Меню

Измерение характеристик случайных сигналов



Измерение характеристик случайных сигналов (стр. 1 из 2)

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ ИРАДИОЭЛЕКТРОНИКИ

Кафедра метрологии и стандартизации

«Измерение характеристик случайных сигналов»

Статистические измерения – это методы и средства измерения параметров и характеристик случайных сигналов. Они базируются на общих принципах измерений параметров сигналов, но имеют свою специфику и особенности, вытекающие из теории случайных процессов.

Вероятностные характеристики случайных сигналов

Случайным называется сигнал, мгновенные значения которого изменяются во времени случайным образом. Он описывается случайной функцией времени Х(t). Эту функцию можно рассматривать как бесконечную совокупность функций xi(t), каждая из которых представляет собой одну из возможных реализаций X(t). Графически это можно представить следующим образом (рисунок 1):

Полное описание случайных сигналов может быть произведено с помощью системы вероятностных характеристик. Любая из этих характеристик может быть определена либо усреднением по совокупности реализации xi(t), либо усреднением по времени одной бесконечно длинной реализации.

Зависимость или независимость результатов таких усреднений определяет следующие фундаментальные свойства случайных сигналов – стационарность и эргодичность.

Стационарным называется сигнал, вероятностные характеристики которого не зависят от времени.

Эргодическим называется сигнал, вероятностные характеристики которого не зависят от номера реализации.

Для стационарных эргодических сигналов усреднение любой вероятностной характеристики по множеству реализаций эквивалентно усреднению по времени одной теоретически бесконечно длинной реализации.

Для практических целей наиболее важными являются следующие вероятностные характеристики стационарных эргодических сигналов, имеющих длительность реализации Т:

— среднее значение (математическое ожидание). Оно характеризует постоянную составляющую сигнала

— средняя мощность. Она характеризует средний уровень сигнала

— дисперсия, характеризующая среднюю мощность переменной составляющей сигнала:

— среднеквадратическое отклонение (СКО)

— функция распределения, которая определяется как интегральная вероятность того, что значение xi(tj) в j-й момент времени будут ниже некоторых значений X:

Для заданных стационарных эргодичных сигналов Fx характеризуется относительным временем пребывания реализации ниже уровня Х (τi –, i –й интервал пребывания, n – количество интервалов, рисунок 2)

— одномерная плотность вероятности, называемая дифференциальным законом распределения:

— корреляционная функция. Она характеризует стохастическую (случайную) связь между двумя мгновенными значениями случайного сигнала, разделенного заданным интервалом времени τ

— взаимная корреляционная функция. Она характеризует стохастическую связь мгновенными значениями случайных сигналов x(t) и y(t), разделенными интервалом времени τ

Из выражений (1)-(8) видно, что все вероятностные характеристики представляют собой неслучайные числа или функции и определяется по одной реализации бесконечной длительности. Практически же длительность Т, называемая продолжительностью анализа, всегда ограничена, поэтому на практике мы можем определить не сами характеристики, а только их оценки. Эти оценки, полученные экспериментальным путем, называются статическими характеристиками. А раз оценка, значит приближение, которое характеризуется погрешностями, называемыми статистическими погрешностями.

Измерение среднего значения средней мощности и дисперсии

Согласно формуле (1) измерение mx сводится к интегрированию случайного сигнала за время Т. Интегрирование можно выполнить с помощью анало-

говых или цифровыхинтегрирующих устройств, применяемых в вольтметрах.

При практическом выборе времени интегрирования Т надо минимизировать статистические погрешности. Это условие соблюдается при Т

Измерение Px характерно тем, что согласно формуле (2) усредняется квадрат сигнала, поэтому измеритель Px содержит в своем составе устройство с квадратичной характеристикой. Задача измерения Px решается с помощью вольтметра среднеквадратичного значения, имеющего открытый вход. Показаниятакоговольтметра равно

Для измерения Dx тоже может быть использован вольтметр среднеквадратичного значения, только в соответствии с формулой (3) он должен иметь закрытый вход. Показания такого вольтметра согласно (4) будут соответствовать значениям σх.

Анализ распределения вероятностей

Метод измерения по относительному времени пребывания

При измерении этим методом удобнее измерять не значение τi, фигурирующее в формуле (7), а значение τi ’ , характеризующее время пребывания функции х(t) выше уровня х, поэтому при экспериментальном анализе определяется функция

Анализаторы, реализующие данный метод, могут быть как аналоговыми, так и цифровыми. Структурная схема аналогового анализатора предоставлена на рисунке 3.

С помощью ВУ обеспечивается уровень сигнала, необходимый для нормальной работы других функциональных узлов измерителя. Компараторы К1 и К2 выполняют функции амплитудных селекторов и имеют уровни срабатывания х и х+∆х соответственно. Эти уровни задаются регулятором уровня (РУ) и могут изменяться при одновременном обеспечении постоянства ширины дифференциального коридора ∆х. Таким образом сигналы на выходе К1 и К2 имеют вид импульсов U1 и U2 (рисунок 3), длительности которых соответственно равны τi ’ и τi ’’ . Формирующие устройства ФУ1 и ФУ2 стандартизируют эти импульсы по форме и амплитуде. Напряжения U1 и U2 позволяют измерить

Источник

ИЗМЕРЕНИЕ ХАРАКТЕРИСТИК СЛУЧАЙНЫХ СИГНАЛОВ

Анализ различных задач радиотехники показывает, что по су­ществу любой сигнал, несущий информацию, может рассматривать­ся как случайный (стохастический). Это обусловливается, с одной стороны, случайными искажениями сигнала при его распростране­нии и наличием разнообразных (внешних и внутренних) помех, а с другой—несовершенством применяемых радиотехнических устройств и систем. Ряд процессов, влияющих на их технический уровень и качество, относится к категории случайных. Эксперимен­тальный анализ таких процессов также связан с измерением харак­теристик соответствующих случайных сигналов.

Изучение свойств и характеристик случайных сигналов базиру­ется, как известно, на теории вероятностей и математической ста­тистике. Потребность в этом привела к развитию методов и средств, составляющих содержание статистических измерений. Они основа­ны на общих принципах измерения параметров сигналов, но имеют свою специфику и ряд принципиальных особенностей, вытекающих из теории случайных процессов. Напомним исходные определения и сведения о характеристиках случайных сигналов и уточним основ­ные задачи техники статистических измерений.

Читайте также:  Число как результат измерения величины деление

ОБЩИЕ СВЕДЕНИЯ

Случайным называется сигнал, мгновенные значения которого изменяются во времени случайным образом. В связи с этим он описывается случайной функ­цией времени X(t), которую можно рассматривать как бесконечную совокупность (ансамбль) функций xi(t), каждая из которых представляет собой одну из воз­можных реализаций X(t). На рис. 8.1 в качестве примера приведена совокупность реализаций xi(t), где xi(tj)—мгновенное значение сигнала X(t), соответствую­щее значению i-й реализации в j-й момент времени.

Полное описание случайных сигналов может быть произведено с помощью системы вероятностных характеристик. Любая из них определяется либо усред­нением по совокупности реализаций xi(t), либо усреднением по времени для од­ной реализации X(t). В общем случае результаты таких усреднений неодинако­вы, они могут зависеть либо не зависеть от времени или номера реализации. На­личие или отсутствие этой зависимости определяет такие фундаментальные свой­ства сигналов, как стационарность и эргодичность. Стационарным называется сиг­нал, вероятностные характеристики которого не зависят от времени. Соответствен­но вероятностные характеристики эргодических сигналов не зависят от номера реализации.

Классификация случайных сигналов по признакам стационарности и эргодич­ности позволяет выделить следующие их виды: стационарные эргодические, ста­ционарные неэргодические, нестационарные эргодические и нестационарные неэргодические. В рамках курса мы ограничимся рассмотрением методов и средств измерения вероятностных характеристик случайных сигналов первого вида как наиболее простого и типичного. Для таких сигналов усреднение любой вероятностной характеристики по множеству реализаций эквивалентно усреднению по­времени одной теоретически бесконечно длинной реализации. Другими словами все вероятностные характеристики стационарного эргодического сигнала могут быть получены по одной его реализации. Ясно, что проводить измерения с одной реализацией сигнала значительно проще, чем с совокупностью реализаций.

Для практических приложений наиболее важны следующие вероятностные характеристики стационарных эргодических сигналов, имеющих длительность реализации Т (ГОСТ 16465—70):

среднее значение (математическое ожидание), характеризующее, как и

Рис. 8.1. Совокупность реализаций случайного сигнала.

для детерминированных сигналов (см. § 3.1), постоянную составляющую сигнала

(8.1)

средняя мощность, характеризующая энергетический уровень сигнала,

(8.2)

дисперсия, характеризующая среднюю мощность переменной составляющей (флюктуации) сигнала,

(8.3)

или среднее квадратическое отклонение его

(8.4)

функция распределения, определяемая как интегральная вероятность того что значение Xi(tj)ниже некоторого заданного уровня х,

(8.5)

т. е. для стационарных эргодических сигналов Fx характеризуется относитель­ным временем пребывания значений реализации ниже уровня х ( i-й интер­вал пребывания; п — количество интервалов);

одномерная плотность вероятности, называемая также дифференциальным законом распределения,

(8.6)

где — расстояние между соседними уровнями Xi(tj) и ,называемое дифференциальным коридором, а i-й интервал пребывания реализации в пределах этого коридора;

корреляционная функция, характеризующая стохастическую связь между мгновенными значениями случайного сигнала, разделенными заданным интерва­лом времени ,

(8.7)

или нормированная корреляционная функция

(8.8)

взаимная корреляционная функция, характеризующая стохастическую связь между мгновенными значениями двух случайных сигналов X(t) иY(t), разделен­ными интервалом времени ,

(8.9)

и соответствующая ей нормированная взаимная корреляционная функция

(8.10)

спектральная плотность мощности, определяющая среднюю мощность сиг­нала, приходящуюся на единицу полосы частот. Распределение средней мощно­сти по частоте характеризует энергетический спектр сигнала. Он может быть определен для каждой реализации xi(t) по общим правилам (см. § 7.8). Оказы­вается, что для стационарных случайных сигналов функция спектральной плот­ности мощности связана с корреляционной функцией парой преобразо­ваний Фурье (теорема Винера — Хинчина):

(8.11)

Если мы имеем два стационарных сигнала X(t) иY(t), они могут быть оха­рактеризованы взаимной спектральной плотностью мощности, которая в общем случае является комплексной величиной . Поэтому на практике опреде­ляют функции действительной и мнимой составляющих :

(8.12)

При расчетах по формулам (8.11) и (8.12) можно пользоваться значениями и . Тогда функции спектральной плотности мощности будут норми­рованными.

Как следует из формул (8.1) — (8.12), все вероятностные характеристики, представляющие собой неслучайные числа или функции, определяются по одной реализации X(t) бесконечной длительности. Практически же длительность Т, на­зываемая продолжительностью анализа, всегда ограничена. Поэтому реально всякая экспериментальная характеристика отличается от соответствующей ве­роятностной (теоретической) характеристики и может являться только ее оцен­кой. Оценки, полученные аппаратурным путем, называются статистическими ха­рактеристиками и обозначаются знаком « » (см. § 1.3). В этом смысле измере­ние характеристик случайных сигналов всегда сопровождается статистическими погрешностями. В остальном метрологические характеристики анализаторов ста­тистических характеристик аналогичны характеристикам приборов других под­групп и регламентируются ГОСТ 8.251—77. Анализаторы статистических харак­теристик входят в подгруппу X (см. § 2.1), где они образуют вид Х6.

Источник

Измерение характеристик случайных сигналов

Вероятностные характеристики случайных сигналов. Измерение среднего значения средней мощности и дисперсии. Анализ распределения вероятностей. Корреляционные функции. Метод дискретных выборок. Анализ распределения вероятностей методом дискретных выборок.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 23.01.2009
Размер файла 74,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИНФОРМАТИКИ ИРАДИОЭЛЕКТРОНИКИ

Читайте также:  Перечень работ измерение сопротивления

Кафедра метрологии и стандартизации

«Измерение характеристик случайных сигналов»

Статистические измерения — это методы и средства измерения параметров и характеристик случайных сигналов. Они базируются на общих принципах измерений параметров сигналов, но имеют свою специфику и особенности, вытекающие из теории случайных процессов.

Вероятностные характеристики случайных сигналов

Случайным называется сигнал, мгновенные значения которого изменяются во времени случайным образом. Он описывается случайной функцией времени Х(t). Эту функцию можно рассматривать как бесконечную совокупность функций xi(t), каждая из которых представляет собой одну из возможных реализаций X(t). Графически это можно представить следующим образом (рисунок 1):

Полное описание случайных сигналов может быть произведено с помощью системы вероятностных характеристик. Любая из этих характеристик может быть определена либо усреднением по совокупности реализации xi(t), либо усреднением по времени одной бесконечно длинной реализации.

Зависимость или независимость результатов таких усреднений определяет следующие фундаментальные свойства случайных сигналов — стационарность и эргодичность.

Стационарным называется сигнал, вероятностные характеристики которого не зависят от времени.

Эргодическим называется сигнал, вероятностные характеристики которого не зависят от номера реализации.

Для стационарных эргодических сигналов усреднение любой вероятностной характеристики по множеству реализаций эквивалентно усреднению по времени одной теоретически бесконечно длинной реализации.

Для практических целей наиболее важными являются следующие вероятностные характеристики стационарных эргодических сигналов, имеющих длительность реализации Т:

— среднее значение (математическое ожидание). Оно характеризует постоянную составляющую сигнала

— средняя мощность. Она характеризует средний уровень сигнала

— дисперсия, характеризующая среднюю мощность переменной составляющей сигнала:

— среднеквадратическое отклонение (СКО)

— функция распределения, которая определяется как интегральная вероятность того, что значение xi(tj) в j-й момент времени будут ниже некоторых значений X:

Для заданных стационарных эргодичных сигналов Fx характеризуется относительным временем пребывания реализации ниже уровня Х (фi -, i -й интервал пребывания, n — количество интервалов, рисунок 2)

— одномерная плотность вероятности, называемая дифференциальным законом распределения:

где — расстояние между соседними уровнями X(t), называемое дифференциальным коридором;

— i й интервал пребывания реализации в пределах (см. рисунок 1.11).

— корреляционная функция. Она характеризует стохастическую (случайную) связь между двумя мгновенными значениями случайного сигнала, разделенного заданным интервалом времени ф

— взаимная корреляционная функция. Она характеризует стохастическую связь мгновенными значениями случайных сигналов x(t) и y(t), разделенными интервалом времени ф

Из выражений (1)-(8) видно, что все вероятностные характеристики представляют собой неслучайные числа или функции и определяется по одной реализации бесконечной длительности. Практически же длительность Т, называемая продолжительностью анализа, всегда ограничена, поэтому на практике мы можем определить не сами характеристики, а только их оценки. Эти оценки, полученные экспериментальным путем, называются статическими характеристиками. А раз оценка, значит приближение, которое характеризуется погрешностями, называемыми статистическими погрешностями.

Измерение среднего значения средней мощности и дисперсии

Согласно формуле (1) измерение mx сводится к интегрированию случайного сигнала за время Т. Интегрирование можно выполнить с помощью анало-

говых или цифровых интегрирующих устройств, применяемых в вольтметрах.

При практическом выборе времени интегрирования Т надо минимизировать статистические погрешности. Это условие соблюдается при Т(фм.к. — максимальный интервал корреляции, за пределами которого выборки сигнала можно считать практически некоррелированными).

Измерение Px характерно тем, что согласно формуле (2) усредняется квадрат сигнала, поэтому измеритель Px содержит в своем составе устройство с квадратичной характеристикой. Задача измерения Px решается с помощью вольтметра среднеквадратичного значения, имеющего открытый вход. Показания такого вольтметра равно . К вольтметрам, измеряющим Px, предъявляются повышенные требования в отношении широкополосности, протяженности квадратичного участка характеристики детектирования и времени усреднения Т.

Для измерения Dx тоже может быть использован вольтметр среднеквадратичного значения, только в соответствии с формулой (3) он должен иметь закрытый вход. Показания такого вольтметра согласно (4) будут соответствовать значениям ух.

Анализ распределения вероятностей

Метод измерения по относительному времени пребывания

При измерении этим методом удобнее измерять не значение фi, фигурирующее в формуле (7), а значение фi‘, характеризующее время пребывания функции х(t) выше уровня х, поэтому при экспериментальном анализе определяется функция

Для определения в соответствии с формулой (7) необходимо образовать дифференциальный коридор ?х, как показано на рисунке 3, и измерить кроме значений фi‘ еще и фi», характеризующее время пребывания реализации х(t) выше уровня х+?х, причем

Анализаторы, реализующие данный метод, могут быть как аналоговыми, так и цифровыми. Структурная схема аналогового анализатора предоставлена на рисунке 3.

С помощью ВУ обеспечивается уровень сигнала, необходимый для нормальной работы других функциональных узлов измерителя. Компараторы К1 и К2 выполняют функции амплитудных селекторов и имеют уровни срабатывания х и х+?х соответственно. Эти уровни задаются регулятором уровня (РУ) и могут изменяться при одновременном обеспечении постоянства ширины дифференциального коридора ?х. Таким образом сигналы на выходе К1 и К2 имеют вид импульсов U1 и U2 (рисунок 3), длительности которых соответственно равны фi‘ и фi». Формирующие устройства ФУ1 и ФУ2 стандартизируют эти импульсы по форме и амплитуде. Напряжения U1 и U2 позволяют измерить и .

При измерении осуществляется усреднение или интегрирование напряжения U1 (переключатель П в положении «1»), а при измерении с помощью схемы вычитания образуется разностное напряжение U3, которое тоже усредняется. Вид индикаторного устройства (ИУ) определяется назначением анализатора. Например, в панорамных анализаторах управление уровнями срабатывания компараторов К1 и К2 осуществляется синхронно и автоматически с разверткой осциллографа, применяемого в качестве ИУ. Такое ИУ позволяет регистрировать графики функций и .

Читайте также:  Относительная погрешность косвенного измерения физической величины

Измерение корреляционных функций

Метод дискретных выборок

Для измерения корреляционных функций наиболее часто используется метод перемножения. Алгоритм работы аналогового коррелометра, реализующего метод дискретных выборок, вытекает из формул (8) и (9). Этот метод предусматривает выполнение следующих операций:

— задержку исследуемого сигнала или одного из сигналов на время ф;

— перемножение задержанного и незадержанного сигналов;

— усреднение результатов перемножения.

Если коррелометр цифровой, то перечисленным выше операциям должна предшествовать дискретизация по времени и квантование по уровню. Поэтому алгоритм работы цифрового коррелометра будет определяться следующим соотношениями

где и — квантованные по уровню значения центрированных реализаций X(t) и Y(t) в дискретные моменты времени ;

— интервал сдвига во времени, р = 0,1,2,…;

N — количество выборок.

Коррелометры бывают двух модификаций: последовательного и параллельного действия.

В цифровых коррелометрах последовательного действия сначала по формуле (1.16) вычисляется значение корреляционной функции при р=0, т.е. значение реализации умножается само на себя, затем вводится задержка ф, (р=1) и определяется значение функции и далее проводятся вычисления при p=2,3,…, до =фм.к.. (фм.к — максимальный интервал корреляции, за пределами которого выборки сигнала можно считать практически некоррелированными).

Цифровой коррелометр параллельного действия позволяет одновременно вычислить все р- значений корреляционной функции, но становится при этом многоканальным прибором. Поэтому на практике чаще всего реализуются коррелометры последовательного действия (рисунок 5).

Работа всех узлов коррелометра синхронизируется устройством управления (УУ). Схема задержки состоит из р регистров сдвига, управляемых тактовыми импульсами УУ. Вместо перемножителя и усреднителя может быть использован микропроцессор. Накопление результатов перемножения производится в течение всего цикла измерения, и в конце цикла мы имеем полную информацию о корреляционной функции. Эта информация воспроизводится на ИУ в виде коррелограммы. Эта схема работает в диапазоне до сотен килогерц.

Анализ распределения вероятностей методом дискретных выборок

Если с помощью уровней квантования сформировать дифференциальный коридор, а тактовые импульсы УУ использовать в качестве импульсов опроса, то прибор, структурная схема которого приведена на рисунке 5, будет работать как измеритель распределения вероятностей, реализующий метод дискретных выборок.

Суть этого метода та же, что и рассмотренного выше метода измерения по относительному времени пребывания. Однако теперь это сравнение происходит в дискретных точках, которые задаются стробирующими импульсами опроса с периодом следования Т. Эти импульсы задаются УУ. Значение Т определяет шаг дискретизации при преобразовании аналоговой величины х(t) в дискретную.

Если сосчитать число выборок n за интервал пребывания реализации x(t) выше уровня х (при измерении ) или в пределах дифференциального коридора ?х (при измерении ), то мы получим:

Количество импульсов, соответствующее числу выборок n, накапливается в усреднителе за время Т. Обозначив , получим после подстановки в формулы (1.14) и (1.11) следующие выражения:

После обработки значения и воспроизводится на индикаторном устройстве.

Основная погрешность работы прибора во всех режимах не превышает значения ±5 %.

1 Метрология и электроизмерения в телекоммуникационных системах: Учебник для вузов /А.С. Сигов, Ю.Д. Белик. и др./ Под ред. В.И. Нефедова. — 2-е изд., перераб. и доп. — М.: Высш. шк., 2005.

2 Бакланов И.Г. Технологии измерений в современных телекоммуникациях. — М.: ЭКО-ТРЕНДЗ, 2007.

3 Метрология, стандартизация и измерения в технике связи: Учеб. пособие для вузов /Под ред. Б.П. Хромого. — М.: Радио и связь, 2006.

Подобные документы

Понятие случайных процессов, их математическое описание; показатели Ляпунова. Измерение вероятностных характеристик стационарных эргодических сигналов. Анализ распределения вероятностей методом дискретных выборок. Измерение корреляционных функций.

доклад [150,8 K], добавлен 20.05.2015

Процесс приема сигналов на вход приемного устройства. Модели сигналов и помех. Вероятностные характеристики случайных процессов. Энергетические характеристики случайных процессов. Временные характеристики и особенности нестационарных случайных процессов.

дипломная работа [3,3 M], добавлен 30.03.2011

Вычисление математического ожидания и дисперсии, плотности распределения случайных величин. Реализация квазидетерминированного случайного процесса. Помехоустойчивость сигналов при когерентном приеме. Вероятности ложной тревоги и пропуска сигнала.

контрольная работа [257,4 K], добавлен 20.03.2015

Сущность линейной обработки дискретных сигналов. Характеристика основных структурных элементов цифровых фильтров — элемента единичной задержки (на интервал дискретизации сигнала), сумматора и умножителя. Виды последовательности дискретных отчетов.

презентация [79,8 K], добавлен 19.08.2013

Функции распределения системы из двух случайных величин (СВ), ее числовые характеристики. Двумерная плотность вероятности как предел отношения. Условные законы распределения отдельных СВ в системе. Статистическая взаимозависимость и независимость.

реферат [379,5 K], добавлен 30.03.2011

Методы цифровой обработки сигналов в радиотехнике. Информационные характеристики системы передачи дискретных сообщений. Выбор длительности и количества элементарных сигналов для формирования выходного сигнала. Разработка структурной схемы приемника.

курсовая работа [370,3 K], добавлен 10.08.2009

Характеристики векторного пространства. Прием дискретных сигналов с неопределенной фазой. Их преобразование в электрические. Эффективная ширина спектра импульса. Спектры фазомодулированных и частотно-модулированных колебаний. Гармонический синтез функции.

контрольная работа [899,3 K], добавлен 02.07.2013

Источник