Измерение напряжения переменными вольтметрами

Измерение переменных напряжений

Принцип работы электронного вольтметра переменного напряжения состоит в преобразовании переменного напряжения в постоянное, прямо пропорциональное соответствующему значению переменного напряжения, и измерении постоянного напряжения электромеханическим измерительным прибором либо цифровым вольтметром.

Измеряемое электронным вольтметром значение переменного напряжения определяется типом применяемого измерительного преобразователя переменного напряжения в постоянное. Рассмотрим устройство электронных вольтметров переменных напряжений, требования к отдельным элементам, особенности построения и их метрологические характеристики.

Вольтметры амплитудных значений

Отклонение указателя амплитудного вольтметра прямо пропорционально амплитудному (пиковому) значению переменного напряжения, независимо от формы кривой напряжения. Таким свойством не обладает ни одна из систем электромеханических измерительных приборов. В электронных вольтметрах амплитудного значения используются пиковые детекторы с открытым и закрытым входом.

Амплитудные вольтметры обладают большим диапазоном рабочих частот (от десятков герц до 1. 2 ГГц) благодаря тому, что преобразование осуществляется непосредственно на входе прибора. Амплитудный детектор конструктивно размещается в выносном пробнике, благодаря чему удается уменьшить влияние паразитных параметров вольтметра, вывести резонансную частоту входной цепи за пределы диапазона частоты вольтметра.

Необходимая чувствительность (нижний предел измеряемых напряжений – единицы милливольт) достигается применением после детектора УПТ с большим коэффициентом усиления.

На рис. 2 показана упрощенная структурная схема амплитудного вольтметра с закрытым входом, построенного по схеме уравновешивающего преобразования.

Измеряемое напряжение Ux подается через входное устройство на вход пикового детектора с закрытым входом (VD1, С1, R1). На идентичный детектор (VD2, С2, R2) подается компенсирующее напряжение с частотой около 100 кГц, сформированное в цепи обратной связи. Постоянные напряжения, равные амплитудным значениям измеряемого сигнала и компенсирующего напряжения сравниваются на резисторах R1,R2. Следует отметить, что при малых напряжениях детекторы будут работать в квадратичном режиме, что приведет к погрешности вольтметра амплитудного значения.

Разностное напряжение подается на УПТ A1 с высоким коэффициентом усиления. Если напряжение на выходе УПТ имеет положительную полярность, что свидетельствует о превышении напряжения сигнала над компенсирующим или об отсутствии последнего, запускается ранее запертый генератор-модулятор, и компенсирующее напряжение поступает через делитель обратной связи на детектор VD2, R2, С2. Генератор-модулятор представляет собой генератор, собранный по емкостной трехточечной схеме, усилитель и эмиттерный повторитель.

Превышение компенсирующего напряжения над измеряемым приводит к запиранию генератора-модулятора. Выходное напряжение с амплитудой, пропорциональной амплитуде измеряемого напряжения и частотой 100 кГц, подается на детектор средневыпрямленного напряжения U1 и измеряется магнитоэлектрическим вольтметром PV1.

Важным требованием является идентичность передаточных характеристик детекторов сигнала и компенсирующего напряжения. Только при одинаковых характеристиках равенство выходных напряжений детекторов будет свидетельствовать о равенстве входных напряжений.

В установившемся режиме на резисторах R1 и R2 образуется некоторая разность напряжений и равна

(1)

где К и β – коэффициенты передачи цепи прямого преобразования и обратной связи.

В данной схеме в цепь прямого преобразования входят УПТ, генератор-модулятор, в цепь обратного – делитель в цепи обратной связи и детектор компенсирующего сигнала. Таким образом, для обеспечения высокой точности уравновешивания коэффициент усиления УПТ и генератора-модулятора должен быть достаточно высок.

Составляющими погрешности являются: погрешность образцовых средств при градуировке, случайная погрешность измерения постоянного напряжения магнитоэлектрическим прибором, погрешность, обусловленная нестабильностью коэффициента передачи цепи обратной связи и коэффициента передачи детектора средневыпрямленного значения, неидентичность характеристик детекторов, неуравновешенность схемы.

По подобной схеме работают выпускаемые промышленностью серийные амплитудные милливольтметры В3–6, В3–43. Основная погрешность на частотах до 30 МГц составляет 4. 6%, на частотах до 1 ГГц – 25%. Шкалы амплитудных вольтметров градуируются в среднеквадратических значениях синусоидального напряжения. Недостатком является большая погрешность при измерении напряжений с большим уровнем гармонических составляющих.

Источник

Вольтметр для измерения переменного напряжения

Электроника, электротехника. Профессионально-любительские решения.

Принцип измерения

Если для измерения постоянного напряжения Вы пользуетесь вольтметром с измерительной головкой магнитоэлектрической системы, то обращали внимание, что при неправильной полярности подключения щупов вольтметра к источнику измеряемого напряжения, стрелка измерительной головки отклоняется в обратную сторону за нуль и зашкаливает. Если таким прибором попытаться измерить переменное напряжение частотой около 50 Гц и выше, стрелка может слегка дёрнуться в первоначальный момент времени, но после будет указывать на ноль. Ненулевое значение будет говорить о наличии постоянной составляющей напряжения.

Самый простой способ выйти из положения – преобразовать переменное напряжение в постоянное, то есть выпрямить его. Это легко сделать с помощью одного единственного диода, как показано в статье «Элементарный выпрямитель на одном диоде». Если желаете измерить напряжение более-менее точно, для выпрямления можно использовать диодный мост.

Схемы измерения

Причина такого поведения магнитоэлектрического измерительного прибора при измерении переменного напряжения проста. В таких приборах присутствует постоянный магнит, а направление отклонения стрелки прибора зависит от направления протекания тока в катушке поворачивающейся рамки. В момент положительного полупериода стрелка прибора пытается отклониться в одну сторону, отрицательного – в другую. При достаточно частой смене полярности, например как в потребительской сети 50 Гц, стрелка просто не успевает отклониться в одну сторону, как вдруг ей нужно отклоняться в обратную. При этом можно заметить просто дрожание стрелки, или не заметить ни чего.

Измерительные головки электромагнитной системы в устройстве своём не имеют постоянного магнита, а их принцип действия основан на явлении втягивания предмета из намагничивающегося материала в область центра катушки с током. Направление действия катушки с током на намагничивающийся объект не зависит от направления тока в обмотке катушки. Поэтому такие приборы легко измеряют как постоянный, так и переменный ток или напряжение.

Если у Вас возникла необходимость измерить напряжение в сети переменного тока, а под рукой только прибор с измерительной головкой магнитоэлектрической системы (с постоянным магнитом), то можно просто выйти из положения, имея под рукой хотя бы один выпрямительный диод с обратным напряжением не ниже амплитудного значения предположительно измеряемой величины. Для этого рассмотрим две схемы.

Схема с одним диодом

Менее точный, но предельно простой вариант. Всё, что нужно, это подключить один из щупов прибора через выпрямительный диод. При этом следует учесть, что к клемме приора с положительной полярностью диод должен быть подключен катодом (к отрицательной – анодом). При действии положительного полупериода стрелку будет отклонять измеряемая величина напряжения в нужную нам сторону. Во время отрицательного полупериода диод будет запираться, разрывая цепь прибора с источником напряжения, которое уже не подействует на стрелку прибора в обратном направлении.

Особенность измерения схемой с одним диодом

Определение значения величины. При измерении по рассмотренной схеме следует учесть, что прибор реагирует только во ремя одного полупериода, и покажет величину в два раза меньше действительного действующего значения напряжения. То есть, если при измерении напряжения такой схемой прибор показал значение 110 В, это показание нужно умножить на два, и получите то, что Вы измерили.

Выбор диода. Для правильного выбора диода нам нужно обязательно учесть обратное напряжение диода, которое должно быть больше амплитудного значения измеряемой величины, иначе диод может пробить, и прибор перестанет показывать, или может врать на несколько порядков. Например, мы собираемся измерить напряжение в розетке. При указании класса напряжения оборудования указывается действующая величина. Чтобы узнать амплитудное значение, нужно действующую величину умножить на корень из двух: . Напряжение потребительской сети 220 В. Амплитуда напряжения будет 220×1,41=311 В. В нашем случае вполне подойдут выпрямительные диоды с обратным напряжением 400 В и выше. Ниже не желательно, т.к. в случае перенапряжения в сети, амплитуда напряжения может превысить обратное напряжение диода, произойдёт необратимый пробой p-n перехода и диод выйдет из строя.

Кроме того, не выбирайте мощные диоды, чем меньше мощность, тем лучше. У мощных диодов большая площадь p-n перехода, который в запертом состоянии может вести себя как обкладки конденсатора. Таким образом, в отрицательный полупериод может сказаться ёмкостная проводимость, и показания прибора окажутся несколько занижены. Чем больше частота измеряемого напряжения, тем больше влияние, особенно при использовании высокоомных чувствительных измерительных головок.

Схема с диодным мостом

Более сложный вариант, но позволяющий измерять электрические величины более точно. Для этого потребуется 4 диода, либо готовый диодный мост. Принцип работы схемы аналогичен первому варианту, но здесь измерительный элемент чувствует оба полупериода напряжения, которые действуют на него однонаправлено, и прибор показывает действующее значение напряжения. То есть, показания прибора будут соответствовать действительности.

Выбор диодов или диодного моста аналогичен первому случаю.

Меры предосторожности

При модификации Вашего прибора указанными способами, уделите особое внимание безопасности. Диоды или диодный мост используемые в схемах, а так же контактные места рассечки проводов, щупов прибора, клеммы вольтметра должны быть надёжно заизолированы, чтобы предотвратить поражение электрическим током при случайном прикосновении к токоведущим частям прибора во время измерения.

Под переменным напряжением понимается периодически изменяющееся напряжение, основными параметрами его являются период (или частота как величина, обратная периоду), амплитуда Um и мгновенное значение сигнала U(t).

Кроме амплитудного и мгновенного значений периодического сигнала часто используют:

1. Среднее значение (7.1)

2. Средневыпрямленное значение (7.2)

3. Действующее значение (7.3)

Зная форму сигнала, можно вычислить соотношения между амплитудным, действующим и средневыпрямленным значениями:

– коэффициент формы;

– коэффициент амплитуды.

Сигнал Вид сигнала Коэффициент формы Коэффициент амплитуды
синус 1,11 1,42
меандр 1,00 1,00
треугольный 1,154 1,73

Комбинированные вольтметры отображают действующее значение измеряемой величины. Переход от мгновенного значения к действующему может быть реализован тремя способами: определение средневыпрямленного значения и умножение его на коэффициент формы; определение амплитудного значения и деление его на коэффициент амплитуды; расчет действующего значения по формуле (7.2). Соответственно, существуют три типа входных детекторов измерительных приборов переменного тока: детекторы средневыпрямленного значения, амплитудного значения, действующего (среднеквадратичного) значения.

Наиболее часто на практике используют синусоидальные сигналы, поэтому в приборах с детекторами средневыпрямленного значения и амплитудного значения производится соответственно умножение и деление на коэффициенты формы и амплитуды для синусоидального сигнала. Таким образом, при измерении сигналов формы, отличной от синусоидальной, будет возникать методическая погрешность.

2. Принцип действия вольтметров с детектором
средневыпрямленного значения

Напряжение переменного тока может быть измерено вольтметрами электромагнитной, электро- и ферродинамической или электростатической систем. Но наиболее широко в измерительной практике используются вольтметры, имеющие измерительный механизм магнитоэлектрической системы и преобразователь измеряемого параметра переменного напряжения в постоянный ток. Измерительные механизмы магнитоэлектрической системы реагируют на среднее значение тока, протекающего по рамке. Поэтому, если пропускать через рамку ток с нулевым средним значением (например, синусоиду, меандр и т.п.), то подвижная система отклоняться не будет. Для измерения переменных токов и напряжений необходимо сигнал предварительно преобразовать в постоянный ток или напряжение. Основные типы таких преобразователей приведены в [2].

Рис. 7.1. Выпрямительные вольтметры

В выпрямительных вольтметрах обычно применяют схемы одно- или двухполупериодного выпрямления (см. рис. 7.1).

Недостатком простейшей схемы (рис. 7.1а) является малая чувствительность, большое обратное напряжение, приложенное к диоду, и, кроме того, несимметричность нагрузки для источника сигнала в разные полуволны сигнала. В схеме на рис. 7.1б использованы два диода, что позволяет выровнять (R=Rр) токи полуволн и защитить диод Д1 от пробоя. Часто используют схемы двухполупериодного выпрямления (рис. 7.1в).

Во всех этих схемах измерительный механизм реагирует на средневыпрямленный ток, т.е. отклонение стрелки пропорционально средневыпрямленному напряжению Uсв измеряемого сигнала

.

В большинстве же технических приложений необходимо знать действующее (среднеквадратическое) значение U. Конечно, если измерено Uсв, то U можно найти, используя коэффициент формы. Например, для синусоидального сигнала U=1,11×Uсв. Для удобства применения прибора это домножение на коэффициент 1,11 производится при градуировке:

;

;

.

В результате таким вольтметром удобно пользоваться при измерении синусоидальных сигналов. Если же коэффициент формы измеряемого сигнала отличается от 1,11, то возникает так называемая погрешность формы кривой.

(7.4)

Например, для меандра (Кф= 1,00):

,

т.е. методическая погрешность за счет отклонения формы кривой от синусоиды может существенно (в несколько раз) превышать инструментальную, определяемую классом точности прибора. Если известен коэффициент формы измеряемого сигнала, то можно вычислить измеряемое действующее значение Uх по формуле

(7.5)

где Uп – показание вольтметра выпрямительной системы.

Таким образом, при измерении напряжения переменного тока выпрямительным вольтметром следует учитывать две методические погрешности (за счет входного сопротивления и за счет формы кривой) и инструментальную погрешность самого вольтметра.

3. Принцип действия вольтметров с детектором
амплитудного значения

Вольтамперные характеристики реальных диодов имеют нулевую зону (отсутствие тока в прямом направлении) до 0,3-0,7 В. Поэтому выпрямительные вольтметры нельзя использовать при измерении малых напряжений. Необходимо предварительное усиление входного сигнала, что осуществляется в электронных вольтметрах. На рис. 7.2 приведены схемы электронных вольтметров с линейными детекторами на операционных усилителях.

а б

Рис. 7.2. Схемы электронных вольтметров.

При измерении высокочастотных напряжений часто используются электронные вольтметры с амплитудными детекторами. На рис. 7.3 приведена схема вольтметра, состоящего из:

– измерительного механизма магнитоэлектрической системы (ИМ);

– усилителя постоянного тока (УПТ);

– делителей во входных цепях;

– пробника, представляющего собой амплитудный детектор с закрытым входом.

Его выходной сигнал определяется амплитудой переменной составляющей входного сигнала.

В комбинированных вольтметрах шкала градуируется так, чтобы сразу определить среднеквадратическое (действующее) значение.

; ; ,

где КУПТ – коэффициент, зависящий от характеристик усилителя постоянного тока.

Рис. 7.3. Функциональная схема вольтметра В7-15

Градуировку комбинированных электронных вольтметров осуществляют для синусоидального входного сигнала

Если коэффициент амплитуды отличается от КА=1,41, то возникает методическая погрешность:

(7.6)

Например, если входной сигнал имеет форму меандра (КА=1,00), то относительная методическая погрешность:

Знак минус свидетельствует о том, что показания вольтметра меньше, чем действующее значение входного сигнала. Если известен коэффициент амплитуды входного сигнала, то действующее значение равно:

, (7.7)

где Uп – показание электронного вольтметра.

Только в случае, если градуировка шкалы совпадает с типом детектора, приборы показывают тот параметр сигнала, для которого проведена градуировка шкалы.

Учитывая большое входное активное сопротивление электронных вольтметров на промышленных частотах (до 1 кГц), часто можно пренебречь методической погрешностью за счет потребления энергии от входного сигнала и общая погрешность измерения напряжения имеет две составляющие: методическую погрешность формы кривой и инструментальную погрешность самого электронного вольтметра.

Отличительной характеристикой вакуумных диодов, часто используемых в амплитудных детекторах электронных вольтметров (см. рис. 7.3), является отсутствие нулевой зоны, и даже наличие небольшого тока через диод при нулевом входном сигнале. Нестабильность этого нулевого тока диода требует проведения перед измерением электронным вольтметром дополнительной операции «установки нуля переменного напряжения», во время которой подстраивается величина специального компенсирующего сигнала. Таким образом, при измерении электронным вольтметром напряжения переменного тока необходимо произвести две регулировки: балансировку УПТ и компенсацию нулевого тока вакуумного диода.

Современные электронные и цифровые вольтметры обычно построены по схеме широкополосный усилитель – преобразователь средневыпрямленного значения – измерительный механизм. Кроме того, как отдельный конструктивный элемент имеется амплитудный детектор с закрытым входом (пробник). Пробник подключается в случае измерения высокочастотных сигналов к входу вольтметра, работающего в этом случае в режиме измерения постоянного напряжения, поступающего с выхода пробника. Для сохранения градуировки шкалы в пробнике предусмотрен делитель (К=1), так что выходной сигнал пробника равен действующему значению при синусоидальном измеряемом напряжении.

В цифровых вольтметрах также предусматривается два варианта измерения напряжения переменного тока: при подключения сигнала к клеммам используется линейный детектор (см. рис. 7.2), а для измерения высокочастотных сигналов к приборам прилагается пробник (амплитудный детектор). В некоторых вольтметрах применяются квадратичные детекторы, выходной сигнал которых пропорционален действующему значению измеряемого напряжения и погрешность формы кривой отсутствует.

Здравствуй дорогой читатель. Иногда возникает необходимость иметь «под рукой» небольшой простенький вольтметр. Сделать такой вольтметр своими руками не составит большого труда.

О пригодности вольтметра для измерения напряжений в тех или иных цепях судят по его входному сопротивлению, которое складывается из сопротивления рамки стрелочного прибора и сопротивления добавочного резистора. Так как на разных пределах добавочные резисторы имеют разные номиналы, то и входное сопротивление прибора будет другим. Чаще вольтметр оценивают его относительным входным сопротивлением, характеризующим отношение входного сопротивления прибора к 1В измеряемого напряжения, например 5кОм/В. Это удобнее: входное сопротивление вольтметра на разных пределах измерений разное, а относительное входное сопротивление постоянное. Чем меньше ток полного отклонения стрелки измерительного прибора Iи, используемого в вольтметре, тем больше будет его относительное входное сопротивление, тем точнее будут производимые им измерения. В транзисторных конструкциях приходится измерять напряжение от долей вольта до нескольких десятков вольт, а в ламповых еще больше. Поэтому однопредельный вольтметр неудобен. Например, вольтметром со шкалой на 100В нельзя точно измерить даже напряжения 1- 5В, так как отклонение стрелки получится малозаметным. Поэтому нужен вольтметр, имеющий хотя бы три — четыре предела измерений. Схема такого вольтметра постоянного тока показана на рис.1. Наличие четырех добавочных резисторов R1, R2, R3 и R4 свидетельствует о том, что вольтметр имеет четыре предела измерений. В данном случае первый предел 0-1В, второй 0-10В, третий 0-100В и четвертый 0-1000В.
Сопротивления добавочных резисторов можно рассчитать по формуле, вытекающей из закона Ома: Rд= Uп/Iи — Rп, здесь Uп — наибольшее напряжение данного предела измерений, Iи – ток полного отклонения стрелки измерительной головки, а Rп – сопротивление рамки измерительной головки. Так, например, для прибора на ток Iи = 500мкА (0,0005А) и рамкой сопротивлением 500 Ом сопротивление добавочного резистора R1, для предела 0-1В должно быть 1,5кОм, для предела 0-10В — 19,5кОм, для предела 0-100В — 199,5кОм, для предела 0-1000 – 1999,5кОм. Относительное входное сопротивление такого вольтметра будет 2кОм/В. Обычно, в вольтметр монтируют добавочные резисторы с номиналами, близкими с расчетными. Окончательно же «подгонку» их сопротивлений производят при градуировке вольтметра путем подключения к ним параллельно или последовательно других резисторов.

Если вольтметр постоянного тока дополнить выпрямителем, преобразующим переменное напряжение в постоянное (точнее — пульсирующее), получим вольтметр переменного тока. Возможная схема такого прибора с однополупериодным выпрямителем показана на рис.2. Работает прибор следующим образом. В те моменты времени, когда на левом (по схеме) зажиме прибора положительная полуволна переменного напряжения, ток идет через диод Д1 и далее через микроамперметр к правому зажиму. В это время диод Д2 закрыт. Во время положительной полуволны на правом зажиме, диод Д1 закрывается, и положительные полуволны переменного напряжения замыкаются через диод Д2, минуя микроамперметр.
Добавочный резистор Rд рассчитывают так же, как и для постоянных напряжений, но полученный результат делят на 2,5-3, если выпрямитель прибора однополупериодный, или на 1,25-1,5, если выпрямитель прибора двухполупериодный — рис.3. Более точно сопротивление этого резистора подбирают опытным путем во время градуировки шкалы прибора. Можно рассчитать Rд и по другим формулам. Сопротивление добавочных резисторов вольтметров выпрямительной системы, выполненных по схеме на рис.2, вычисляют по формуле:
Rд = 0,45?Uп/Iи – (Rп + rд);
Для схемы на рис.3 формула имеет вид:
Rд = 0,9?Uп/Iи – (Rп + 2rд); где rд – сопротивление диода в прямом направлении.
Показания приборов выпрямительной системы пропорциональны средневыпрямленному значению измеряемых напряжений. Шкалы же их градуируют в среднеквадратических значения синусоидального напряжения, поэтому показания приборов выпрямительной системы равны среднеквадратическому значению напряжения лишь при измерении напряжений синусоидальной формы. В качестве выпрямительных диодов используются германиевые диоды Д9Д. Такими вольтметрами можно измерять и напряжение звуковой частоты до нескольких десятков килогерц. Шкалу для самодельного вольтметра можно начертить с помощью программы FrontDesigner_3.0_setup.

Простой вольтметр переменного напряжения с частотой 50 Гц, выполнен в виде встраиваемого модуля, который может использоваться как отдельно, так и быть встроен в готовое устройство.
Вольтметр собран на микроконтроллере PIC16F676 и 3-разрядном индикаторе и содержит не очень много деталей.

Основные характеристики вольтметра:
Форма измеряемого напряжения – синусоидальная
Максимальное значение измеряемого напряжения – 250 В;
Частота измеряемого напряжения – 40…60 Гц;
Дискретность отображения результата измерения – 1 В;
Напряжение питание вольтметра – 7…15 В.
Средний ток потребления – 20 мА
Два варианта конструкции: с БП на борту и без
Односторонняя печатная плата
Компактная конструкция
Отображение измеряемых величин на 3-разрядном LED-индикаторе

Принципиальная схема вольтметра для измерения переменного напряжения

Реализовано прямое измерение переменного напряжения с последующим вычислением его значения и вывода на индикатор. Измеряемое напряжение поступает на входной делитель, выполненный на R3, R4, R5 и через разделительный конденсатор C4 поступает на вход АЦП микроконтроллера.

Резисторы R6 и R7 создают на входе АЦП напряжение 2,5 вольта (половина питания). Конденсатор C5, относительно малой ёмкости, шунтирует вход АЦП и способствует уменьшению ошибки измерения. Микроконтроллер организует работу индикатора в динамическом режиме по прерываниям от таймера.

Конструкция и детали

Вариант с доп. питанием + 7…15 В . Пределы измерения 0 – 250 Вольт.

Вольтметр собран на плате из одностороннего фольгированного стеклотекстолита. Индикатор применён с общим катодом.
Резисторы R6 и R7 могут иметь величину 47 – 100 ком. Их необходимо подобрать с одинаковыми номиналами или взять с 1% допуском. От их равенства номиналов зависит линейность показаний в верхней части шкалы.
Номинал резисторов R8 – R12 выбирается в зависимости от требуемой яркости свечения и светоотдачи индикатора. При этом возможно придётся увеличить ёмкость конденсатора C1 для получения большего значения тока для питания индикатора.
При использовании индикатора с малой светоотдачей желательно вместо микросхемы U1 (78L05) применить более мощную 7805 для того чтобы избежать перегрева.

Настройка

Программа

Работа программы: в течение некоторого отрезка времени производится многократное прямое измерение напряжения без привязки к фазе и при этом определяются минимальное и максимальное значения напряжений. Разность их значений будет равна размаху измеряемого напряжения, которое и выводится на индикатор.

Возможные применения вольтметра

Обобщенная структурная схема вольтметра постоянного тока приведена на рис. 1,а. Она включает входное устройство, усилитель постоянного тока А1 и электромеханический измерительный прибор PV1. Входное устройство предназначено для создания высокого входного сопротивления, чтобы уменьшить влияние вольтметра на измеряемую цепь. Оно состоит из делителей напряжения – аттенюаторов, с их помощью изменяют пределы измеряемых величин. В некоторых вольтметрах входное устройство содержит эмиттерный повторитель (или истоковый – при использовании полевых транзисторов).

К УПТ предъявляются высокие требования: малый дрейф нуля, высокая стабильность усиления, малый уровень шумов.

В вольтметрах постоянного тока высокой чувствительности входной сигнал преобразуется в переменный, усиливается и затем вновь преобразуется в напряжение постоянного тока.

Обобщенная структурная схема вольтметра переменного тока показана на рис. 1,б. Принцип действия такого вольтметра состоит в преобразовании переменного напряжения в постоянное, которое измеряется стрелочным электромеханическим прибором. В качестве преобразователей переменного напряжения в постоянное используются пиковые (амплитудные) детекторы, детекторы среднеквадратического и средневыпрямленного значения напряжения. Применение того или иного преобразователя переменного тока в постоянный определяет способность вольтметра измерять то или иное значение напряжения.

На обобщенной схеме показаны усилитель переменного напряжения А1 и УПТ А2, включенный после преобразователя V1. Однако в практических приборах применение обоих усилителей встречается очень редко. Используется либо додетекторное усиление, либо последетекторное. В высокочувствительные измерители напряжения вводят усилители переменного напряжения, обычно широкополосные, с полосой пропускания от единиц герц до десятков мегагерц.

Для обеспечения широкой области рабочих частот вплотьдо 1 ГГц усилители переменного напряжения не применяют, а применяют усилители постоянного тока.

В цифровых вольтметрах переменного напряжения используется аналоговое преобразование измеряемого переменного напряжения в постоянное. В импульсных цифровых вольтметрах находят применение специальные АЦП – амплитудно-временные преобразователи. В вольтметрах с уравновешивающим преобразованием используются соответствующие АЦП.

Цифровые вольтметры прямого преобразования более просты по устройству, но имеют меньшую точность. По используемому способу аналого-цифрового преобразования они бывают: с временным, временным с интегрированием и частотным преобразованием. Интегрирующие цифровые вольтметры, измеряющие среднее значение напряжения за время измерения, обладают повышенной помехозащищенностью. Входное устройство (рис. 2) содержит делители напряжения и предназначено для расширения пределов измерения. Оно обеспечивает достаточно высокое входное сопротивление вольтметра. Устройство определения полярности измеряемого напряжения основано на определении последовательности срабатывания двух устройств сравнения. На первое подается пилообразное напряжение, принимающее значения от –U до +U, и измеряемое напряжение. Устройство срабатывает (выдает импульс) в момент равенства напряжений. Другое устройство сравнения срабатывает в момент равенства пилообразного напряжения нулю. Сигнал полярности подается в цифровое отсчетное устройство. Устройство автоматического выбора пределов измерения сравнивает измеряемое напряжение с набором напряжений и управляет делителем.

Цифровые вольтметры с уравновешивающим преобразованием строятся в основном по двум типам структурных схем: с использованием программирующего устройства и цифрового счетчика. В них измеряемое напряжение уравновешивается дискретно-изменяющимся компенсирующим образцовым напряжением. На рис. 3,а,б показаны эти структурные схемы.

Рассмотрим работу вольтметра, построенного по схеме с цифровым счетчиком (рис. 3,б). Тактовые импульсы поступают на цифровой счетчик через управляющее устройство, определяющее порядок заполнения ячеек. Счетчик изменяет состояние элементов преобразователя кода и компенсирующее напряжение. Измеряемое напряжение, поступающее на устройство сравнения, сравнивается с компенсирующим напряжением. В зависимости от знака этой разности на выходе устройства сравнения управляющее устройство либо продолжает пропускать тактовые импульсы на счетчик, либо нет. Новый цикл измерений начинается с момента сбрасывания на нуль показаний счетчика. В этот же момент в исходное состояние приводится компенсирующее напряжение и на счетчик начинают поступать счетные импульсы.

Если для измерения постоянного напряжения Вы пользуетесь вольтметром с измерительной головкой магнитоэлектрической системы, то обращали внимание, что при неправильной полярности подключения щупов вольтметра к источнику измеряемого напряжения, стрелка измерительной головки отклоняется в обратную сторону за нуль и зашкаливает. Если таким прибором попытаться измерить переменное напряжение частотой около 50 Гц и выше, стрелка может слегка дёрнуться в первоначальный момент времени, но после будет указывать на ноль. Ненулевое значение будет говорить о наличии постоянной составляющей напряжения.

Самый простой способ выйти из положения – преобразовать переменное напряжение в постоянное, то есть выпрямить его. Это легко сделать с помощью одного единственного диода, как показано в статье . Если желаете измерить напряжение более-менее точно, для выпрямления можно использовать .

Схемы измерения

Причина такого поведения магнитоэлектрического измерительного прибора при измерении переменного напряжения проста. В таких приборах присутствует постоянный магнит, а направление отклонения стрелки прибора зависит от направления протекания тока в катушке поворачивающейся рамки. В момент положительного полупериода стрелка прибора пытается отклониться в одну сторону, отрицательного – в другую. При достаточно частой смене полярности, например как в потребительской сети 50 Гц, стрелка просто не успевает отклониться в одну сторону, как вдруг ей нужно отклоняться в обратную. При этом можно заметить просто дрожание стрелки, или не заметить ни чего.

Измерительные головки электромагнитной системы в устройстве своём не имеют постоянного магнита, а их принцип действия основан на явлении втягивания предмета из намагничивающегося материала в область центра катушки с током. Направление действия катушки с током на намагничивающийся объект не зависит от направления тока в обмотке катушки. Поэтому такие приборы легко измеряют как постоянный, так и переменный ток или напряжение.

Если у Вас возникла необходимость измерить напряжение в сети переменного тока, а под рукой только прибор с измерительной головкой магнитоэлектрической системы (с постоянным магнитом), то можно просто выйти из положения, имея под рукой хотя бы один выпрямительный диод с обратным напряжением не ниже амплитудного значения предположительно измеряемой величины. Для этого рассмотрим две схемы.

Схема с одним диодом

Менее точный, но предельно простой вариант. Всё, что нужно, это подключить один из щупов прибора через выпрямительный диод. При этом следует учесть, что к клемме приора с положительной полярностью диод должен быть подключен катодом (к отрицательной – анодом). При действии положительного полупериода стрелку будет отклонять измеряемая величина напряжения в нужную нам сторону. Во время отрицательного полупериода диод будет запираться, разрывая цепь прибора с источником напряжения, которое уже не подействует на стрелку прибора в обратном направлении.

Особенность измерения схемой с одним диодом

Определение значения величины. При измерении по рассмотренной схеме следует учесть, что прибор реагирует только во ремя одного полупериода, и покажет величину в два раза меньше действительного действующего значения напряжения. То есть, если при измерении напряжения такой схемой прибор показал значение 110 В, это показание нужно умножить на два, и получите то, что Вы измерили.

Выбор диода. Для правильного выбора диода нам нужно обязательно учесть обратное напряжение диода, которое должно быть больше амплитудного значения измеряемой величины, иначе диод может пробить, и прибор перестанет показывать, или может врать на несколько порядков. Например, мы собираемся измерить напряжение в розетке. При указании класса напряжения оборудования указывается действующая величина. Чтобы узнать амплитудное значение, нужно действующую величину умножить на корень из двух: . Напряжение потребительской сети 220 В. Амплитуда напряжения будет 220×1,41=311 В. В нашем случае вполне подойдут выпрямительные диоды с обратным напряжением 400 В и выше. Ниже не желательно, т.к. в случае перенапряжения в сети, амплитуда напряжения может превысить обратное напряжение диода, произойдёт необратимый пробой p-n перехода и диод выйдет из строя.

Кроме того, не выбирайте мощные диоды, чем меньше мощность, тем лучше. У мощных диодов большая площадь p-n перехода, который в запертом состоянии может вести себя как обкладки конденсатора. Таким образом, в отрицательный полупериод может сказаться ёмкостная проводимость, и показания прибора окажутся несколько занижены. Чем больше частота измеряемого напряжения, тем больше влияние, особенно при использовании высокоомных чувствительных измерительных головок.

Схема с диодным мостом

Более сложный вариант, но позволяющий измерять электрические величины более точно. Для этого потребуется 4 диода, либо готовый диодный мост. Принцип работы схемы аналогичен первому варианту, но здесь измерительный элемент чувствует оба полупериода напряжения, которые действуют на него однонаправлено, и прибор показывает действующее значение напряжения. То есть, показания прибора будут соответствовать действительности.

Выбор диодов или диодного моста аналогичен первому случаю.

Меры предосторожности

При модификации Вашего прибора указанными способами, уделите особое внимание безопасности. Диоды или диодный мост используемые в схемах, а так же контактные места рассечки проводов, щупов прибора, клеммы вольтметра должны быть надёжно заизолированы, чтобы предотвратить поражение электрическим током при случайном прикосновении к токоведущим частям прибора во время измерения.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector