Меню

Измерение характеристик биполярного транзистора



Характеристики биполярного транзистора

Характеристики биполярного транзистора в основном нелинейные и выражаются сложными формулами, неудобными на практике. Поэтому проще и нагляднее использовать графики зависимости параметров транзистора между собой . Так же удобнее изображать измеренные показания параметров конкретного транзистора графическим способом.

Статические характеристики биполярного транзистора c ОЭ

Статические характеристики биполярного транзистора отражают зависимость между напряжениями и токами на его входе и выходе при отсутствии нагрузки.
Эти характеристики будут разные в зависимости от выбранного способа включения транзистора. В основном применяются характеристики со схемами включения с общей базой (ОБ) и общим эмиттером (ОЭ).

Для снятия входных и выходных характеристик биполярного транзистора с ОЭ можно использовать схему как на рис.1 . В ней при помощи потенциометров R1 и R2 подаются нужные напряжения в базовую и коллекторную цепи с определенным током.

Входные характеристики биполярного транзистора

На рис.2 , для сравнения, показаны входные характеристики биполярного транзистора с ОЭ германиевого и кремневого транзисторов. Они выражают (при определенном напряжении между коллектором и эмиттером Uкэ ) зависимость базового тока Iб от приложенного между базой и эмиттером напряжением Uбэ . По форме они нелинейны и похожи на характеристики диодов, т.к. эмиттерный переход транзистора можно представить в виде диода включенным в прямом направлении.
Для каждого типа транзисторов при увеличении коллекторного напряжения характеристики немного смещаются в сторону увеличения базового напряжения, но на практике это увеличение не учитывается.
Из графиков еще видно , что в схеме с ОЭ базо-эмиттерное напряжение в германиевых транзисторах не превышает 0,4В, а в кремниевых — 0,8В. При превышении этих входных напряжений токи, проходящие через транзистор, могут стать недопустимо большими, которые приведут к пробою транзистора.

Так как входная характеристика биполярного транзистора нелинейна, значит и входное сопротивление, зависящее от входного напряжения и тока, тоже нелинейно.
Для примера определим базовый и коллекторный токи транзистора МП42Б с коэффициентом усиления β=50 ( рис.3 ) в разных точках характеристики.
В точке А базовый ток Iб=0,02mA и тогда коллекторный ток равен
Iк=β•Iб=50•0.02=1mA.
Можно наоборот определить на графике по известному коллекторному току Iк=13mA базовое напряжение Uэб . Базовый ток при таком Iк равен:
Iб=Iк/β=13/50=0,26mA.
Значит Uэб=0,25В ( точка В ).
На этой же характеристике так же можно найти входное сопротивление транзистора для постоянного и переменного (дифференциально динамического) токов.
Сопротивление по постоянному току относится к постоянной составляющей сигнала, а по переменному току — к переменной составляющей сигнала. Входное сопротивление по переменному току имеет существенное значение для согласования между собой транзисторных каскадов.
Сопротивление по постоянному току определяется по закону Ома:
R_=U/I .
В точке А на графике оно будет равно:
Rвх_= Uбэ/Iб = 0,1/ 0,02•10ˉ³ = 5 кОм.
Таким же образом находим сопротивление в точке Б — Rвх_= 1,6 кОм, и в точке В — Rвх_= 1 кОм.
Сопротивление по переменному току находим тоже по закону Ома, но в только в дифференциальной форме:
Rвх

= ∆U/∆I ,
где ∆U ) и ∆I ) — приращения напряжения и тока возле выбранной точки.
Для примера определим сопротивление по переменному току в точке Б ) ( рис.4 ). Задаем приращения (желтый треугольник на рисунке):
∆Uбэ = 0,225-0,175 = 0,05 В,
∆Iэ = 0,16-0,06 = 0,1 mA.
Тогда сопротивление по переменному току равно:
Rвх

=0,05/0,1•10ˉ³ = 500 Ом
Аналогично вычислим сопротивление по переменному току в точке А — Rвх

= 4кОм, а в точке В — 400 Ом. Обычно в схеме с ОЭ это сопротивление бывает в пределах от 500 Ом до 5 кОм.

Выходные характеристики биполярного транзистора

Выходные характеристики биполярного транзистора показывают зависимость коллекторного тока Iк ) от выходного напряжения Uэк ) при определенном базовом токе Iб .

На рис.5 приведено семейство выходных характеристик транзистора.
На графике видно, что выходные характеристики нелинейны, и что при увеличении напряжения Uэк от нуля до 0,4÷0,8 вольт коллекторный ток увеличивается быстро, а затем приращение уже мало и почти не зависит от величины Uэк , а зависит от базового тока. Отсюда можно сделать вывод: в основном базовый ток управляет коллекторным током.

По выходной характеристике транзистора МП42Б ( рис.6 ) определим в точке Б коллекторный ток при Uкэ = 5,7 В и Iб = 40 μA. Он будет равен Iк = 4,5 mA.
А для точки А ток базы при коллекторном напряжении Uкэ = 5,7 В и Iк = 8 mA будет Iб = 80 μA.

Читайте также:  Единица измерения услуг договор

Так же по выходной характеристике этого транзистора можно найти выходные сопротивления для постоянного и переменного токов.
Сопротивление по постоянному току в точке Б будет равно:
Rвых_= Uкэ/Iк = 5,7/4,5•10ˉ³ = 1,3 кОм.
Сопротивление по переменному току при приращении:
∆U = 8-3 = 5 В; ∆I = 4,5-4 = 0,5 mA
равно:
Rвых

= ∆U/∆I = 5/0,5•10ˉ³ = 10 кОм.
Это cопротивление может достигать 50 кОм.

Статистические характеристики биполярного транзистора с ОБ.

Для снятия входных и выходных характеристик биполярного транзистора с ОБ используют схему как на рис7 . В ней при помощи потенциометров R1 и R2 подаются нужные напряжения в базовую и коллекторную цепи с определенным током.

Входные характеристики биполярного транзистора

Входные характеристики биполярного транзисторат с ОБ показывают, как зависит эмиттерный ток Iэ от напряжения между эмиттером и базой Uэб при выбранном напряжении Uкб ( рис.8 ) для транзисторов разной проводимости.
Сравнив с входной характеристикой биполярного транзистора с ОЭ видим, что они похожи, но и имеют различия.
Это, во-первых, при увеличении коллекторного напряжения ветви характеристик германиевых и кремниевых транзисторов смещаются влево, Во-вторых, ток эмиттера в этом случае намного больше чем базовый ток при включении с ОЭ и масштаб измерения по оси ординат уже не в микроамперах, а в милиамперах.
По входным характеристикам биполярного транзистора с ОБ можно определить такие же параметры как и с ОЭ: зависимость Iэ от Uэб , входные сопротивления Rвх_ и Rвх

.
По параметрам входной характеристики ( рис.9 ) найдем входные сопротивления в точке А :
∆Uэб= 0,225-0,175 = 0,05 В,
∆Iэ = 16- 6 = 10 mA.
Rвх_= Uбэ/Iэ = 0,2/10•10ˉ³ =20 Ом,
Rвх

= ∆Uэб/∆Iэ =0,05/10•10ˉ³ = 5 Ом.
Вывод: входные сопротивления в схеме с ОБ на много меньше чем с ОЭ и обычно не превышают 100 Ом.

Выходные характеристики биполярного транзистора

На рис.10 показано семейство выходных характеристик биполярного транзистора МП42Б которые выражают зависимость коллекторного тока Iк от выходного напряжения Uбк при определенном эмиттерном токе Iэ . Они чем то похожи на выходные характеристики с ОЭ, но имеют и большие различия.
Одним из отличий является то, что коллекторный ток протекает даже тогда, когда коллекторное напряжение равно нулю. Причина в наличии источника тока в цепи эмиттера.
Второе отличие — выходные характеристики в схеме с ОБ почти горизонтальны, а это значит, что выходное сопротивление больше чем при ОЭ и может достигать по переменному току до 2 МОм.

Статические характеристики прямой передачи по току биполярного транзистора

По характеристике прямой передачи транзистора по току, которая представляет собой связь между входным и выходным токами, можно определить коэффициенты усиления по току в схеме с ОЭ и ОБ как на рис.11
.Коэффициент усиления по току с ОЭ равен:
β=∆Iк/∆Iб
где ∆Iк=2,8-2=0,8 mA;
∆Iб=30-20=10 μА.
β=0,8/10•10ˉ³= 80.
Коэффициент усиления по току с ОБ равен:
α=∆Iк/∆Iэ
где ∆Iк=2,8-2=0,8 mA;
∆Iэ=3-2=1 mA;
α=0,8/1=0,8.
Можно сделать вывод, что при включении транзистора с ОБ усиление по току почти не происходит.

Источник

ОПРЕДЕЛЕНИЕ h- ПАРАМЕТРОВ БИПОЛЯРНЫХ ТРАНЗИСТОРОВ

На практике часто пользуются вторичными параметрами транзисторов, характеризующими его как активный линейный четырехполюсник, т.е. прибор, имеющий два входных и два выходных зажима (рис.2.1). Вторичные параметры связывают друг с другом входные и выходные переменные токи и напряжения и справедливы только для данного режима транзистора и для малых амплитуд малых приращений тока и напряжения. Поэтому их называют низкочастотными малосигнальными параметрами.

Линейный четырехполюсник характеризуется двумя уравнениями, взаимно связывающими токи и напряжения на входе и выходе. Можно составить шесть пар таких уравнений, определяющих шесть различных систем параметров. В транзисторной технике наиболее широкое распространение получила система h-параметров.

Эти параметры называются смешанными или гибридными. Такое название они получили, потому что среди них имеются две относительные величины, одно сопротивление и одна проводимость. Именно h -параметры приводятся во всех справочниках по биполярным транзисторам. Параметры системы h удобно измерять. Важно отметить, что публикуемые в справочниках параметры являются средними, полученными в результате измерений параметров нескольких транзисторов данного типа. Кроме того, вследствие нелинейности характеристик транзистора при изменении его режима и при больших амплитудах вторичные параметры изменяются.

Система h -параметров позволяет определить входное напряжение U1 и выходной ток I2 по известным входному току I1 и выходному напряжению U2.

Для малосигнальных параметров (для малых приращений токов и напряжений) систему (2.1) можно представить в линейном виде

Читайте также:  Как правильно измерить циркулем окружность

Параметры h11 и h21, определяются при коротком замыкании для переменного тока на выходе dUвых = 0. В этом случае на выход транзистора подается только постоянное напряжение Uвых =const. Параметры h12 и h22 определяются при разомкнутой для переменного тока входной цепиdIвх =0, т.е. когда во входной цепи имеется только постоянный ток (Iвх= const), создаваемый источником питания. Условия Uвых = соnst и Iвx = const нетрудно осуществить на практике при измерении h -параметров.

Параметры h11 и h12 определяются из первого уравнения системы (2.2).

Полагая dUвых = 0, (Uвых = const), получим

— входное сопротивление транзистора для переменного входного тока (дифференциальное входное сопротивление) при постоянном напряжении на выходе (при отсутствии выходного переменного напряжения).

Полагая dIвх = 0, (Iвх = const) получим

— коэффициент обратной связи по напряжению.

Он показывает, какая доля выходного переменного напряжения передается на вход транзистора вследствие наличия в нем внутренней обратной связи. Условие Iвх = const в данном случае подчеркивает, что во входной цепи нет переменного тока. Следовательно, изменение напряжения на входе dUвх есть результат изменения только выходного напряжения dUвых.

Параметры h21 и h22 определяются из второго уравнения системы (2.2).

Полагая dUвых = 0 (Uвых = const), получим

коэффициент передачи тока (коэффициент усиления по току). Он показывает усиление переменного тока транзистором в режиме работы без нагрузки. УсловиеUвых = const, т.е. Rн = 0 задается для того, чтобы изменение выходного тока dIвх зависело от изменения входного тока dIвх. Именно при выполнении такого условия параметр h21 будет действительно характеризовать усиление тока самим транзистором. Если бы выходное напряжение менялось, то оно влияло бы на выходной ток, и по изменению этого тока нельзя уже было бы правильно оценить усиление.

Полагая dIвx = 0 (Iвх = const) , получим

выходная проводимость для переменного тока между выходными зажимами транзистора. Ток Iвых должен изменяться только под влиянием изменения выходного напряжения Uвых . Если при этом ток Iвх не будет постоянным, то его изменения вызовут изменения тока Iвых и значение h22 будет определено неправильно. Величина h22 измеряется в сименсах (См). Так как проводимость в практических расчетах применяется значительно реже, нежели сопротивление, то часто используют вместо h22 выходное сопротивление

Определить параметры можно не только через приращения токов и напряжений, но и через амплитуды (или действующие значения) переменных токов и напряжений из следующих уравнений:

Напомним, что h-параметры определены для малых амплитуд поэтому использование их для больших амплитуд дает значительные погрешности.

Уравнениям (2.12)-(2.16) соответствует эквивалентная схема, изображенная на рис.2.2

В ней генератор ЭДС h12Um.вых показывает наличие напряжения связи во входной цепи. Сам генератор надо считать идеальным, т.е. не имеющим внутреннего сопротивления. Генератор тока h21Im.вх в выходной цепи учитывает эффект усиления тока, а h22 является внутренней проводимостью. Хотя входная и выходная цепи кажутся не связанными друг с другом, на самом деле эквивалентные генераторы учитывают взаимосвязь этих цепей.

Как известно, применяют три основные схемы включения транзисторов в усилительные каскады. В этих схемах один из электродов транзистора является общей точкой входа и выхода каскада (см. рис.2.1). В соответствии с этим, транзистор можно представить в виде четырехполюсника с двумя входными и двумя выходными зажимами. В зависимости от того, к какой схеме относятся параметры, дополнительно к цифровым индексам ставятся буквы: э — для схемы ОЭ, б — для схемы ОБ и к — для схемы ОК.

Источник

Статические характеристики биполярного транзистора

Статические характеристики биполярного транзистора позволяют определить его основные параметры. Статические характеристики зависят от схемы включения транзистора (схема с общей базой или схема с общим эмиттером). Начнём со схемы с общим эмиттером.

Входные характеристики биполярного транзистора в схеме с ОЭ

Схема измерения статических характеристик биполярного транзистора в схеме с общим эмиттером приведена на рисунке 1.


Рисунок 1. Схема измерения статических характеристик в схеме с общим эмиттером

Для снятия входных характеристик биполярного транзистора зафиксируем напряжение на коллекторе. Зависимость тока базы от напряжения на базе и будет входной характеристикой транзистора. Входные характеристики транзистора при нулевом напряжении на коллекторе и при напряжении на коллекторе, равным 5 В, приведены на рисунке 2.


Рисунок 2. Входные характеристики биполярного транзистора

Входная характеристика биполярного транзистора, снятая при нулевом коллекторном напряжении не отличается от вольтамперной характеристики полупроводникового диода, что собственно говоря и не удивительно. Характеристика определяется в основном эмиттерным переходом, так как уровень легирования области коллектора значительно меньше уровня легирования эмиттера.

Читайте также:  Способы измерений экспертных оценок

При подаче на коллектор напряжения, к току эмиттерного перехода добавляется ток коллекторного перехода и входная характеристика несколько изменяется. В основном при малых значениях напряжения Uбэ. При нулевом значении напряжения Uбэ ток Iб0 будет определяться обратным током коллектора при напряжении , и, соответственно, вытекать из базы транзистора. При возрастании напряжения Uбэ к обратному току коллектора добавляется ток эмиттерного перехода, и начиная с напряжения Uбэ0 ток будет втекать в базу транзистора.

При увеличении напряжения на коллекторе кроме смещения входной характеристики биполярного транзистора вправо, она становится более пологой. Это означает, что входное сопротивление биполярного транзистора увеличивается. Возрастание входного сопротивления вызвано расширением коллекторного перехода под воздействием запирающего напряжения Uкб, что в свою очередь приводит к уменьшению ширины базовой области транзистора.

Выходные характеристики биполярного транзистора в схеме с ОЭ

Выходные характеристики биполярного транзистора снимаются при постоянном значении тока базы. Пример семейства выходных характеристик БТ, включенного по схеме с общим эмиттером, приведен на рисунке 3.


Рисунок 3. Выходные характеристики биполярного транзистора в схеме с ОЭ

Начальные участки характеристик соответствуют режиму насыщения, а участки с малым наклоном — активному режиму биполярного транзистора. Переход от режима насыщения к рабочему режиму биполярного транзистора происходит при значениях |Uкэ|, превышающих |Uбэ|. Режим отсечки биполярного транзистора соответствует токам, меньшим .

Наклон выходных характеристик определяет выходное сопротивление транзистора в схеме с общим эмиттером. Относительно большой наклон этих характеристик (по сравнению со схемой включения транзистора с общей базой) связан с влиянием эффекта модуляции толщины базы (эффект Эрли). При увеличении напряжения Uкэ возрастает напряжение Uкб, что приводит к уменьшению толщины базовой области транзистора, а значит уменьшению тока базы. Для сохранения тока базы на прежнем уровне приходится увеличивать напряжение Uбэ, что приводит к росту Iк.

Выходные характеристики биполярного транзистора в схеме с ОБ

Выходные характеристики биполярного транзистора снимаются при постоянном значении тока базы. Пример семейства выходных характеристик биполярного транзистора, включенного по схеме с общей базой, приведен на рисунке 4.


Рисунок 4. Выходные характеристики биполярного транзистора

  • Входные характеристики позволяют оценить нелинейность транзистора.
  • Входные и выходные характеристики позволяют определить входное и выходное сопротивления транзистора.
  • На выходных характеристиках транзистора видны области отсечки, насыщения и его рабочая область.

Дата последнего обновления файла 05.12.2020

  1. Электронные, квантовые приборы и микроэлектроника. Под редакцией Федорова Н. Д. — М.: Радио и связь, 1998. — 560 с.
  2. Электронные приборы. Под редакцией Шишкина Г.Г. — М.: Энергоатомиздат, 1989. — 496 с.
  3. Савиных В. Л. Физические основы электроники. Учебное пособие. — Новосибирск.: СибГУТИ, 2003. — 77 с.
  4. Глазачев А. В. Петрович В. П. Физические основы электроники. Конспект лекций — Томск: Томский политехнический университет, 2015.
  5. Колосницын Б. С. Полупроводниковые приборы и элементы интегральных микросхем. Учебно-методическое пособие: в 2 ч. Ч. 1: Расчёт и проектирование биполярных транзисторов. — Минск: БГУИР, 2011. — 68 с.
  6. Колосницын Б. С. Гапоненко Н. В. Полупроводниковые приборы и элементы интегральных микросхем. Учебное пособие: в 2 ч. Ч. 1: Физика активных элементов интегральных микросхем — Минск: БГУИР, 2016. — 196 с.
  7. Колосницын Б. С. Гранько С. В. Электронные приборы на основе полупроводниковых соединений. Учебно-методическое пособие: — Минск: БГУИР, 2017. — 94 с.
  8. Биполярный транзистор. Материал из Википедии — свободной энциклопедии. url:https://ru.wikipedia.org/wiki/Биполярный_транзистор
  9. Изобретение транзистора. Материал из Википедии — свободной энциклопедии. url:https://ru.wikipedia.org/wiki/Изобретение_транзистора
  10. Исследование биполярного транзистора url:http://www.labfor.ru/guidance/electronics-leso3/2

Вместе со статьей «Статические характеристики биполярного транзистора» читают:

Автор Микушин А. В. All rights reserved. 2001 . 2020

Предыдущие версии сайта:
http://neic.nsk.su/

Об авторе:
к.т.н., доц., Александр Владимирович Микушин

Кандидат технических наук, доцент кафедры САПР СибГУТИ. Выпускник факультета радиосвязи и радиовещания (1982) Новосибирского электротехнического института связи (НЭИС).

А.В.Микушин длительное время проработал ведущим инженером в научно исследовательском секторе НЭИС, конструкторско технологическом центре «Сигнал», Научно производственной фирме «Булат». В процессе этой деятельности он внёс вклад в разработку систем радионавигации, радиосвязи и транкинговой связи.

Научные исследования внедрены в аппаратуре радинавигационной системы Loran-C, комплексов мобильной и транкинговой связи «Сигнал-201», авиационной системы передачи данных «Орлан-СТД», отечественном развитии системы SmarTrunkII и радиостанций специального назначения.

Источник