Меню

Измерение параметров рельсовой линии



ТЕОРИЯ И СПОСОБЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ РЕЛЬСОВЫХ ЦЕПЕЙ

Особенности рельсовых цепей как объекта измерений.

1. Назначение:

В совокупности с аппаратурой, включённой на её концах, используется в железнодорожной автоматике для связи между подвижным составом и автоматическими устройствами, управляющими сигналами и стрелками.

2. Специфика технического обслуживания и измерений:

а) Рельсовая цепь (РЦ) представляет собой специфическую линию связи, имеющую очень низкое сопротивление изоляции между токонесущими рельсами, изменяющееся в широких пределах, а также большую проводимость по отношению к земле.

б) Линия работает в особых условиях, определяемых наложением переменного шунта в виде колесной пары подвижных единиц.

в) Сопротивление балласта нелинейно зависит от приложенного напряжения (уменьшаясь с увеличением напряжения).

Общие сведения о проверке состояния рельсовых цепей.

а) Параметры рельсовых цепей измеряют в интервалах между движущимися поездами.

б) Проверка состояния рельсовых цепей в эксплуатационных условиях производится периодическим внешним осмотром и соответствующими электрическими измерениями их параметров. Результаты измерений сравнивают с нормами удельных электрических сопротивлений рельсов и балласта, принятыми для обеспечения нормальных условий работы рельсовых цепей.

в) На электрифицированных участках, где при измерениях требуется отключать дроссель-трансформаторы, необходимо отключить напряжение с контактной сети или закрыть движение по данному пути (убедиться, что токи с других рельсовых цепей не проходят через данную рельсовую цепь).

г) Измерительные приборы, как правило, подключают к зажимам кабельных стоек, а вольтметры и вольтметровые обмотки фазометров – непосредственно к рельсовым нитям.

Осмотр и проверка исправности рельсовой цепи.

При осмотре рельсовой цепи вольтметром измеряют напряжение между рельсами и в конце каждого звена.

– При исправной рельсовой цепи показания вольтметра изменяются плавно.

– Резкое изменение напряжения, измеряемого между соседними звеньями, указывает на низкое сопротивление балласта или неисправность стыковых соединителей.

Одновременно измеряют сопротивление изолирующего стыка, которое должно быть не менее 30 Ом.

Требования к измерительным приборам:

а) внутреннее сопротивление вольтметра должно быть не менее 100 Ом на 1 В шкалы.

б) длина рельсовой нити должна измеряться с точностью до 1.0 м.

Теория и способы измерения параметров рельсовых цепей

Источник

Параметры рельсовых цепей.

Рельсовая цепь, как и проводная линия связи, характеризуется первичными и вторичными параметрами.

К первичным параметрамотносятся:

1. активное сопротивление двухпроводной цепи;

2. индуктивность двухпроводной цепи;

3. емкость изоляции между проводниками тока (рельсами);

4. проводимость изоляции между проводниками (иногда используют обратную величину – сопротивление изоляции).

5. (для рельсовых цепей постоянного тока) оценивают электрохимическую активность балласта.

6. оценивают взаимную индуктивность между контактным проводом и рельсом.

Наиболее важными первичными параметрами являются сопротивление рельсов и сопротивление балласта. На практике, как правило, ограничиваются определением только их.

Ко вторичным параметрам относят:

1.волновое сопротивление ;

2.коэффициент распространения волны .

Волновое сопротивление характеризует сопротивление рельсовой линии бегущей волне:

, Ом

где — удельное электрическое сопротивление рельсов (модуль сопротивления), Ом/км;

— удельное электрическое сопротивление балласта, Ом*км (считают, что сопротивление только активное, поскольку емкостная составляющая мала);

— аргумент сопротивления рельсов, град.

Коэффициент распространения волны является комплексной величиной , 1/км

Действительная часть характеризует затухание волны, а мнимая — — фазовый коэффициент, характеризует степень запаздывания волны по фазе при её распространении на единицу длины.

Вторичные параметры определяются первичными.

Под удельным сопротивлениемрельсов понимают сопротивление обеих нитей со стыковыми соединителями и накладками, отнесенное к 1 км рельсовой нити.

Под удельным сопротивлением балласта (сопротивлением изоляции) понимают сопротивление шпал, сопротивление между рельсами, отнесенные к 1 км рельсовой цепи.

Рельсовая цепь, у которой собственное сопротивление рельсов каждой нити и их сопротивление по отношению к земле будут одинаковыми, называется симметричной.

Параметры рельсовых цепей зависят от множества факторов, и могут определяться в первую очередь измерениями в реальных условиях.

Первичные параметры рельсовой цепи определяют на основании измерений ее входного сопротивления, а также оценки известных зависимостей между напряжениями и токами в начале и конце рельсовой цепи.

Цель специальных измерений: С минимальным количеством аппаратуры при наименьшем количестве измерений, проводимых по возможности с одного конца рельсовой цепи, определить первичные и вторичные параметры рельсовой цепи.

Для получения расчётных соотношений используют схему замещения рельсовой цепи в виде четырёхполюсника.

А В С D

Тогда зависимость между токами и напряжениями в начале и конце рельсовой цепи может быть представлена в виде системы уравнений:

где

Откуда искомое входное сопротивление (комплексное число) определяется путем деления:

С учётом подстановки коэффициентов А, B, C, D система уравнений приобретает вид:

А входное сопротивление рельсовой цепи может быть определено по формуле:

Для определения вторичных параметров рельсовой цепи и производят измерения входного сопротивления при различном сопротивлении нагрузки. РЦ поочередно нагружают на известные сопротивления и , измеряя входные модули и аргументы напряжений и токов в начале и конце РЦ. На основе которых определяют входные сопротивления:

,

Точность измерения первичных параметров зависит от разности входных сопротивлений и , и максимальна, если одно рассчитано для случая холостого хода, а другое – для короткого замыкания. Тогда выражение для расчёта входного сопротивления упрощается:

– при к.з: и

– при х.ходе: и

Перемножив левые и правые части, а также поделив их, получим соотношения для расчета вторичных параметров:

, (1)

Так как является комплексным числом: , то для его вычисления используют вместо формулы (1) дополнительные соотношения (см. метод х.х и к.з.).

По найденным значениям вторичных параметров вычисляют первичные:

– полное удельное сопротивление рельсов (комплексное);

– полное сопротивление балласта.

Часто аргумент сопротивления балласта не учитывают, так как емкостная составляющая по отношению к активной незначительна.

Таким образом, измеряя токи, напряжения и углы сдвига фаз можно найти параметры рельсовых цепей.

Полезные формулы:

Последовательность определения параметров рельсовых цепей:

1) измерение входного сопротивления (как правило, при двух известных нагрузках);

2) вычисление вторичных параметров;

3) вычисление первичных параметров рельсовых цепей.

Методы измерения параметров рельсовых цепей переменного тока.

Для измерения параметров рельсовых цепей в настоящее время применяют следующие основные методы:

1. холостого хода и короткого замыкания;

2. электрически длинной линии;

3. двух коротких замыканий.

В отличие от рельсовых цепей постоянного тока при измерении параметров рельсовых цепей переменного тока требуется измерять как модуль, так и аргумент входного сопротивления. Модуль входного сопротивления определяется также как и в рельсовых цепях постоянного тока, а аргумент – фазометром или векторметром, либо методом трёх вольтметров.

Требования к измерительным приборам:

класс точности – 2.5

измеритель сдвига фаз должен быть рассчитан на низкие напряжения (ЭЛФ-1 рассчитанный на В следует подключать с соответствующими трансформаторами)

Читайте также:  Стресс при измерении артериального давления

Метод холостого хода и короткого замыкания.

Измерение модуля и аргумента входного сопротивления рельсовой цепи производится на питающем конце по схеме, приведённой на рис.2. На время измерения требуется отключать путевое реле и дроссель-трансформаторы.

PV
П
PA
15 В
Рис. 2

Методика измерения:

а) проводят измерения при отключенных приборах на релейном конце рельсовой цепи (холостой ход).

б) осуществляют измерения при наложенном на релейном конце шунте (сопротивление — тысячные доли ома).

в) для проведения расчёта требуется определить:

км
В
А
рад
В
А
рад

Сначала вычисляют значения входного сопротивления для режимов холостого хода и короткого замыкания по формулам:

,

где – измеренное значение напряжения холостого хода и короткого замыкания;

– измеренное значение тока холостого хода и короткого замыкания;

– измеренное значение аргумента на холостом ходу и при коротком замыкании соответственно.

Далее вычисляют вторичные параметры рельсовой цепи:

а) ;

б) является комплексным числом, поэтому следует отдельно рассчитать и . Представим в показательной форме: , тогда:

;

Тогда:

В последнюю очередь вычисляются первичные параметры рельсовой цепи:

– удельное сопротивление рельсов:

(аргумент сопротивления выражен в радианах)

– удельное сопротивление балласта:

Сопротивление рельсов на практике при Гц обычно составляет Ом/км, при Гц — , при Гц — Ом/км.

Дата добавления: 2017-02-04 ; просмотров: 4807 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Метод измерения параметров РЦ в рабочем режиме.

Как известно, сопротивление балласта является величиной нелинейной, поэтому надо определять все параметры в рабочем режиме.

Сопротивление балласта является нелинейной величиной. В качестве опорного напряжения используется сетевое напряжение. Наиболее просто этот метод реализуется в рельсовых цепях постоянного тока.

Найдём альфа и волновое сопротивление

Запишем полученное выражение в виде:

3.32

Перемножив уравнения системы получим:

Поскольку из математики: То получим выражение

Отсюда Если поделить уравнения выражения 3.32 друг на друга, то получим выражение для волнового сопротивления Rв:

17 Вопрос Метод электрически длинной линии.

В том случае, когда входные сопротивления рельсовой линии при холостом ходе и коротком замыкании равным между собой, то такую линию можно считать электрически длинной, при этой её входное сопротивление будет равно волновому. Параметры такой рельсовой линии определяются измерением волнового сопротивления Zв и измерением входного сопротивления при коротком замыкании на расстоянии l от места измерения.

А остальные параметры определяются выражениями:

При высокой сигнальной частоте, порядка нескольких килогерц, физическая длина рельсовой линии весьма незначительна и может оказаться, что с обеих сторон от места измерения будут электрически длинные линии. В этом случае входное сопротивление в месте измерения будет равно половине волнового сопротивления.

Ri – внутреннее сопротивление генератора

Ег – эдс генератора.

Предположим, что внутреннее сопротивление Ri много больше половины волнового сопротивления 0,5Zв.

Zв определяется:

Напряжение на вольтметре тогда будет равно:

Напряжение на вольтметре зависит только от сопротивления изоляции, поэтому вольтметр должен быть отградуирован в единицах сопротивления изоляции рельсовой линии.

Вопрос

К вопросу 18 Небольшая рельсовая линия может быть электрически длинной, поэтому используя такую зависимость может быть создан прибор для измерения сопротивления изоляции рельсовой линии (ИСБ, посмотреть в Бортновском или Дмитриенко). Но при использовании высокой частоты условия передачи энергии по рельсовой линии отличаются от условий передачи энергии на низких частотах. Это обстоятельство приводит к тому, что возникает трудно оцениваемая погрешность измерения.

19 Вопрос Особенности измерений в импульсных и кодовых рельсовых цепях.

В импульсных и кодовых рельсовых цепях при измерении параметров необходимо учитывать переходные процессы, возникающие при их работе. Во время действия импульса в результате влияния переходного процесса, его форма изменяется, то есть происходит затягивание фронта и спада, поэтому одним из методов измерения параметров кодовых рельсовых цепей следовало бы считать метод непрерывного осциллографирования с записью всех необходимых для расчета величин.

Однако практически использование такого метода ограничивается сложностью аппаратуры и неудобствами.

В линейных условиях для измерения линейного напряжения пользуются приборами Ц-315, Ц-759, Ц-760 и т.д., хотя при таких измерениях не обеспечивается необходимая точность. При подключении прибора, стрелка колеблется, отсчёт показаний затруднён, поэтому при измерении этими приборами обычно закарачивается контакт маятникового или трансмиттерного реле, что не желательно с эксплуатационной точки зрения, так как это приводит к тому, что в рельсовой цепи будет присутствовать непрерывное напряжение и дешифраторы переключают на светофоре красные огонь.

Для устранения этого применяют стрелочные приборы ориентиром. Но и здесь возникает погрешность. Когда включается такой прибор в импульсную цепь. Назад ей вернуться мешает рычажок (ориентир) когда стрелка перемещается на 1-2 миллиметра – производят отсчёт. При использовании такого прибора необходимо ввести попаравочный коэффициент к.

Проводим разные измерения и выводим к для каждого кода.

20 Вопрос Способ измерения импульсного напряжения на примере Белорусской жд

Вольтметр магнитоэлектрический со шкалой 3В.

В этой схеме прибор автоматически подключается к путевому реле во время следования импульса и отключается по окончанию импульса. Схема состоит из реле А с замедлением на притяжение 0,05 сек, и реле Б с замедлением на отпадание 0,15 сек.

Работа схемы. При поступлении импульса из рельсовой цепи срабатывает реле ИП, которое своим контактом включает реле А, последнее срабатывает с замедлением 0,05 сек, то есть после окончания переходного процесса на путевом реле ИП. Реле А, срабатывая, тыловым контактом разрывает цепь питания реле Б и подключает вольтметр к путевому реле ИП. Вольтметром измеряется амплитуда импульса на путевом реле. По истечению времени 0,15 сек, реле Б отпускает якорь и вольтметр подключается к батарее через потенциометр R. Затем ИП отключает реле А. Реле б подключает питание через тыловой контакт реле А, подготавливая вольтметр к измерению напряжения на путевом реле при поступлении очередного импульса из рельсовой цепи. Потенциометром R можно изменять напряжение, подаваемое на вольтметр от батареи. При равенстве этого напряжения и напряжения на путевом реле СТРЕЛКА ВОЛЬТМЕТРА БУДЕТ НАХОДИТЬСЯ В ОДНОМ И ТОМ ЖЕ ПОЛОЖЕНИИ.

21 Вопрос Измерительный прибор на туннельном диоде.

Вольтамперная характеристика туннельного диода имеет вид

При достижении пикового тока Iд на диоде, скачкообразно изменяется напряжение. Это свойство туннельного диод используется для построения прибора для измерения непрерывного импульсного переменного и постоянного тока.

Схема состоит из отградуированного в вольтах измерительного резистора R1 и туннельного диода VD. Туннельный диод используется, как пороговый элемент. Стрелочный прибор И является индикатором срабатывания порогового элемента. Минус прибора – на результат измерения оказывает влияние переходной процесс. Далее измеряем напряжение высокоомным прибором, чтобы постоянная времени разряда была 20-30 секунд.

Читайте также:  Измерения ультрафиолетового излучения для сварщика

Наиболее перспективны для этой цели цифровые быстродействующие приборы.

22 Вопрос Измерения входных сопротивлений.

В рельсовой цепи переменного тока входное сопротивление рельсовой линии является комплексной величиной и носит индуктивный характер, поэтому в таких рельсовых цепях необходимо дополнительно измерять фазовый угол.

Способы измерения при переменном токе

В 3й схеме подключаем вольтметровую обмотку фазометра подключаем к первичной обмотке трансформатора, так как напряжение на вторичной обмотке трансформатора мало, напряжение равно 3В.

4 ) С помощью электронного фазометра Ф2-1

5)Метод трёх вольтметров. Основан на зависимости суммы или разности исследуемых напряжений от угла сдвига фаз между ними.

5

Для упрощения расчётов и напряжений практике делитель напряжения подбирают с помощью реостата так, чтобы U1 = U2

Тогда выражение 3.34 будет

3.35

И определим погрешность нахождения угла фи в зависимости от к, то есть

Для определения погрешности дельта фи возьмём производную от этого выражения.

Умножим и разделим левую часть на фи, а правую умножим на ка и переходим к приращениям.

Вывод: метод можно использовать, если угол сдвига достаточно большой

23 Вопрос Регулировка рельсовых цепей.

Рельсовые цепи работают в нормальном, шунтовом, контрольном и режиме АЛС. Основные режимы – нормальный и шунтовой. Рельсовую цепь нужно отрегулировать так, чтобы при свободной рельсовой цепи реле свободно притягивало якорь, а при шунтировании сопротивлением 0,06 Ом надёжно отпускало якорь, фиксируя занятие РЦ. Регулировку напряжения в РЦ производят изменением сопротивления реостата, а рельсовых цепях переменного тока переключением секций путевого трансформатора или преобразователя напряжения. Способ регулировки РЦ различного типа регламентируется указаниями в нормалях, применительно к схемам рельсовой цепи. Если измерить напряжение на реле в зависимости от сопротивления изоляции, которое непрерывно изменяется, то при минимальном сопротивлении изоляции будет и минимальное напряжение на реле.

3 самая нормальная кривая.

На участках с нормальным сопротивлением изоляции суть регулировки заключается в том, что в соответствии со схемой и регулировочной таблицей для рельсовой цепи фиксированной длины напряжение на реле устанавливается с учётом реального состояния балласта. При пониженном сопротивлении изоляции, регулировочные таблицы составляют на основе диаграммы работоспособности, построенные на основании расчёта.

Перед началом регулировки рельсовой цепи необходимо проверить исправность стыковых соединителей и изолирующих стыков. Регулировка должна обеспечивать устойчивую работу и надлежащий шунтовой эффект рельсовой цепи, при изменении сопротивления балласта от 1 до 50 Ом.км. При обслуживании РЦ с пониженным сопротивлением балласта используются рекомендации инструкции, регламентирующей выборы и корректировку режимов регулировки, контроль за параметрами элементов рельсовой цепи и устранение отклонений этих параметров от нормативных. В инструкции приведены регулировочные таблицы, например для кодовой рельсовой цепи при электротяге постоянного тока регулировочная таблица имеет вид:

Lрц, м Rи, Ом.км Uп пр, В Uп, макс, В Uп, мин, В Uмакс, В Uмин, В Uдп, В
500-613 0,13 49,% 38,5 2,06 1,4 10,5
613-726 0,15 57,8 2,39 11,6 10,8
…………
952-1065 0,23 75,1 71,5 55,0 3.39 2,15 11,3
1065-1178 0,26 3,73 2,35 11,5

Rи – предельное сопротивление изоляции

Uп пр – предельно допустимое напряжение

Uп макс, мин – рекомендуемые напряжения на питающем трансформаторе.

U макс, мин – напряжения на питающем конце рельсовой цепи.

Uдп – напряжение на дополнительной обмотке дроссель трансформатора релейного конца.

Также необходимо учитывать сопротивление балласта в зависимости от погодных условий.

Балласт Сопротивление балласта Ом.км
Песочный Щебёночный
Мокрый
Влажный 2-2,5
Сухой 4-6
Промёрзший

Измерение регулировка напряжений производится одновременно на релейных и питающих концах, поэтому на длинных рельсовых цепях это требует больших затрат времени. Следовательно при регулировке используют табличные данные и расчётом получают требуемое напряжение на релейном конце, при измеренном напряжении на питающем.

Пример. При регулировке рельсовой цепи постоянного тока напряжение на путевом реле должно быть равно 0,38В. При измерении оно оказалось равным 0,3 В. Напряжение на питающем конце равно 0,5В. Требуется определить напряжение на питающем конце для данной рельсовой цепи из отношения:

Приведённый метод может быть использован и в рельсовых цепях переменного тока с одноэлементными реле, работа которых зависит только от напряжения на его зажимах. Кодовые рельсовые цепи начинают регулировать с установки на путевом трансформаторе напряжения, обеспечивающего нормативный кодовый ток. Этот ток удобнее всего определять по измеренному напряжению на основной обмотке ДТ релейного конца в нормальном режиме. Если это напряжение равно 0,4 В при частотах 25, 50 Гц, то при шунтировании поездом релейного конца обеспечивается нормативный кодовый ток.

В кодовых рельсовых цепях с 2мя ДТ типа ДТ-0,6, напряжение на основной обмотке релейного ДТ должно быть равно 0,8В, при минимальном сопротивлении балласта. При увеличении сопротивления балласта это напряжение возрастает. Во всех случаях эти величины должны быть не менее выше названных. После этого регулируют сопротивление ограничивающего реостата на релейном конце. Это сопротивление должно обеспечить необходимое напряжение на путевом реле, при минимальном сопротивлении балласта. В рельсовых цепях частотой сигнального тока 50 Гц дополнительное сопротивление в защитном блоке должно быть не менее 60 Ом. В РЦ с двумя дроссель трансформаторами ДТ-0,6 последовательно с фильтром включают резистор величиной 400 Ом.

24Вопрос Особенности регулировки рельсовых цепей с фазочувствительными реле.

Физические процессы, происходящие в рельсовых цепях с фазочувствительными реле сложнее, чем в других видах рельсовых цепей. Такого типа рельсовые цепи нашли широкое применение на участках с электротягой постоянного и переменного тока. Фазочувствительное реле в таких РЦ срабатывает при выполнении ряда условий: вращающий момент, действующий на реле равняется:

Коэффициент пропроциональности, частота сигнального тока, напряжение на местной и путевой обмотке, косинус угла расстройки (угол между напряжениями).

Необходимым условием срабатывания реле является когерентность частот обеих обмоток (когерентность – когда питаются от одного источника).

Для реле ДСР12, ДСШ12, ДСШ 13 идеальным фазовым соотношением является угол сдвига фаз 97 градусов между напряжениями. Uм опережает Uп. Появление угла расстройки любого знака уменьшает вращающий момент вращающий момент на реле в раз. При угле расстройки от +-0 до 30 градусов, поправочный коэффициент мало отличается от 1 и компенсировать расстройку можно повышением путевого напряжения. При большом угле расстройки требуется значительное увеличение напряжения Uп, что может превысить допустимые нормы.

Читайте также:  Сила тока короткого замыкания единица измерения

А- нормальный режим при минимальном сопротивлении балласта, Б – нормальный режим при максимальном сопротивлении балласта. С – шунтовой режим при самых неблагоприятных условиях шунтирования.

По этим данным точки а б с соединяем прямыми пунктирными линиями, их так же называют характеристиками рельсовой цепи. Отрегулировать фазочувствительную рельсовую цепи желательно так, чтобы при изменении сопротивления балласта вращающий момент, действующий на сектор, был постоянным, то есть чтобы при уменьшении сопротивления балласта и следовательно уменьшения напряжения на реле компенсировалось бы улучшением фазовых соотношений. Наиболее благоприятной для работы реле является область положительных расстроен (3). В коротких рельсовых цепях с дроссель-трансформаторами ДТ-02 наблюдается пониженная шунтовая чувствительность. В этом случае наиболее оптимальной является работа рельсовой цепи в области отрицательных расстроек (3). Характер изменения фазы от изменения параметров рельсовой цепи рекомендуется определять экспериментально при первой же регулировки и данные нанести на характеристику рельсовой цепи.

В рельсовых цепях с фазочувствительными приёмниками регулировку цепи следует производить только изменением сопротивления ограничителя на питающем конце, поскольку колебание сопротивление балласта приводит к изменению величины и знака угла расстройки, то при регулировке следует учитывать состояние балласта в момент регулировки и схему рельсовой цепи. При наилучшем состоянии балласта угол сдвига фаз между напряжениями следует устанавливать в диапазоне от 70 до 80 градусов. Тогда при уменьшении сопротивления балласта угол сдвига фаз, увеличиваясь, может стать идеальным или возрасти на величину, не превышающую допустимой нормы.

Для некоторых видов РЦ с фазочуствительными реле типа ДСР или ДСШ, , при колебании сопротивления балласта, угол сдвига фаз изменяется незначительно, поэтому при и регулировке можно устанавливать этугл близким к идеальному, не зависимо от состояния балласта. Это характерно, в часности, для рельсовых цепей с двумя дроссель трансформаторами типа ДТ-02. Во всех случаях регулировки напряжение на реле должно быть при наилучшем состоянии балласта равно 17-20 В и при наихудшем состоянии балласта 14-16 В.

После регулировки фазовых соотношений. После регулировки фазовых соотношений необходимо произвести проверку рельсовой цепи на шунтовую чувствительность, измерить ток АЛС в рельсах при кодируемых РЦ, если производилась и регулировка напряжения на реле переключением обмоток трансформатора, то после этого необходимо проверить правильность чередования фаз в смежных рельсовых цепях.

25 + 27 Вопрос Измерение угла сдвига фаз с помощью электродинамического фазометра ЭЛФ-1 Измерение фазовых соотношений в реле ДСШ

Электродеинамический однофазный фазометр представляет собой логометр. Неподвижная катушка А состоит из 2-х секций, это сделано для того, чтобы обеспечить в почти неподвижной катушке практически равномерное магнитное поле. В поле неподвижной катушки расположены 2 подвижные катушки Б1 и Б2, укреплённые на общей оси и жёстко связанные между собой под углом гамма. Эти катушки включены параллельно нагрузки на напряжение сети. Последовательно с катушкой Б1 включен резистор с большим активным сопротивлением, поэтому ток I1 совпадает по фазе с напряжением сети U. В цепь катушки Б2 включена индуктивность L, поэтому ток I2 отстаёт от напряжения сети U на угол бета, близкий 90 градусам. Векторная диаграмма работы электродинамического фазометра при активно-индуктивной нагрузке имеет вид:

Взаимодействие тока неподвижной катушки с токами I1 и I2 подвижный катушек, создаёт в фазометре 2 вращающих момента

Альфа – пространственный угол между осью неподвижной катушки и плоскостью подвижной катушки Б1.

Направление намотки витков в катушках Б1 и Б2 противоположно друг другу, поэтому один вращающий момент направлен по часовой стрелке, другой – против. При уравновешивании подвижных катушек их вращающие моменты равны. 3.37

Пологая, что при равенстве С1=С2 получаем: 3.38

Параметры фазометра таковы, что I1=I2, бета=гамма, из полученного выражения следует, что альфа=фи, поэтому шкала фазометра проградуирована в значениях угла фи или в значении коэффициента мощности косинус фи.

Недостаток данного фазометра в том, что его показания зависят от частоты, что вызывает дополнительную погрешность.

Непосредственное измерение с помощью электродинамического фазометра невозможно из-за его низкой чувствительности. Этот прибор может быть использован для измерения угла в рельсовых цепях с реле ДСШ-2, 12, 13, 15, 16.

Схема измерения угла:

Вспомогательный трансформатор подключают первичной обмоткой к местному напряжении, а вторичной обмоткой к токовой обмотке ЭЛФ.

Фи – фактический угол, измеренный.

Дельта – погрешность, вносимая трансформатором.

А вот по этой схеме мы измеряем дельта.

26 Вопрос Измерение фазовых соотношений с помощью электронного фазометра.

Принцип действия этого фазометра основан на преобразовании угла сдвига фаз между напряжениями Uм и Uп во временной интервал, для чего синусоидальное напряжение Uм и Uп преобразуются в прямоугольные импульсы постоянного тока. И по их переднему фронту с помощью дифференцирующих цепей формируются короткие остроконечные импульсы. Работа такого фазометра поясняется диаграммой.

На выходе триггера получаем импульсную последовательность, средний ток которой равен

Среднее значение тока импульсной последовательности с выхода триггера прямопропорционально углу сдвига фаз.

Уровень сигнала Uм и Uп сильно отличаются. Uм à Uп. Синусоидальный сигнал переходит в прямоугольные импульсы.

Вот схема измерения.

УО – усилитель ограничитель, дц – измерительная цепь, Т – триггер, измерительный прибор, стрелка которого магнитоэлектрической системы отклоняется в зависимости от величины среднего тока, который прямопропорционален углу сдвига фаз.

27 Вопрос Измерение фазовых соотношений фазометром типа Ф2-1

В шкале 180 делений, а угол может быть за 350 градусов, то есть тумблер опережает – отстаёт. На клеммы Uопорное подаётся напряжение местного элемента, но так как на входе фазометра на входе максимум 50 В, то ставится делитель.

Импульсные помехи из рельсовой цепи могут попасть на Uc, что приводит к неустойчивой работе прибора.

Для повышения помехоустойчивости прибора на входах ставятся конденсаторы. Включение конденсаторов приводит к отставанию напряжений.

В том случае, когда нет фазометра, угол может быть измерении методом 3х вольтметров.

Для упрощения расчётов U1=U2=U, тогда

Погрешность будет минимальной, если U1=U2, этого можно добиться при переключении вторичной обмотки трансформатора.

36 Вопрос Измерение фазовых соотношений с помощью цифрового фазометра.

(3.43)

Синусоидальные сигналы, сдвиг фаз которых надо измерить преобразуются в импульсы постоянного тока с помощью усилителей-ограничителей. Сигналы с выходов УО поступают на схему исключающее или, на выходе которой формируются импульсы, длительность которых прямопропорциональна сдвигу фаз. ФВИ – формирователь временного интервала. Вырабатывает временной интервал в течении которого производится измерение. Г – генератор счётных импульсов.

Дата добавления: 2015-06-10 ; просмотров: 2712 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник