медицине (с использованием физиотерапевтических приборов), для лечения и профилактики многих болезней, а так же в сельском хозяйстве – для полива растений (одновременно, с растворением и выносом в глубокие горизонты солей – улучшаются почвы, рекультивируются солончаки) и замачивания семян. Полезные, лечебные свойства, после активации, сохраняются у жидкости – в течение первых часов (может быть и дольше, в зависимости от параметров обработки: химического состава, наличия ионов железа и хлоридов, заряда частиц взвесей, достаточной дегазации, величины рH и условий хранения – температуры, вибраций, наводок от внешнего электромагнитного излучения и уровня радиационного фона).

Для быстрой магнитной активации воды нужны достаточно мощные магниты силой 100-200 мТл (1000-2000 Гаусс) и почти непосредственный их контакт с водой (для питьевой воды – через тонкую, герметичную перегородку), учитывая быстрое уменьшение индукции магнитного поля с расстоянием (на порядок – в четырёх-пяти сантиметрах от полюсной поверхности стандартных керамических кольцевых магнитов). Оптимальная, при омагничивании, скорость потока проточной воды – 0.5-2 метра в секунду. Взаимное расположение полюсов активатора в реверсивной (отталкиваются) двухмагнитной системе – N-S S-N или S-N N-S . Водный поток проходит через силовые линии маг. полей разного направления. Расстояние между магнитами (они располагаются внутри герметичного корпуса или снаружи – надетые на устье воронки, на пластмассовую лейку, или на обычный резиновый / пластиковый шланг) – пять-десять сантиметров. Если есть в наличии много штук постоянных ферромагнитов, можно собрать многореверсную схему для полива огорода или водоснабжения: N-SS-NN-SS-N. (поток воды многократно пересекает магнитные поля разного направления), нанизав их на пластиковую трубу (что предпочтительнее, т.к. проще в сборке / модификации, и более гигиенично, чем корпусные модели, которые сложнее очищать).

// Дальность эффективного действия магнитного поля (100-200 мТл) на жидкость – составляет лишь первые сантиметры от поверхности полюса магнита. В десяти-пятнадцати сантиметрах – индукция на два порядка меньше максимальной, что недостаточно для омагничивания воды. Хороший пример устройств для магнитной обработки воды – модели СО-2/3, выпускавшиеся ещё во времена СССР. Сейчас, в магазинах, тоже бывают неплохие аппараты.

По-другому работают магнитные активаторы, используемые для борьбы с накипью и коррозией в теплоэнергетическом оборудовании (в системах горячего водоснабжения и отопления, паровых котлах, теплообменниках, в нефтяной промышленности и т.д.) Жидкости, при их ламинарном движении, обрабатываются постоянным магнитным полем. При этом происходит поляризация прецессии ядерных (протонных) и электронных спинов (времени, на их достаточную раскрутку, требуется немного – примерно 2-3 секунды) и деформация ионов солей в растворе, с их последующей кристаллизацией. В воде, после такой магнитной обработки – улучшается коагуляция примесей и выпадение их в осадок, увеличивается скорость кристаллизации растворённых веществ (не на поверхности нагрева, а в массе воды; образуются кристаллы солей меньших размеров, но в большем их количестве). Образованные агрегатные структуры остаются во взвешенном мелкодисперсном состоянии, в виде хлопьев и рыхлого шлама, и дальше – вымываются потоком воды в шламоуловители. Мелкие ферромагнитные частицы примагничиваются, липнут к стенкам трубы напротив полюсов.

В современных промышленных гидромагнитных системах (ГМС) используют мощные супермагниты на основе сплавов самарий-кобальт или неодим-железо-бор (неодимовые), что позволяет эффективно проводить обработку при увеличенной до 4,0 м/с скорости потока жидкости в трубопроводах большого сечения. При этом, существенно увеличивается срок службы оборудования и уменьшается потребление реагентов.

// для локального удаления накипи (котельного камня – известковых отложений карбоната кальция, содержащегося в «жесткой» воде) и очистки от других отложений на стенках паровых котлов – эффективно применяется акустический, ультразвуковой метод защиты.

Магниты с индукцией у полюсов 0.05-0.5 Тл (оптимальная сила поля в рабочей зоне имеет величину 0.1-0.2Тл = 1000-2000 Гаусс), располагаются на магнитопроницаемых трубах (из пластика или магнитомягкого металла), до насосного оборудования (в 1 – 5 метрах) или более чем через 15 м после него. Монтаж – не обязательно в виде врезки (в варианте фланцевых вставок), могут быть и внешние накладки (электромагнитные системы). Если на стенках труб отопления или радиаторов есть накипь (отложения солей), то – омагниченная вода растворяет и удаляет её. Обработанная магнитным полем вода может сохранять антинакипный эффект достаточно долго – до недели (в зависимости от условий хранения, особенно – температуры, уровня исходной общей минерализации, интенсивности перемешивания и хим. состава).

// так как омагничивание постоянным нереверсивным магнитным полем, в ламинарном потоке или в стоячей воде, кристаллизует и осаждает некоторые растворенные соли – применять такую воду можно только в технических целях.

Предельно допустимые уровни (ПДУ) постоянного магнитного поля (по времени, в течение трудового дня), воздействие которых не вызывает заболеваний или отклонений в состоянии здоровья в процессе работы или в отдаленные сроки жизни настоящего и последующего поколения. Для условий общего (на все тело) и локального (кисти рук, предплечье) воздействия. Таблица по нормам СанПиН 2.2.4.1191-03 (2003 г.) в производственных условиях.

Время воздействия
за рабочий день,
минуты
Условия воздействия постоянного магнитного поля
общее локальное
ПДУ напряжен-
ности, кА/м
ПДУ магнитной
индукции, мТл
ПДУ напряжен-
ности, кА/м
ПДУ магнитной
индукции, мТл
0 – 10 24 30 40 50
11 – 60 16 20 24 30
61 – 480 8 10 12 15

// Уровень постоянного магнитного поля оценивают в единицах напряженности магнитного поля (Н) в А/м (ампер, килоампер на метр) или в ед. магнитной индукции (В) в мТл (миллитесл).

Для переменного / периодического магнитного поля (ПМП) частотой 50 Гц – нормы жестче:

Время пребывания (час) и Допустимые уровни МП, Н [А/м] / В [мкТл] при воздействии
общем локальном
1 1600 / 2000 6400 / 8000
2 800 / 1000 3200 / 4000
4 400 / 500 1600 / 2000
8 80 / 100 800 / 1000

// 1000 мкТл = 1 мТл

При необходимости пребывания персонала в зонах с различной напряженностью (индукцией) ПМП, общее время выполнения работ в этих зонах не должно превышать предельно допустимое для зоны с максимальной напряженностью.

Источник