Измерение параметров оптического излучения

Измерение параметров оптического излучения

Измерение шумов оптического излучения
Одним из основных типов шумов, встречающихся при оптических измерениях, являются шумы оптического излучения, которые существуют в оптическом сигнале до его детектирования. Известно несколько источников шумов данного типа. Наиболее существенным из них является интерференция вынужденной и спонтанной эмиссий, генерируемых в пределах резонатора лазера. Кроме этого, для лазерных DFB и FP источников характерны шумы оптического излучения, уровни которых зависят от уровней накачки и вида обратной связи. Причем эти шумы подвержены значительным вариациям, зависящими от изменения условий окружающей среды. Шумы оптического излучения характерны и для нелинейных источников: светодиодов с торцевым излучением (EELED) и усилителям EDFA, статистика шумов которых отличается от аналогичной статистики для лазеров. Кроме этого, в источниках излучения с ASE шумы оптического излучения генерируются биениями между различными частотами.

Относительная интенсивность шума
Наряду с отношением: С/Ш (SNR), часто используют понятие относительная интенсивность шума (RIN), которая определяется, как: где D (Po) 2 – СКО интенсивности спектральной плотности оптического сигнала, а Po – средняя оптическая мощность. Из этого выражения следует, что на практике необходимо добиваться минимизации значения RIN, которое может быть использовано для определения максимально достижимого SNR в системах передачи, где основным источником шума является интенсивность шума лазера. Следующее выражение показывает теоретическое соотношение между значениями: С/Ш и RIN где m – глубина оптической модуляции, а B – полоса частот шума.
При измерениях RIN необходимо предварительно определить параметры ЧМ фотодиода, усилителя и АОС, а также потери рассогласования между ними. Кроме этого, для обеспечения необходимой чувствительности измерений, усиление усилителя должно быть достаточно велико при уровне шума, меньшем шума АОС. К сожалению, АОС измеряет и другие компоненты шумов помимо RIN лазера, в частности, мощность дробового шума ФД и общую мощность теплового шума приемника.
Можно показать, что измеренное значение RIN определяется, как где q – заряд электрона, I0 – темновой ток ФД, Pt – мощность термических шумов приемника, а Pe – средняя электрическая мощность. При наличии только дробового шума измеренный RINm будет равен 2q/I0. Значение RIN, выраженное в дБ, уменьшается в расчете 10 дБ на 1 мА/мВт, и минимальный, равный -155 дБ/Гц, может быть измерен при средней мощности оптического сигнала 1 мВт. Когда эта мощность равна 100 мкВт, можно измерить только -145 дБ/Гц. Следовательно, как тепловой, так и дробовой шум приемника могут ограничить точность измерения RIN.
Можно измерить и с помощью АОС, который позволяет измерять как среднюю мощность оптического сигнала, так и отклонения интенсивности шума. Кроме этого, он может измерять уровни дробового и теплового шума, а также компенсировать их влияние, чтобы иметь возможность измерять RIN ниже ограничения, вызванного дробовым шумом (диапазон измерения увеличивается примерно на 16 дБ).

Шумы оптического излучения
Другим способом описания шумов оптического излучения является выражение их в виде отношения мощности шума в полосе частот 1 Гц, нормированной относительно постоянной мощности сигнала. Такое описание полезно, учитывая независимость его от уровня мощности, достигшей ФД. Данная мощность шума в полосе частот часто называется относительным шумом оптического излучения RIN’ и определяется следующим образом: где – усредненная по времени мощность шумов излучения в полосе частот 1 Гц, I0 – средняя интенсивность излучения. На практике RIN’ можно определить с помощью АОС, измеряющего усредненную по времени мощность шума фототока и амперметра, контролирующего среднее значение постоянного тока ФД I0. Компоненты теплового и дробового шумов, следует вычесть из измеренной мощности шума для получения более точного значения шумов излучения входного оптического сигнала.

ASE шумы источников излучения
ASE генерируется от источников типа EELED, SDL и EDFA, характеризующихся широкой полосой частот и используемых для измерения вносимых потерь, а также для проведения рефлектометрических измерений с низкой когерентностью. Шумы излучения от этих источников оптического шума также могут быть использованы для калибровки глубины ЧМ фотодиодов с широкой полосой пропускания. Кроме этого, они могут использоваться в качестве стандарта шума для калибровки глубины ЧМ для связки ФД-АОС. Эта калибровка важна при использовании АОС для измерения показателя шума EDFA.
Особенностью данных источников шума является то, что для них RIN определяется только шириной оптического спектра. Для поляризованного света RIN увеличивается вдвое.
Рассмотрим ASE от EDFA в отсутствие входного сигнала. Если предположить, что ASE занимает полосу 10 нм с центром 1550 нм, то ширина спектра этого источника шума равна приблизительно 1250 ГГц. В этом случае RIN=8?10-13 Гц-1, или -121 дБ/Гц, и шум может считаться равномерным в используемой полосе частот. Если этот сигнал подать через фильтр подавления помех 1 нм, RIN возрастет на 10 дБ до -111 дБ/Гц. Этот значит, что фильтрация ASE сигнала вызывает увеличение шумов при измерении шума. Это вызвано тем, что абсолютная мощность шума в действительности уменьшается, но медленнее, чем постоянная мощность.
Измерение шумов излучения, сопровождающих источник оптических шумов, генерирующий ASE, например, волоконный ОУ и EELED, можно осуществить, фильтруя источник ASE с помощью полосового фильтра с плоской АВХ, например, фильтра на дифракционной решетке.

Источник

Методы измерения параметров оптических компонентов, ВОЛС и ВОСП. Часть 1.

Измерение оптической мощности, затухания и вносимых потерь.

  • измерители мощности с термофотодиодами (ТФД), основанные на измерении повышения температуры, вызванного оптическим излучением;
  • измерители мощности с фотодиодами (ФД), основанные на использовании фотонов оптического излучения, генерирующих связанные пары: электрон-дырка.

Хотя измерители мощности на ФД имеют небольшой диапазон рабочих длин волн, а также нуждаются в абсолютной калибровке, они используются чаще вследствие своей высокой чувствительности. Измерители мощности на ТФД предпочтительнее использовать в метрологических лабораториях ввиду их высокой стабильности и независимости показаний от длины волны оптического излучения в широком динамическом диапазоне. Кроме этого, сами ТФД могут быть непосредственно проверены при помощи измерений электрической мощности. Характеристики этих типов измерителей мощности приведены в табл. 6.1-1.

Характеристики Измерители мощности с ТFD Измерители мощности с FD
Зависимость от l
Диапазон длин волн
Калибровка возможна самокалибровка необходима
Чувствительность низкая (порядка 1 мкВт) высокая (менее 1 мкВт)
Точность ±1% ±2%

  • Необходимую площадь поверхности с большой тепловой массой для поддержания постоянной температуры во время измерения;
  • Блокирование фонового и рассеянного светового излучения;
  • Оптимизацию теплового потока между поглощающим слоем и нагревателем;
  • Высокую поглощающую способность поверхности;
  • Точное измерение электрической мощности.

Другая реализация данного метода основана на том, что вместо последовательного оптического и электрического воздействия, ТФД непрерывно электрически нагревается, потребляя мощность несколько большую оптической мощности, которую предстоит измерить, при этом фиксируется напряжение на ТФД. Затем он подвергается оптическому воздействию, а электрическая мощность уменьшается посредством обратной связи до тех пор, пока напряжение на ТФД не станет таким же, как и прежде. Результат измерения оптической мощности представляет собой разницу значений электрической мощности в этих двух процедурах (в измерении напряжения на ТФД нет необходимости).
Наибольшая трудность при использовании ТФД заключается в их низкой чувствительности и большой продолжительности измерения (постоянная времени от нескольких секунд до нескольких минут в зависимости от размера ТФД). Лучшие результаты возможны при использовании термочувствительных элементов, выполненных на полупроводниковых материалах. Такие характеристики позволяют использовать тепловые измерители мощности для проведения калибровки, для других измерений в волоконно-оптической технике они используются довольно редко.
Особым типом теплового измерителя мощности является криогенный радиометр, представляющий собой ТФД, помещенный в вакуум и охлажденный жидким гелием до 6° К. Криогенные радиометры являются наиболее точными измерителями мощности благодаря тому, что:

  • при 6° К энергия, необходимая для увеличения температуры на 1° К, значительно снижается, что уменьшает постоянную времени и, следовательно, время измерения;
  • тепловые потери от излучения существенно уменьшаются (энергия излучения пропорциональна T4);
  • тепловое излучение соединительных проводов резистора, может устранить, сделав их сверхпроводящими;
  • потери от тепловой конвекции устраняются путем эксплуатации ТФД в вакууме.

На практике криогенные радиометры при измерении мощности позволяют достичь погрешности, равной ±0,01%, однако вследствие высокой стоимости оборудования и сложности его эксплуатации они обычно используются только в национальных калибровочных лабораториях.

Источник

Измерения на ВОЛС

Когда говорят об измерениях ВОЛС, прежде всего имеют в виду измерения оптических потерь в волокне. Действительно, в первую очередь именно потери мощности излучения (а не дисперсия) становятся определяющим критерием, ограничивающим длину ретрансляционного участка линии связи. Информация, полученная в результате измерения уровня мощности сигнала в линии, понимание того, как меняется мощность этого сигнала, даёт нам возможность судить о качестве построенной ВОЛС. И правильно получать эту информацию, уметь её интерпретировать и обрабатывать — очень важный момент в работе специалистов, имеющих дело с волоконно-оптической техникой.

Можно различить несколько направлений деятельности, связанных с ВОЛС, где возникает задача проведения измерений:

  • измерения при строительстве ВОЛС,
  • измерения при эксплуатации ВОЛС,
  • измерения при обслуживании ВОЛС.

Комплекс измерений, которые необходимо проводить при строительстве линий связи — самый обширный. На этапе строительства параметры линии измеряются наиболее тщательно. Результаты заносятся в протоколы и оформляются в виде исполнительной документации на построенную ВОЛС, которая, в свою очередь, служит важнейшим документом, на основании которого ведется дальнейшая эксплуатация этой ВОЛС. Именно качество исполнительной документации, точность указанных в ней данных, как подсказывает опыт, и определяет удобство и правильность работы с линией связи.

Измерения в процессе эксплуатации обычно подразумевают периодический контроль состояния линии связи. Проводятся они согласно регламенту, принятому в той организации, которая эту линию эксплуатирует. Они могут производиться в автоматическом режиме, когда за состоянием линии следит специальный программно-аппаратный комплекс, получающий информацию с оптических датчиков. В некоторых случаях достаточно измерений в «ручном» режиме, когда инженер сам проверяет линию с помощью измерительного оборудования. Но и в том, и в другом случае, крайне важна квалификация персонала, ответственного за состояние линии, его умение разобраться в том, что с ней происходит.

Под обслуживанием ВОЛС обычно понимается деятельность, направленная на поддержание линии связи в рабочем состоянии. Обслуживание производится на основании договора между владельцем линии и некоей обслуживающей организацией. Как правило, в рамках договора такая организация обязана не только следить за работоспособностью линии, но и устранять аварийные ситуации, которые на ней могут возникнуть. В таких случаях измерения проводятся с целью локализации повреждения, выяснения его характера, позволяют оперативно это повреждение устранить.

Причины потерь в оптоволокне

Как уже было сказано, мы измеряем оптические потери. Потери измеряют в децибелах (дБ) и описывают отношение сигнала прошедшего через линию и сигнала, введенного в линию. К сожалению, потери в линии связи будут всегда. Избавиться от них невозможно, но мы всегда можем принять меры к тому, чтобы их минимизировать. Причин возникновения этих потерь много и необходимо точно понимать их характер. Перечислим их:

  • затухание сигнала в волокне за счёт рассеяния и поглощения излучения,
  • потери на изгибах волокна,
  • потери на сварных соединениях,
  • потери на разъёмных соединениях,
  • потери на пассивных компонентах линии (сплиттеры, фильтры, мультиплексоры, аттенюаторы и т. п.).

Как мы знаем, оптическое волокно (ОВ) служит великолепной средой для распространения оптического сигнала. Но даже в этой замечательной среде, а именно в кварцевом стекле, из которого изготовлена сердцевина волокна, всегда содержатся примеси, включения, из-за которых волокно теряет часть проходящего по нему света. Точечные области, в которых сконцентрированы эти примеси, служат источником рассеяния полезного сигнала и, соответственно, вызывают частичную его потерю. Поскольку распределение примесей по длине ОВ можно считать равномерным, то и свет будет равномерно ослабевать по мере прохождения по ОВ. При этом, с ростом длины волны излучения способность рассеивать у волокна уменьшается. Почему бы нам тогда не использовать самую большую длину волны, чтобы обратить в ноль рассеяние света, спросите вы? Но, к сожалению, начиная с некоторого значения длин волн в волокне появляется ещё одна составляющая затухания, а именно — инфракрасное поглощение света, то есть, преобразование оптической энергии в тепловую. Опять потери! Результатом действия двух этих причин будет сумма потерь от каждой из них. Минимума потери в ОВ достигают при передаче сигнала на длине волны 1550 нм.

Потери света в волокне описываются величиной, называемой километрическим затуханием (т. е. величина потерь на единицу длины ОВ) и выражаются в дБ/км.

В настоящее время для λ = 1550 нм стандартным значением затухания в одномодовом ОВ считается α = 0,19–0,22 дБ/км. В зависимости от марки ОВ это значение может быть разным. Поэтому, когда мы выбираем кабель для своей будущей трассы, этот параметр важно знать и учитывать. Например, в кабельной продукции «Инкаб» используется исключительно волокно фирмы Corning®, а это даёт нам понимание того, что у волокна в кабеле будет иметь всегда заранее известное значение затухания. Затухания волокна марки Corning SMF-28 ULTRA, которая выбрано заводом «Инкаб» в качестве основной, составляет всего лишь 0,18 дБ/км.

Следующей причиной потерь служат изгибы ОВ. Принято разделять их на два типа — микро- и макроизгибы. В первом случае речь идёт о незначительном, но неизбежном изгибе волокон при размещении их в кабеле. Этот изгиб присутствует по всей длине кабеля и проконтролировать его мы не в состоянии, но, к счастью, его вклад в потери ничтожен. Второй случай гораздо серьёзнее. Потери при макроизгибах появляются уже по вине человека, который работает с волоконно-оптическим кабелем. Основная причина изогнутого волокна в построенной ВОЛС — неправильно проложенный кабель. В некоторых случаях — нарушения при монтаже кросса или муфты. Чем больше изгиб, тем больше потери. Причиной появления потерь на месте изгиба служит простое физическое явление — угол падения света на границу раздела сердцевины и оболочки превышает критический и часть излучения выходит из сердцевины. При этом, чем больше длина волны, тем больше будет величина потерь.

Потери на сварных соединениях появляются, в основном, из-за несовпадения сердцевин соединяемых волокон, которая может быть вызвана нарушением геометрии сечения ОВ. В этом случае ответственность за качество сварных несёт, если можно так выразиться, сварочный аппарат. Именно технология юстировки волокон перед сваркой, распознавание компьютером сварочного аппарата местоположения сердцевин ОВ и определяет качество сварки в плане потерь. Разные марки волокон могут иметь разные диаметры сердцевин, разные допуски на эксцентриситет и аппарат должен уметь с ними работать. При этом, разумеется, необходимо соблюдение всех сопутствующих требований к подготовке ОВ к сварке, чтобы соединение не имело дополнительных дефектов. Любой дефект сразу же переводит сварное соединение в разряд некачественного, даже без измерений. Качественным же сварное соединение обычно считается, если потери не превышают 0,05 дБ (на длине волны 1550 нм). Необходимо также помнить, что потери на стыке оцениваются только при измерении с двух сторон.

Потери на разъёмных соединениях, проще говоря — на разъёмах, вносят потери гораздо большие, нежели на сварках ОВ. За счёт того, что между поверхностями коннекторов всегда присутствует небольшой воздушный зазор, на соединение теряется гораздо больше полезного сигнала. Величину потерь, допустимых на таком соединении, принято считать равной 0,5 дБ. При этом надо понимать, что складывается эта величина из потерь на поверхностях двух коннекторов, и каков вклад каждого из них, точно определить невозможно. Величину потерь на коннекторе контролируют на производстве, но, как показывает практика, и здесь не всегда достигается хороший результат, поскольку серийное производство оптических шнуров подразумевает выборочный контроль. Поэтому для подключения измерительных приборов к тестируемой линии рекомендуется использовать прецизионные шнуры, которые проходят поштучный контроль и соответствуют более высоким требованиям. Среди продукции ООО «СвязьСтройДеталь» такие шнуры представлены серией HS (High Solution).

Все перечисленные составляющие потерь в ВОЛС могут нам дать представление о том, на что мы можем рассчитывать, проектируя будущую линию связи. Имея информацию о составе будущей линии, о марке кабеля, который мы собираемся использовать, о строительных длинах, из которых будет состоять трасса, о количестве сварных сростков ОВ, о количестве коннекторов в линии, мы можем подсчитать так называемый оптический бюджет линии. Как его расчитывать читайте в нашем отдельном материале.

Приборы для измерения потерь в оптическом волокне

Для контроля качества волоконно-оптических линий связи путём измерения в них потерь необходимо и достаточно применения двух типов измерительной аппаратуры. Это оптические тестеры (OLTS — Optical Loss Test Set), позволяющие измерять полные потери в линии и оптические рефлектометры (OTDR — Optical Time Domain Reflectometer), с помощью которых можно измерять распределение потерь вдоль линии.

Отличие в их применении заключается в том, что при использовании тестера необходимо использовать два устройства и подключаться к обоим концам линии, в то время как рефлектометр для измерения нужно подключать к линии только на одном конце. Разница обусловлена различными принципами измерения потерь. Оптический тестер, который в общем случае представляет из себя комплект из двух устройств — источника оптической мощности и измерителя оптической мощности, — проводит прямые измерения, то есть для определения потерь сравнивается уровень мощности на входе в линию и на выходе из неё. Разница в дБ и будет искомым результатом. Рефлектометр же, будучи подключенным только с одного конца ВОЛС, зондирует волокно тестовыми импульсами и получает отклик в обратном направлении, вызванный обратным рассеянием в волокне. Анализируя этот отклик, процессор рефлектометра рассчитывает, сколько оптической мощности теряет сигнал в каждой точке ОВ. Такой вид определения потерь можно назвать косвенным. Именно с этим, с погрешностью косвенного метода, связаны некоторые приближения в подсчёте полных потерь в линии. Этим же объясняется и превосходство по точности оптических тестеров. Помимо этого, тестером можно измерять потери в линиях любой протяжённости (от 0 м), в то время как рефлектометр не позволяет оценить потери в коротких, порядка нескольких метров волокнах (оптические шнуры). Эта особенность работы будет рассмотрена далее.

Принимая во внимания перечисленные отличия, можно описать задачи, которые решаются двумя этими типами приборов:

Тестер:

  • измерение полных потерь в линии связи,
  • тестирование оптических шнуров.

Рефлектометр:

  • проверка качества ОВ кабеля на барабане (входной контроль),
  • оценка качества сварных соединений ОВ,
  • измерение полных потерь в линии связи (приблизительно),
  • поиск и локализация повреждений ОВ на линии.

Измерения рефлектометром и его принцип работы

Рис. 1. Структурная схема рефлектометра.

На рис. 1 показана схема OTDR, по которой мы наглядно можем пояснить принцип работы рефлектометра. Как правило, в состав прибора входят два основных блока. Базовый модуль содержит основной корпус, дисплей, органы управления и самую важную часть — процессор. Второй блок — оптический, в нём располагается электроника, отвечающая за генерацию оптических сигналов, источник излучения и различные оптические порты.

В измерительный порт вставляется коннектор оптического шнура (патч-корда), которым прибор подключается к тестируемому волокну линии. При запуске процесса измерения процессор даёт команду на формирование зондирующего импульса определенной мощности и длительности. Генератор формирует его в электрической форме, лазерный диод преобразует его в оптическое излучение определенной длины волны и посылает в линию. Импульс проходит через оптический порт и распространяется далее в волокне нашей линии. Как мы уже знаем, в каждой точке ОВ свет испытывает рассеяние. Совсем незначительная часть света рассеивается во все стороны, причём бОльшая его часть рассеивается в обратном направлении. Эта часть возвращается по волокну обратно и, пройдя входной порт, через ответвитель попадает на фотоприёмник. Этот элемент обладает очень высокой чувствительностью, что позволяет ему улавливать сигнал, в тысячи раз ослабленный по сравнению с уровнем мощности зондирующего импульса. Сигнал регистрируется на протяжении определенного времени, оцифровывается (АЦП) и анализируется процессором. Результатом обработки этого цифрового сигнала будет некая зависимость уровня мощности от времени. Для нашего удобства временная шкала пересчитывается в шкалу расстояний и на экран выводится результирующая кривая, характеризующая уровень обратного рассеяния в каждой точке тестируемого ОВ. Эта кривая называется рефлектограммой.

Состав рефлектограммы

Рис. 2. Общий вид рефлектограммы

На рис. 2 мы можем увидеть рефлектограмму, содержащую несколько характерных участков, соответствующих различным неоднородностям в ОВ. Эти неоднородности принято называть событиями.

Чтобы получить значения потерь, возникающих в той или иной части линии, необходимо прежде всего правильно интерпретировать всё, что мы видим на этой кривой.

Основными типами событий можно назвать следующие:

  • Всплеск уровня обратного сигнала на вводе в линию, обусловленный отражением от вводного коннектора;
  • Пологие участки линейного вида, расположенные между неоднородностями, соответствующие участкам целого волокна, в которых изменение уровня обратного сигнала обусловлены равномерным затуханием за счёт рассеяния и поглощения. Угол наклона таких участков прямо пропорционален величине километрического затухания;
  • События без отражения, характерные для сварных соединений и изгибов. Отображаются в виде «ступенек» изменения уровня обратного сигнала;
  • События с отражением, характерные для разъемных соединений, микротрещин, торцов ОВ. На рефлектограмме отображаются в виде резких всплесков уровня;
  • Изменение уровня обратного сигнала разного вида, но с обязательным последующим спадом до уровня шумов, характерное для конца линии. Различный вид обусловлен разным состоянием конца линии – тип установленного коннектора (UPC/APC) или его отсутствие (скол ОВ может иметь отражение, а может полностью рассеивать свет).

На практике мы можем столкнуться с различными вариациями и комбинациями этих событий и умение их корректно идентифицировать — задача иной раз не из лёгких. Но упростить себе жизнь можно, получив рефлектограмму красивого, информативного вида. Для этого следует придерживаться некоторых правил и правильно установить параметры прибора.

Самым главным правилом при работе с OTDR мы можем назвать аккуратное обращение с вводным коннектором. Следует помнить, что в корпусе прибора установлен точно такой же коннектор (как правило, типа UPC), какой мы вставляем в измерительный порт снаружи. Но за одним исключением — если мы повредим коннектор патч-корда, мы всегда можем взять новый патч-корд. Коннектор, установленный в оптическом тракте прибора, мы заменить не сможем. При его повреждении придётся обращаться в сервис. Поэтому перед началом измерений рекомендуется убедиться в чистоте всех коннекторов, в случае загрязнений очистить все торцевые поверхности. Для этих целей рекомендуется использовать специальные чистящие приспособления. После окончания измерений все коннекторы закрываются колпачками, измерительный порт — специальной крышечкой.

Для контроля чистоты коннекторов наилучшим решением будет использование специального компактного микроскопа. Но он достаточно дорог. Поэтому в его отсутствие можно сделать оценку по следующему признаку. Если мы, начав измерения, видим на рефлектограмме область ввода, схожую с изображением на рис. 3, можно смело утверждать — на каком-то из коннекторов осталась грязь.

Рис. 3. Область ввода в случае загрязнения («лыжа»).

Необходимо извлечь коннектор патч-корда, провести чистку и при последующем подключении картинка будет иметь такой же вид, как на рис. 4.

Рис. 4. Область ввода с чистыми коннекторами.

Если мы убедились, что коннекторы чистые, необходимо произвести настройку параметров измерения.

Перечислим эти параметры и поясним, на что они влияют:

  • длина волны зондирующего импульса,
  • диапазон измеряемых длин,
  • длительность зондирующего импульса,
  • коэффициент преломления тестируемого волокна,
  • время усреднения в режиме работы с усреднением.

Оптические рефлектометры могут производить измерения на различных длинах волн. Как правило, длины волн выбираются производителями в соответствии с рабочими диапазонами (окнами прозрачности) оптических волокон.

Хотя километрическое затухание в ОВ различно на разных длинах волн, принципы и методы проведения измерений являются одинаковыми для всех длин волн. Если для отчёта не требуется предоставить результаты измерений на нескольких длинах волн, достаточно провести измерения с λ = 1550 нм.

Под диапазоном измеряемых длин понимается длина волокна, которую рефлектометр будет изображать на рефлектограмме. Правило довольно простое — необходимо установить этот диапазон таким, чтобы на рефлектограмме уместилась вся наша линия целиком. Если линия будет обрываться на середине, это будет считаться недопустимым результатом.

Длительность импульса — один из самых ключевых и неоднозначных параметров. Дело в том, что при увеличении его длительности мы сможем обнаружить такой эффект, как увеличение так называемых «мёртвых зон» после отражающих неоднородностей. Мёртвой зоной называют участок рефлектограммы, на котором нельзя получить никакой информации об истинном уровне обратного сигнала. Связано это с тем, что всё время, которое испускается зондирующий импульс, рефлектометр будет получать и отклик от него. А как мы знаем, этот отклик будет иметь вид резкого всплеска. И чем длиннее импульс, тем дольше будет этот всплеск перекрывать любые события, следующие за этим отражением. На рис. 5 приведены рефлектограммы, полученные на одной и той же линии, но с разными tимп.. Как мы видим, при самом большом импульсе мы уже не «видим» сварного соединения на расстоянии 540 м от начала линии.

Рис. 5. Сравнение мёртвых зон при импульсах разной длительности.

Почему бы тогда не ставить всегда длительность импульса на минимум, спросим мы? В этом и заключается коварная особенность этого параметра — при уменьшении длительности импульса мы обнаружим, что уровень обратного сигнала из нашей линии падает настолько быстро, что обращается в шум, не достигая конца линии. Очень наглядно это показано на рис. 6, где приведены рефлектограммы, снятые с линии довольно большой протяжённости, и с импульсами разной длины.

Видим, что короткие импульсы начинают искажаться и превращаются в шумы, делая часть рефлектограммы совершенно непригодной для измерения.

Рис. 6. Измерение с разной длительностью импульсов линии большой длины.

Варьируя этим параметром, мы в итоге можем получить результат, который нас интересует в конкретном случае: либо получить высокую детализацию и разглядеть события, находящиеся вблизи друг от друга, либо увидеть линию целиком и точно измерить потери по затуханию на линейных участках.

Кстати, с появлением мёртвой зоны на вводе связано ограничение по минимальной измеряемой длине волокна, упомянутое в начале статьи. Рефлектометр практически не способен различить длину волокна порядка 1–2 метров, поскольку даже у самых совершенных моделей эта начальная мёртвая зона составляет порядка 3 метров.

Также начальной мёртвой зоне можно приписать невозможность измерения потерь на коннекторе ближнего к измерителю кросса. Если уровень обратного сигнала после коннектора мы отчётливо видим, то каким был уровень до него – нам не позволяет мёртвая зона. Для борьбы с этим применяются так называемые согласующие кабели, представляющие из себя катушки волокна, имеющие длину, как правило, от 200 м до 1 км. Такая катушка оконечена разъёмами и ставится в оптический тракт между прибором и тестируемой линией. В результате мы получим рефлектограмму вида, изображенного на рис. 7.

Рис. 7. Рефлектограмма, полученная с применением согласующего кабеля.

Зная уровень сигнала до разъема на кроссе и уровень после него, мы определяем, сколько децибел наш сигнал потерял на этом разъёме.

Следующим установочным параметром является коэффициент преломления кварцевого стекла сердцевины. Для нас этот параметр правильнее будет определить как величину, показывающую, во сколько раз скорость света в вакууме превышает скорость света в нашем волокне. Это отношение используется прибором для расчёта расстояний, которые проходит в ОВ зондирующий импульс.

И последний параметр — время усреднения. В режиме работы OTDR с усреднением происходит запоминание результатов от всех зондирующих импульсов, которые прибор посылает в линию и дальнейшее усреднение этих результатов. Это позволяет нам улучшить вид рефлектограммы, сглаживая линейные участки, особенно на линиях большой длины. Чем больше время усреднения, тем больше результатов будет накоплено и тем более гладкий вид будет иметь наша кривая. Но, вместе с увеличением этого времени, мы увеличиваем общее время, которое мы потратим на измерения. Особенно это актуально становится при измерениях линий, содержащих большое число волокон.

Помимо режима работы «с усреднением» в рефлектометре есть режим «в реальном времени». В этом случае рефлектометр постоянно зондирует ОВ импульсами и результат каждого отклика выводит на экран. В этом случае вид нашей кривой получается неустойчивым, колеблющимся и непригодным для снятия показаний. Использование такого режима удобно, когда нам необходимо определить место обрыва в линии или для идентификации нужного нам волокна.

Методы измерения параметров ВОЛС в ручном режиме

После получения интересующей нас рефлектограммы, помимо её графического отображения на экране мы можем видеть так называемую таблицу событий. Это своеобразное представление результатов, отражающее все события, все участки тестируемого волокна, с указанием их протяжённости, местоположения, потерь и т. д. Всё это рефлектометр определяет в автоматическом режиме, давая нам возможность сразу же видеть готовые результаты. Но полностью полагаться на искусственный интеллект в этом вопросе нельзя. В любом волокне найдутся события, которые прибор распознать не сможет, либо распознает некорректно. Например, если сварное соединение выполнено настолько хорошо, что перепада по уровню практически нет — рефлектометр даже не станет считать потери в этом месте. Поэтому необходимо уметь проводить измерения в ручном режиме. В этом случае мы используем так называемые маркеры — курсоры в виде вертикальных линий, которые мы можем передвигать на нужную нам отметку по расстоянию и которые позволяют нам узнать уровень сигнала на этой отметке. Все расчёты прибор делает опять-таки сам, но делает их именно там, где указываем мы.

Таким образом мы можем измерить:

  • оптическую длину трассы,
  • километрическое затухание ОВ,
  • потери на неоднородностях.

В первом случае, чтобы измерить длину линии (или расстояние между любыми двумя точками), необходимо поставить маркеры так, как это показано на рис. 8.

Рис. 8. Измерение длины между двумя точками линии

Один из маркеров устанавливаем в нулевую отметку, второй ставим в точку, соответствующую началу всплеска на конце линии. В поле результатов на экране OTDR будет указано расстояние между маркерами, которое будет соответствовать длине волокна.

При измерении километрического затухания маркеры важно установить так, чтобы оба они находились на линейном участке, не заходя в мёртвые зоны и пересекаясь с неоднородностями. См. рис. 9.

Рис. 9. Измерение погонного (километрического) затухания ОВ.

Результат так же будет отображаться на экране, в виде величины потерь в волокне, приходящихся на ограниченную маркерами длину.

Измеряя потери на сварках, разъёмах или других неоднородностях, можно воспользоваться двухточечным методом определения потерь. Необходимо установить два маркера в окрестностях нашего события — до и после него. См. рис. 10.

Рис. 10. Измерение потерь на событии 2-точечным методом.

Результат будет подсчитан как разница между уровнем в точке А (первый маркер) и в точке В (второй маркер).

Надо сразу оговориться, что метод этот имеет крайне низкую точность, и его использовать не рекомендуется. Альтернативой является метод измерения по 5 точкам (в некоторых моделях OTDR этот метод назван 4-точечным, но его реализация полностью аналогична 5-точечному). В этом случае мы получим наиболее достоверное значение потерь.

В этом методе используется 5 маркеров. Первые два устанавливаются на линейный участок, расположенный до события. По ним участок аппроксимируется прямой линией. Два других маркера устанавливаем после события, по ним так же аппроксимируется участок волокна. Последний пятый маркер устанавливается в точку, соответствующую местоположению события. Именно в этой точке прибор рассчитывает перепад уровня между двумя аппроксимированными прямыми. Результат мы видим на рис. 11.

Рис. 11. Измерение потерь на событии 5-точечным методом.

В точке события (5-й маркер, голубого цвета) прибор будет указывать координату и значение потерь.

Обычно, результаты представлены в двух вариантах. Первый обозначается как TPA (Two-Point Approximation), второй LSA (Low Square Approximation). То есть, в первом случае аппроксимация делается по паре точек, а во втором методом наименьших квадратов. Второй алгоритм более совершенный, поэтому результаты будут более точными. Напомним, что для измерения реальных потерь на сварном соединении необходимо произвести измерения с двух сторон линии, с последующим усреднением результата.

Основные отличия разных моделей OTDR

Отличия эти можно описать следующими характеристиками:

  • динамический диапазон измерений OTDR,
  • одно- или многомодульная конструкция OTDR,
  • функционал оптического модуля,
  • размеры устройства, эргономичность, операционная система, интерфейс и пр.

Первую характеристику в этом списке, пожалуй, можно назвать самой главной, определяющей. Динамический диапазон — это разница в децибелах между уровнем ввода и верхним уровнем шумов, где сигнал становится неразличимым. Строго говоря, это максимальное значение полных потерь, которые может увидеть и измерить наш рефлектометр. Динамический диапазон зависит от многих факторов, но основным из них является мощность источника лазерного излучателя. Львиная доля стоимости рефлектометра определяется именно этим компонентом.

Далее, если мы выбираем одномодульную конструкцию OTDR, мы должны понимать, что увеличить, расширить её функционал в дальнейшем будет невозможно. В этом случае оптический модуль является одним целым с базовым и разделить их нельзя. Многомодульная конструкция предполагает возможность самостоятельного апгрейда, установки дополнительных оптических модулей, которые могут существенно расширить круг решаемых задач.

Эти возможности как раз и определяются различными конструкциями оптических модулей. Они могут содержать только один оптический порт, предназначенный для измерения на двух длинах волн, с небольшим динамическим диапазоном, а могут содержать в себе широчайший набор функций, таких как: порты для отдельного тестирования SM- и MM-волокон, возможность измерения на различных длинах волн (вплоть до охвата всего CWDM-диапазона), порт видимого излучения для локализации неисправностей, работу оптического порта в режиме постоянного источника заданной мощности и проч.

Ну и наконец, мы можем выбрать такую конструкцию, которую будет удобно использовать в тех условиях, в которых нам предстоит работать. В общем, все оставшиеся критерии можно назвать субъективными, поскольку они часто определяются личными предпочтениями. Одним специалистам привычнее работать с интерфейсом приборов Anritsu, другим больше нравятся Yokogawa. Выбор за вами.

На рис. 12 и рис. 13 приведены в качестве примера две модели, существенно отличающиеся по всем перечисленным характеристикам.

Рис. 12. Одномодульный рефлектометр Yokogawa AQ1000-UFC.

Рис. 13. Базовый блок EXFO FTB-500-OCT-BTY и оптический модуль EXFO FTB-7600E-0023B-XX.

Измерения ВОЛС с помощью оптического тестера

В отличие от оптических рефлектометров, конструкции которых весьма сложны и работа с которыми требуют серьёзного навыка, ситуация с оптическими тестерами существенно упрощается.

В общем случае оптический тестер (OLTS) представляет из себя комбинацию генератора оптического излучения и измерителя оптической мощности. Комбинации эти, в зависимости от производителя и модели, могут быть совершенно различными, но принцип измерения потерь остаётся одним и тем же.

В соответствии с требованиями рекомендаций ITU-T G.651 и G.652, а также ГОСТ 26814-86 различают две основных методики измерений с помощью OLTS — метод обрыва волокна и метод вносимых потерь.

Рассмотрим их подробнее.

Схема измерений по методу обрыва представлена на рис. 14.

Рис. 14. Измерение по методу обрыва волокна.

На выходе источника оптического излучения устанавливается оптический шнур (пиг-тейл), который приваривается к тестируемой линии. С другого конца линии, используя адаптер голого волокна, тестируемое волокно подключается к измерителю оптической мощности. Источник излучения включают и регистрируют величину средней оптической мощности, выраженную в дБм, прошедшей через линию (Р2). Далее волокно обрывается на расстоянии порядка 2 метров от источника и через адаптер подключается к измерителю. Измеритель регистрирует уровень оптической мощности в отсутствие линии (Р1). Искомая величина потерь находится как разница между этими величинами и выражается в дБ.

Необходимо помнить, что для обеспечения наивысшей точности нельзя допускать даже малейших смещений коннектора в разъеме источника, так как это приведёт к изменению значения потерь на этом коннекторе. В случае с адаптером голого волокна на измерителе мощности, перекоммутация волокна не меняет величину потерь, поскольку в этом разъёме отсутствует внутренний коннектор. (Надо сказать, что это единственная ситуация, известная автору этих строк, в которой вообще можно использовать адаптер голого волокна.)

При соблюдении всех перечисленных требований мы получаем эталонное измерение потерь.

Основным недостатком этого метода является необходимость доступа к неоконеченному волокну, а этой возможности, как правило, нет, если речь идёт о введенных в эксплуатацию ВОЛС. Этот метод актуален для лабораторных измерений.

На практике же пользуются вторым, альтернативным методом, методом вносимых потерь. Его, в свою очередь, условно можно разделить тоже на несколько разновидностей. В первом случае, на рис. 15 показана схема измерений с двумя эталонными перемычками.

Рис. 15. Измерение по методу вносимых потерь (две эталонные перемычки).

В источник и измеритель оптической мощности устанавливаются оптические шнуры типа патч-корд. Соединив их между собой в промежуточной оптической розетке, проводятся измерения уровня мощности без линии (Р1). Затем, коннекторы из розетки извлекаются, и подключаются к розеткам на концах тестируемой линии. Производится измерение мощности прошедшего через волокно излучения (Р2).

Потери в этом волокне определяются так же, как и в предыдущем случае, в виде разницы Р1 и Р2.

Основное отличие заключается в том, что нам остаются неизвестными точные потери в коннекторах оптических шнуров. Разъединив их и соединив снова (уже с другими коннекторами), мы получим некоторое отличие в величине потерь.

Тем не менее, этот метод так же обладает большой точностью при измерении суммарных потерь в линии, если сравнивать его с измерением обратного рассеяния (OTDR).

Однако, мы упомянули другую разновидность этого метода, а именно — измерение с одной эталонной перемычкой. Этот метод рекомендуется стандартом TIA-568-С.3 как единственно правильный. Отличие заключается в том, что опорное значение мощности (Р1) измеряется только с одним патч-кордом, который остаётся на источнике. Далее к измерителю подключается второй патч-корд и проводится измерение мощности, прошедшей через линию (Р2).

Разница заключается в том, что в первом случае мы получаем потери только с учётом коннекторов тестируемой линии, а во втором к ним прибавляются потери от присоединяемых коннекторов.

Самым правильным решением при выборе методики будет следование пожеланиям заказчика, которому будут сдаваться результаты измерений.

В любом случае, необходимо чётко понимать, что и в каком случае мы измеряем и как можно трактовать полученные результаты.

Рис. 16. Измерение по методу вносимых потерь (одна эталонная перемычка).

Если говорить об отличиях разных моделей тестеров, то они, разумеется, есть. Как мы уже упоминали, конструктивно тестеры могут совмещать в одном корпусе и источник, и измеритель, могут быть выполнены в виде отдельных приборов. В некоторых моделях, имеющих первую конструкцию, предусматривается тестирование линии в дуплексном режиме. То есть, два таких прибора подключаются к двум волокнам линии с обеих сторон, так, чтобы излучающий порт одного прибора соединялся с приёмным портом второго. В этом режиме тестеры позволяют определить также и длину линии.

Отличие может быть в номинальной мощности излучателя и в чувствительности фотоприёмника. Излучение в различных моделях может проводиться не на двух длинах волн, а на трёх. (Приёмники при этом, как правило, позволяют измерять сигнал на любой длине волны). Некоторые, совсем уж продвинутые модели имеют большие и даже цветные дисплеи и позволяют подключать к ним видеомикроскопы для визуализации поверхностей коннекторов…

Несмотря на эти обстоятельства, основную свою задачу — прямое измерение оптических потерь позволяют решать абсолютно все существующие модели.

В качестве примера можно взять любую модель из каталога. Например, большую популярность в нашей стране имеют тестеры фирмы FOD, один из которых изображен на рис. 17.

Рис. 17. Оптический тестер FOD 1208.

Заключение

Разумеется, в одной статье мы затронули только основные моменты, касающиеся измерений волоконно-оптического кабеля. Заинтересованный читатель наверняка может пойти дальше, открыть какой-нибудь авторитетный учебник, в подробностях, с массой формул и раскрытием физических принципов описывающий теорию измерений. Но если рассказать о том, как научиться работать с измерительными приборами в рамках одной статьи или в учебнике, еще можно, то научиться работать с этими приборами, прочитав статью, вероятнее всего, не получится.

Когда дело дойдёт до применения знаний на практике, сразу же остро будет ощущаться нехватка главного — опыта. У автора этих строк были случаи, когда несмотря на многолетний опыт работы с оптическими линиями, результаты измерений вызывали полное непонимание, доходившее до беспомощности…

Но никогда не стоит опускать руки, решение всегда найдётся!

В нашем учебном центре вы сможете приобрести свой первый опыт и в монтаже, и в практических занятиях по измерениям на самом передовом оборудовании. Все учебные программы составлены таким образом, чтобы по их окончании слушатели приобретали не только удостоверение, но и получали реально полезные навыки. Вливайтесь и вы в ряды наших слушателей!

Подробнее про основные понятия и нормы при измерениях параметров ВОЛС можете узнать, посмотрев запись нашего вебинара:

Для более подробного погружения в тему советуем ознакомиться другими нашими материалами:

Илья Смирнов,
технический эксперт, преподаватель ВОЛС.Эксперт

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector