Измерение оптической плотности проводят при

Как измерить оптическую плотность раствора?

При исследовании различных веществ в медицине, фармацевтике, химии и косметической промышленности нередко требуется знать их оптическую плотность. Как правило данная характеристика определяется в лабораториях, оснащенных современными спектрофотометрами, такими как В 1200.

Как проходит измерение

Метод измерения оптической плотности основана на воздействии на вещество с помощью источника излучения и дальнейшем анализе спектра пройденного света.

Подготовка оборудования и растворов:

  • включить прибор и подождать в течение 15 минут пока он прогреется;
  • одеть резиновые перчатки, чтобы избежать попадания грязи на посуду;
  • тщательно промыть пробирки или кюветы и высушить их;
  • залить в лабораторную посуду исследуемое вещество так, чтобы световой пучок проходил точно сквозь него;
  • приготовить контрольный раствор для проведения калибровки;
  • залить его во вторую пробирку;
  • протереть наружную поверхность пробирки или кюветы, чтобы исключить искажение результатов.

Теперь можно приступать непосредственно к самому измерению:

  • задать в программе спекрофотометра длину волны света;
  • разместить в держателе прибора пробирку с холостым раствором;
  • закрыть крышку спектрофотометра;
  • провести измерение;
  • записать показания, выдаваемые на стрелочном индикаторе или дисплее (в современных моделях);
  • выполнить калибровку оборудования;
  • достать пробирку с холостым раствором;
  • удостовериться в правильности калибровки, выполнив измерение без образца и повторно с холостым раствором;
  • разместить в держателе пробирку с образцом;
  • выполнить измерение;
  • подождать в течение 10 минут, пока стрелка прибора перестанет колебаться или цифры на дисплее не прекратят изменяться;
  • выполнить измерения для других длин волн.

Современное оборудование позволяет получить необходимые результаты без проведения дополнительных расчетов, что существенно упрощает задачу. Таким образов, в результате исследования с применением фотометра можно получить не только значения оптической плотности, но также узнать химическую формулу и концентрацию примесей.

Источник

ОПРЕДЕЛЕНИЕ ОПТИЧЕСКОЙ ПЛОТНОСТИ И КОНЦЕНТРАЦИИ

ОКРАШЕННЫХ РАСТВОРОВ ПРИ ПОМОЩИ КОНЦЕНТРАЦИОНОГО

ФОТОЭЛЕКТРИЧЕСКОГО КАЛОРИМЕТРА КФК– 2

Цель работы: изучить явление ослабления света при прохождении через вещество и фотометрические характеристики вещества, изучить устройство концентрационного фотоэлектрического калориметра КФК-2 и методику работы с ним, определить оптическую плотность и концентрацию окрашенного раствора с помощью КФК-2.

Приборы и принадлежности: калориметр фотоэлектрический концентрационный КФК – 2, исследуемый раствор, набор растворов стандартной концентрации.

Теория работы

При падении света на границу раздела двух сред свет частично отражается и частично проникает из первого вещества во второе. Световые электромагнитные волны приводят в колебательное движение как свободные электроны вещества, так и связанные электроны, находящиеся на внешних оболочках атомов (оптические электроны), которые излучают вторичные волны с частотой падающей электромагнитной волны. Вторичные волны образуют отраженную волну и волну, проникающую внутрь вещества.

В веществах с высокой плотностью свободных электронов (металлах) вторичные волны порождают сильную отраженную волну, интенсивность которой может достигать 95 % интенсивности падающей волны. Та же часть световой энергии, которая проникает внутрь металла, испытывает в нем сильное поглощение, и энергия световой волны превращается в тепловую. Поэтому металлы сильно отражают падающий на них свет и практически непрозрачны.

В полупроводниках плотность свободных электронов меньше, чем в металлах, и они слабее поглощают видимый свет, а в инфракрасной области вообще прозрачны. Диэлектрики поглощают свет избирательно и прозрачны только для определенных участков спектра.

В общем случае при падении света на вещество падающий световой поток Ф0 можно представить в виде суммы световых потоков:

, (1)

где Фr– отраженный, Фa– поглощенный, Фt– прошедший через вещество световой поток.

Явление взаимодействия света с веществом описывается безразмерными величинами, которые называются коэффициентами отражения , поглощения и пропускания . Для одного и того же вещества

Для непрозрачных тел t = 0; для идеально белых тел r = 1; для абсолютно черных тел a = 1.

Величина называется оптической плотностью вещества.

Коэффициенты r, a, t характеризуют фотометрические свойства вещества и определяются фотометрическими методами.

Фотометрические методы анализа широко применяются в ветеринарии, зоотехнии, почвоведении, технологии материалов. При исследовании веществ, растворенных в практически непоглощающем растворителе, фотометрические методы основаны на измерении поглощения света и на зависимости между поглощением и концентрацией растворов. Приборы, предназначенные для абсорбционного (абсорбция – поглощение) анализа прозрачных сред, называются спектрофотометрами и фотокалориметрами. В них при помощи фотоэлементов сравниваютcя окраски исследуемых растворов со стандартным.

Зависимость между поглощением света окрашенным раствором и концентрацией вещества подчиняется объединенному закону Бугера – Ламберта – Бера:

, (3)

где I0 – интенсивность потока света, падающего на раствор; I — интенсивность потока света, прошедшего через раствор; c — концентрация окрашенного вещества в растворе; l — толщина поглощающего слоя в растворе; k — коэффициент поглощения, который зависит от природы растворенного вещества, растворителя, температуры и длины световой волны.

Если с выражено в моль/л, а l — в сантиметрах, то k становится молярным коэффициентом поглощения и обозначается el, следовательно:

. (4)

Прологарифмировав (4), получим:

. (5)

Левая часть выражения (5) является оптической плотностью раствора. С учетом понятия оптической плотности закон Бугера – Ламберта – Бера примет вид:

т. е. оптическая плотность раствора при определенных условиях прямо пропорциональна концентрации окрашенного вещества в растворе и толщине поглощающего слоя.

На практике наблюдаются случаи отклонения от объединенного закона поглощения. Это происходит потому, что некоторые окрашенные соединения в растворе претерпевают изменения за счет процессов диссоциации, сольватации, гидролиза, полимеризации, взаимодействия с другими компонентами раствора.

Вид графика зависимости D = f(c) представлен на рис. 1.

Окрашенные соединения обладают избирательным поглощением света, т.е. оптическая плотность окрашенного раствора различна для различных длин волн па- дающего света. Измерение оптической плотности с целью определения концентрации раствора проводят в области максимального поглощения, т. е. при длине волны

падающего света близкой к lmax.

Для фотометрического определения концентрации раствора сначала строят калибровочный график D = f(c). Для этого готовят серию стандартных растворов. Затем измеряют величины их оптической плотности и строят график зависимости

D = f(c). Для его построения необходимо иметь 5 – 8 точек.

Экспериментально определив оптическую плотность исследуемого раствора, находят ее значение на оси ординат калибровочного графика D = f(c), а затем на оси абсцисс отсчитывают соответствующее значение концентрации сх.

Используемый в работе калориметр фотоэлектрический концентрационный КФК–2 предназначен для измерения отношения потоков света на отдельных участках длин волн в диапазоне 315 — 980 нм, выделяемых светофильтрами, и позволяет определять коэффициенты пропускания и оптической плотности жидких растворов и твердых тел, а также концентрации веществ в растворах методом построения градуировочных графиков D = f(c).

Принцип измерения фотокалориметром КФК–2 оптических характеристик веществ состоит в том, что на фотоприемник (фотоэлемент) направляются поочередно световые потоки — полный I0 и прошедший через исследуемую среду I и определяется отношение этих потоков.

Внешний вид фотокалориметра КФК–2 представлен на рис. 2. Он включает в

себя источник света, оптическую часть, набор светофильтров, фотоприемники и регистрирующий прибор, шкала которого откалибрована на показания светопропускания и оптической плотности. На лицевой панели фотокалориметра КФК – 2 имеются:

1 — микроамперметр со шкалой, оцифрованной в величинах коэффициента про-

пускания Т и оптической плотности D;

3 — ручка переключения светофильтров;

4 — переключатель кювет в световом пучке;

5 — переключатель фотоприемников «Чувствительность»;

6 — ручки «Установка 100»: «Грубо» и «Точно»;

7 — кюветное отделение.

Порядок выполнения работы

1. Включить прибор в сеть. Прогреть в течение 10 – 15 мин.

2. При открытом кюветном отделении установить стрелку микроамперметра на «0»

3. Установить минимальную чувствительность, для этого ручку «Чувствитель-

ность» переключить в положение «1», ручку «Установка 100» «Грубо» переключить в крайнее левое положение.

4. В световой пучок поместить кювету с растворителем или контрольным раство-

ром, по отношению к которому производится измерение.

5. Закрыть крышку кюветного отделения.

6. Ручками «Чувствительность» и «Установка 100» «Грубо» и «Точно» установить

отсчет 100 по шкале фотокалориметра. Ручка «Чувствительность» может находиться в одном из трех положений «1», «2», или «3».

7. Поворотом ручки «4» кювету с растворителем заменить кюветой с исследуемым

8. Снять отсчет по шкале микроамперметра, соответствующий коэффициенту про-

пускания исследуемого раствора в процентах, по шкале «Т» или по шкале «Д» — в единицах оптической плотности.

9. Измерения провести 3–5 раз и окончательное значение измеряемой величины оп-

ределить как среднее арифметическое из полученных значений.

10. Определить абсолютную погрешность измерения искомой величины.

Задание № 1. Изучение зависимости оптической плотности от длины

Волны падающего света

1.1. Для стандартного раствора определить оптическую плотность при различных частотах падающего света.

1.2. Данные занести в таблицу 1.

1.3. Построить график зависимости оптической плотности от длины волны l па-

дающего света D = f(l).

1.4. Определить l и номерсветофильтра для Dmax .

Маркировка светофильтра на диске Длина волны l, соответствующая max пропускания, нм Оптическая плотность D

Задание № 2. Проверка зависимости оптической плотности от толщины

Поглощающего слоя

2.1. Для стандартного раствора, используя светофильтр с lmax (см. задание № 1), определить D для кювет различного размера.

2.2. Данные занести в таблицу 2.

Рабочая длина микрокюветы, мм l
Оптическая плотность D

2.3. Построить график зависимости D = f(l).

Задание № 3. Построение калибровочного графика и определение концент-

Рации неизвестного раствора

3.1 . Для серии стандартных растворов известной концентрации, используя све-

тофильтр с lmax (см. задание № 1), определить D.

3.2. Данные измерений занести в таблицу 3.

№ стандартного раствора Концентрация с, % Оптическая плотность D
Контрольный раствор

3.3. Построить калибровочный график D = f(с).

3.4. По графику D = f(с) определить концентрацию неизвестного раствора.

Контрольные вопросы

1. Явление ослабления света при прохождении через вещество, механизм поглоще-

ния для разных типов вещества.

2. Параметры, характеризующие фотометрические свойства вещества.

3. Объясните сущность фотометрических методов анализа.

4. Сформулируйте объединенный закон поглощения Бугера–Ламберта–Бера.

5. Каковы причины возможных отклонений свойств растворов от объединенного за-

6. Молярный коэффициент поглощения, его определение и факторы, от которых он

7. Как осуществляется выбор длины волны поглощаемого излучения при фотокало-

1. Как строится калибровочный график?

2. Объясните устройство и принцип работы фотокалориметра КФК–2.

3. Где и для чего применяется абсорбционный анализ?

Литература

1. Трофимова Т. И. Курс физики. М.: Высш. шк., 1994. Часть 5, гл. 24, § 187.

2. Савельев И. В. Курс общей физики. М.: Наука, 1977. Том 2, часть 3, гл. XХ,

3. Грабовский Р. И. Курс физики. С-Пб.: Лань. 2002. Часть П, гл. VI, § 50.

ЛАБОРАТОРНАЯ РАБОТА № 4–03

Источник

Теоретические основы определения оптической плотности раствора

Любая частица, будь то молекула, атом или ион, в результате поглощения кванта света переходит на более высокий уровень энергетического состояния. Чаще всего осуществляется переход из основного в возбужденное состояние. Это вызывает появление в спектрах определенных полос поглощения.

Поглощение излучения приводит к тому, что при пропускании его через вещество интенсивность этого излучения снижается при увеличении количества частиц вещества, обладающего некоторой оптической плотностью. Этот метод исследования предложил В. М. Севергин еще в 1795 году.

Наилучшим образом этот метод годится для реакций, где определяемое вещество способно переходить в окрашенное соединение, что вызывает изменение окраски исследуемого раствора. Измерив его светопоглощение или сравнив окраску с раствором известной концентрации, несложно найти процент содержания вещества в растворе.

Основной закон светопоглощения

Суть фотометрического определения заключается в двух процессах:

  • перевод определяемого вещества в поглощающее электромагнитные колебания соединение;
  • замер интенсивности поглощения этих самых колебаний раствором исследуемого вещества.

Изменения в интенсивности потока света, проходящего через светопоглощающее вещество, будут вызываться также потерями света из-за отражения и рассеяния. Чтобы результат был достоверным, проводят параллельные исследования по замеру параметров при той же толщине слоя, в идентичных кюветах, с тем же растворителем. Так снижение интенсивности света зависит главным образом от концентрации раствора.

Уменьшение интенсивности света, пропущенного через раствор, характеризуют коэффициентом светопропускания (также принято называть его пропусканием) Т:

  • I — интенсивность света, пропущенного через вещество;
  • I0 — интенсивность падающего пучка света.

Таким образом, пропускание показывает долю непоглощенного светового потока, проходящего через изучаемый раствор. Обратный алгоритм значения пропускания называют оптической плотностью раствора (D): D = (-lgT) = (-lg) * (I / I0) = lg * (I0 / I).

Это уравнение показывает, какие параметры являются главными для исследования. К ним относится длина волны света, толщина кюветы, концентрация раствора и оптическая плотность.

Закон Бугера-Ламберта-Бера

Он является математическим выражением, отображающим зависимость уменьшения интенсивности монохроматического потока света от концентрации светопоглощающего вещества и толщины жидкостного слоя, через который он пропущен:

I = I0 * 10 -ε·С·ι , где:

  • ε — коэффициент поглощения света;
  • С — концентрация вещества, моль/л;
  • ι —толщина слоя анализируемого раствора, см.

Преобразовав, эту формулу можно записать: I / I0 = 10 -ε·С·ι .

Суть закона сводится к следующему: различные растворы одного и того же соединения при равной концентрации и толщине слоя в кювете поглощают одинаковую часть падающего на них света.

Прологарифмировав последнее уравнение, можно получить формулу: D = ε * С * ι.

Очевидно, что оптическая плотность напрямую зависит от концентрированности раствора и толщины его слоя. Становится ясен физический смысл молярного коэффициента поглощения. Он равен D для одномолярного раствора и при толщине слоя в 1 см.

Ограничения применения закона

Этот раздел включает следующие пункты:

  1. Он справедлив исключительно для монохроматического света.
  2. Коэффициент ε связан с показателем преломления среды, особенно сильные отклонения от закона могут наблюдаться при анализе высококонцентрированных растворов.
  3. Температура при измерении оптической плотности должна быть постоянной (в рамках нескольких градусов).
  4. Световой пучок должен быть параллельным.
  5. рН среды должен быть постоянным.
  6. Закон применим для веществ, светопоглощающими центрами которых являются частицы одного вида.

Методы определения концентрации

Стоит рассмотреть метод градуировочного графика. Для его построения готовят ряд растворов (5-10) с различной концентрацией исследуемого вещества и замеряют их оптическую плотность. По полученным значениям выстраивают график зависимости D от концентрации. График является прямой линией, идущей от начала координат. Он позволяет легко определить концентрацию вещества по результатам проведенных измерений.

Также существует метод добавок. Применяется реже, чем предыдущий, но позволяет проанализировать растворы сложного состава, поскольку учитывает влияние дополнительных компонентов. Суть его состоит в определении оптической плотности среды Dx, содержащей определяемое вещество неизвестной концентрации Сх, с повторным анализом того же раствора, но с добавлением определенного количества исследуемого компонента (Сст). Величину Сх находят, используя расчеты или графики.

Условия проведения исследования

Чтобы фотометрические исследования давали достоверный результат, необходимо соблюдать несколько условий:

  • реакция должна заканчиваться быстро и полностью, избирательно и воспроизводимо;
  • окраска образующегося вещества должна быть устойчива во времени и не изменяться под действием света;
  • исследуемое вещество берут в количестве, которого достаточно для перевода его в аналитическую форму;
  • замеры оптической плотности проводят в том интервале длин волн, при котором различие в поглощении исходных реагентов и анализируемого раствора наибольшее;
  • светопоглощение раствора сравнения принято считать оптическим нулем.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector