Измерение расхода с помощью трубки вентури

Измерение расхода

Расход – это продукт или сырье проходящий через поперечное сечение трубопровода в единицу времени.

Существуют два вида расхода – объемный (Qv) и массовый (Qm) . Они рассчитываются по формулам:

где α – расчетный коэффициент расхода;

К²t – температурный коэффициент (коэффициент расширения), эта величина выбирается из справочника;

ρ — плотность продукта или сырья;

d20 – диаметр сужающего устройства при температуре t = 20˚С;

∆Р – перепад давления на сужающем устройстве.

Из этих формул видно, что разница между объемным и массовым расходом заключается в подкоренном выражении, т.е. в одном случае под корнем перепад давления ∆Р делится на плотность ρ, а в другом случае эти две величины перемножаются.

Единицы измерения объемного расхода : м3/ч; м3/с.

Единицы измерения массового расхода : кг/ч; кг/с; т/ч; т/с.

При измерении расхода существует такое понятие, как »Количество вещества». Количество вещества – это продукт или сырье, проходящее через поперечное сечение трубопровода за промежуток времени (смену, вахту, час, месяц и т.д.).

Количество вещества измеряется счетчиками, которые устанавливаются:

1. По месту (в трубопроводе);

2. В операторной (вторичный прибор).

Количество вещества – выражают в единицах объема (м3) или массы (кг).

Существует несколько методов измерения расхода:

1. Расходомеры постоянного перепада давления.

2. Расходомеры переменного перепада давления.

3. Электромагнитные расходомеры.

4. Турбинные расходомеры.

5. Акустические расходомеры.

6. Приборы измеряющие расход по эффекту »Кориолисовых сил».

7. Тепловые расходомеры.

8. Вихревые расходомеры.

Метод постоянного перепада давления.

Ротаметр – расходомеры обтекания. Ротаметры устанавливают в вертикальный участок трубопровода. Он представляет собой стеклянную трубку в форме конуса, обращенную широким концом вверх, внутри которой находится поплавок. Наибольшее давление будет в кольцевом зазоре между поплавком и стенками сосуда, а наименьшее сверху.

а) нижнюю коническую часть;

б) среднюю цилиндрическую часть;

в) верхнюю со скошенными бортиками, косые линии предназначены для предания поплавку устойчивости.

В зависимости от пределов измерения поплавок изготовляют из: эбонита, дюралюминия или нержавеющей стали. Шкала нанесена непосредственно на стеклянной трубке.

Преимущества ротаметров:

1. Простота конструкции

2. Возможность измерения малых расходов

3. Значительный диапазон измерения

4. Возможность измерения агрессивных сред

5. Равномерная шкала.

Существуют ротаметры с электрической дистанционной передачей показаний. Они являются бесшкальными датчиками. Ротаметры типа РЭ (ротаметр электрический) – могут использоваться при t˚С от -40˚С до +70˚С.

Используются для измерения расхода неагрессивных жидкостей.

Метод переменного перепада давления.

Для того, чтобы создать перепад давлений в трубопроводе, устанавливают сужающее устройство. На нашем предприятии в качестве сужающего устройства применяют диафрагмы. Конструктивно диафрагма представляет из себя диск с отверстием, который вставляется в трубопровод.

Р1 – самое большое давление перед диафрагмой;

Р2, Р3 – промежуток, в котором будет самое маленькое давление;

Р4 – самое большое давление после диафрагмы;

Рn – давление потерь (это и есть перепад давлений между Р и Р4, для которого устанавливается сужающее устройство).

Перепад давления обозначается ∆Р и находится по формуле:

∆Р = Р – Р2

Перед диафрагмой давление измеряемой среды возрастает, а скорость ее перемещения по трубопроводу снижается. После диафрагмы давление измеряемой среды снижается, а скорость ее перемещения возрастает.

Отбор давления производится рядом с сужающим устройством.

Перепад давления ∆Р на сужающем устройстве является мерой расхода. Из формулы определения расхода видно, что они связаны между собой зависимостью через корень квадратный, поэтому на выходе из дифманометра сигнал имеет форму параболы.

Таким образом, если не предусмотреть дополнительного устройства на выходе из дифманометра, то шкала вторичного прибора по всей длине будет неравномерной, но особенно это просматривается в нижней части шкалы.

Для того, чтобы преобразовать нелинейную зависимость в линейную и чтобы шкала была равномерной устанавливают приборы извлечения квадратного корня. Во многих электронных вторичных приборах эти преобразователи устанавливаются программно, т.е. устанавливаются при программировании контроллера.

Существует несколько видов сужающих устройств:

1. Диафрагмы – они подразделяются на стандартные и нестандартные.

Стандартные диафрагмы устанавливаются в трубопроводах таким образом, чтобы скосы были на выходе.

К нестандартным диафрагмам относятся:

Конические диафрагмы применяют для измерения расхода запыленных, загрязненных и очень вязких сред. Их устанавливают в трубопроводе таким образом, чтобы скоси были на входе.

Секторные диафрагмы применяют для измерения сыпучих материалов.

2. Сопло Вентури.

3. Труба Вентури.

4. Дроссель (переменный, постоянный).

Сужающие устройства соединяются с дифманометрами соединительными импульсными проводками, а те в свою очередь преобразуют перепад давления в унифицированный пневматический или электрический сигнал. Этот сигнал передается на вторичный прибор, а затем, если имеется компьютер, на монитор.

Электромагнитные расходомеры.

Электромагнитные расходомеры применяют для измерения расхода электропроводящих жидкостей.

Расходомер представляет собой отрезок трубы из нержавеющей стали, с расположенными снаружи полюсами электромагнита. По оси в трубопроводе расположены токосъемные электроды. Участок трубопровода по обе стороны от электродов покрыт электроизоляцией. Роль проводника в таком расходомере выполняет электропроводная жидкость, перемещающаяся по трубопроводу и пересекающая магнитное поле электромагнита. В жидкости будет наводиться ЭДС (электродвижущая сила, т.е. напряжение) пропорциональная скорости ее движения, т.е. расходу жидкости. Степень агрессивности для таких приборов определяется материалом изоляции трубы и электродов первичного преобразователя.

Турбинные расходомеры.

Турбоквант предназначен для измерения объемного и массового расхода различных жидкостей и газов. Также этот прибор осуществляет суммирование расхода, выдает количество вещества.

Турбинка устанавливается только в горизонтальных трубопроводах. Поток измеряемой среды проходит через турбинку и приводит во вращение ее лопасти. Число оборотов крыльчатки пропорционально расходу. На турбинке установлен преобразователь, который состоит из катушки с магнитным сердечником.

Лопасти крыльчатки выполнены из ферромагнитного сплава (т.е. из не магнитящегося материала). При вращении они поочередно пересекают магнитное поле, которое наводит магнит и в катушке наводится ЭДС в виде импульса, причем число импульсов за один оборот крыльчатки будет равно числу лопастей. Таким образом, частота импульсов пропорциональна расходу. Этот выходной сигнал от турбинки по кабелю поступает на частотомер, т.е. на Турбоквант.

Ультразвуковые расходомеры.

Принцип действия ультразвуковых расходомеров основан на пьезоэлектрическом эффекте, т.е это фактическая скорость распространения ультразвуков в движущейся среде, которая равна геометрической сумме скорости движения среды и скорости звука в этой среде.

Ультразвуковой расходомер представляет собой отрезок трубы, в который установлены излучатель ультразвука и его приемник. Время, за которое сигнал проходит от излучателя к приемнику преобразуется в величину расхода.

Расходомеры по эффекту »Кориолисовых сил».

Принцип работы основан на использовании эффекта Кориолисовых сил.

Конструкция расходомера TRIO-MASS выполнена с использованием двух параллельных труб, что позволяет уменьшить габаритные размеры, увеличить жесткость конструкции и выпускать расходомеры в широком диапазоне диаметров.

Использование в конструкции TRU-MASS однотрубной спирали дает возможность предлагать широкий диапазон вариантов соединения с трубопроводом.

При прохождении массовым потоком трубы, к которой приложены принудительные колебания, Кориолисовы силы вызывают крутящий момент в сечении трубы. Труба расходомера постоянно вибрирует со своей резонансной частотой, которая является функцией массы измерительной системы, составленной из массы трубы и протекающей рабочей жидкости.

Как только резонансная частота колебаний начинает изменяться, как результат изменения плотности рабочей жидкости автоматически производится изменение частоты возбуждения внешним источником вибраций. Это позволяет одновременно с измерениями расхода проводить измерения плотности рабочей жидкости. Встроенный температурный датчик позволяет производить эти измерения с поправкой на температуру.

Тепловые расходомеры.

Принцип действия основан на теплопроводности измеряемого вещества. При постоянной мощности нагревателя количество тепла, забираемое от него потоком, при постоянном расходе будет постоянно.

С увеличением расхода нагрев потока будет уменьшаться, что определяется разностью температур.

Вихревые расходомеры.

Основаны на явлении возникновения вихрей при встрече потока с телом не обтекаемой формы. В результате от его тела (противоположных граней) будут отлетать вихри.

Скорость отрыва вихрей зависит от расхода вещества.

Принцип действия преобразователя основан на ультразвуковом детектировании вихрей, образующихся в потоке жидкости, при обтекании ею призмы, расположенной поперек потока.

Преобразователь состоит из проточной части и электронного блока. В корпусе проточной части расположены тело обтекания – призма трапецеидальной формы (1) и пьезоизлучатели ПИ1 и ПИ2 (2), пьезоприемники ПП1 и ПП2 (3) и термодатчик (7).

Электронный блок включает в себя генератор (4), фазовый детектор (5), микропроцессорный адаптивный фильтр с блоком формирования выходных сигналов (6).

2 thoughts on “ Измерение расхода ”

Для объяснения самой физики принципов измерения очень даже красиво

А может такое быть, что перепад давления есть, а расхода нет??

Источник

Измерение расхода с помощью трубки вентури

ГОСТ 8.586.4-2005
(ИСО 5167-4:2003)

Государственная система обеспечения единства измерений

ИЗМЕРЕНИЕ РАСХОДА И КОЛИЧЕСТВА ЖИДКОСТЕЙ И ГАЗОВ
С ПОМОЩЬЮ СТАНДАРТНЫХ СУЖАЮЩИХ УСТРОЙСТВ

Трубы Вентури. Технические требования

State system for ensuring the uniformity of measurements. Measurements of liquids
and gases flow rate and quantity by means of orifice instruments.
Part 4. Venturi tubes. Technical requirements

Дата введения 2007-01-01

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-97 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 ПОДГОТОВЛЕН Обществом с ограниченной ответственностью «Отраслевой метрологический центр «Газметрология» (ООО «ОМЦ Газметрология»), Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт расходометрии» (ФГУП ВНИИР), государственным предприятием «Всеукраинский государственный научно-производственный центр стандартизации, метрологии, сертификации и защиты прав потребителей» Госпотребстандарта Украины (Укрметртестстандарт), Национальным университетом «Львовская политехника»

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии Российской Федерации

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 28 от 9 декабря 2005 г.)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Министерство торговли и экономического развития Республики Армения

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

Национальный институт стандартов и метрологии Кыргызской Республики

Федеральное агентство по техническому регулированию и метрологии

4 Настоящий стандарт является модифицированным по отношению к международному стандарту ИСО 5167-4:2003 «Измерение расхода среды с помощью устройств переменного перепада давления, помещенных в заполненные трубопроводы круглого сечения. Часть 4. Трубы Вентури» (ISO 5167-4:2003 «Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full — Part 4: Venturi tubes») путем внесения технических отклонений, объяснение которых приведено во введении к настоящему стандарту

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ 1.5-2001 (подраздел 3.6)

5 Приказом Федерального агентства по техническому регулированию и метрологии от 31 октября 2006 г. N 237-ст межгосударственный стандарт ГОСТ 8.586.4-2005 (ИСО 5167-4:2003) «Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 4. Трубы Вентури. Технические требования» введен в действие в качестве национального стандарта Российской Федерации с 1 января 2007 г.

6 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта публикуется в указателе «Национальные стандарты».

Информация об изменениях к настоящему стандарту публикуется в указателе «Национальные стандарты», а текст изменений — в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

ВНЕСЕНА поправка, опубликованная в ИУС N 6, 2007 год

Поправка внесена изготовителем базы данных

Комплекс межгосударственных стандартов ГОСТ 8.586.1-2005 — ГОСТ 8.586.5-2005 под общим наименованием «Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств» (далее — комплекс стандартов) состоит из следующих частей:

— Часть 1. Принцип метода измерений и общие требования;

— Часть 2. Диафрагмы. Технические требования;

— Часть 3. Сопла и сопла Вентури. Технические требования;

— Часть 4. Трубы Вентури. Технические требования;

— Часть 5. Методика выполнения измерений.

Комплекс стандартов распространяется на измерение расхода и количества жидкостей и газов методом переменного перепада давления при применении следующих типов сужающих устройств: диафрагмы, сопла ИСА 1932, эллипсного сопла*, сопла Вентури и трубы Вентури.
________________
* В международном стандарте [3] эллипсные сопла названы соплами большого радиуса.

Комплекс стандартов устанавливает требования к геометрическим размерам и условиям применения сужающих устройств, используемых в трубопроводах круглого сечения, полностью заполненных однофазной (жидкой или газообразной) средой, скорость течения которой менее скорости звука в этой среде.

Части 1-4 являются модифицированными по отношению к международным стандартам [1]-[4].

В первой части представлены термины и определения, условные обозначения, принцип метода измерений, установлены общие требования к условиям измерений при применении всех типов сужающих устройств.

Вторая, третья и четвертая части устанавливают технические требования к конкретным типам сужающих устройств: вторая часть — к диафрагмам, третья — к соплам ИСА 1932, эллипсным соплам и соплам Вентури, четвертая — к трубам Вентури.

В пятой части представлена методика выполнения измерений с помощью указанных выше типов сужающих устройств.

Настоящий стандарт от международного стандарта [4] отличается следующим:

— увеличен диапазон чисел Рейнольдса, при которых допускается применение труб Вентури;

— приведены требования к определению необходимой длины прямолинейных участков измерительных трубопроводов для широкого ряда местных сопротивлений;

— включено дополнительное приложение А «Классификация видов местных сопротивлений».

Увеличение диапазона чисел Рейнольдса, допускаемых при использовании труб Вентури, позволяет расширить область их применения.

Расширение списка видов местных сопротивлений и включение в настоящий стандарт приложения А позволяет расширить возможности монтажа труб Вентури и исключить ошибки при определении необходимых длин прямолинейных участков измерительных трубопроводов.

Введенные дополнительные требования выделены в настоящем стандарте путем заключения в рамки из тонких линий.

Наименования видов местных сопротивлений, дополнительно включенных в настоящий стандарт, выделены курсивом.

1 Область применения

1 Область применения

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие межгосударственные стандарты:

ГОСТ 8.586.1-2005 (ИСО 5167-1:2003) Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 1. Принцип метода измерений и общие требования (ИСО 5167-1:2003 «Измерение расхода среды с помощью устройств переменного перепада давления, помещенных в заполненные трубопроводы круглого сечения. Часть 1. Общие принципы и требования», MOD)

ГОСТ 8.586.5-2005 Государственная система обеспечения единства измерений. Измерение расхода и количества жидкостей и газов с помощью стандартных сужающих устройств. Часть 5. Методика выполнения измерений

ГОСТ 17378-2001 (ИСО 3419:1981) Детали трубопроводов бесшовные приварные из углеродистой и низколегированной стали. Переходы. Конструкция (ИСО 3419:1981 «Фитинги из легированной и нелегированной стали, привариваемые встык», MOD)

ГОСТ 24856-81 (ИСО 6552:1980) Арматура трубопроводная промышленная. Термины и определения (ИСО 6552:1980 «Конденсатоотводчики автоматические. Определение технических терминов», MOD)

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов и классификаторов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодно издаваемому информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по соответствующим ежемесячно издаваемым информационным указателям, опубликованным в текущем году. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться замененным (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения, обозначения и сокращения

В настоящем стандарте применены термины, определения, обозначения и сокращения в соответствии с ГОСТ 8.586.1.

4 Принципы метода измерения и расчета

4.1 Принцип метода измерения

4.1.1 Метод измерения расхода среды, протекающей в ИТ, основан на создании с помощью трубы Вентури местного сужения потока, часть потенциальной энергии которого переходит в кинетическую энергию. Средняя скорость потока в месте его сужения повышается, а статическое давление становится менее статического давления до трубы Вентури. Разность давления (перепад давления) тем больше, чем больше расход среды, и, следовательно, она может служить мерой расхода.

4.1.2 Массовый расход среды в общем случае рассчитывают по формуле

Вывод формулы (4.1) приведен в ГОСТ 8.586.1 (приложение А).

4.1.3 Связь массового расхода среды, объемного расхода среды при рабочих условиях и объемного расхода среды, приведенного к стандартным условиям, устанавливает формула

4.2 Расчет расхода среды

Массовый расход среды рассчитывают по формуле (4.1) после определения параметров, которые либо измеряют непосредственно, либо вычисляют по результатам измерений других параметров.

Коэффициент истечения труб Вентури зависит от числа , которое само зависит от расхода среды, поэтому уравнение для расчета расхода является неявным. В этом случае значение расхода может быть получено методом итераций. Порядок проведения итераций приведен в ГОСТ 8.586.1 (приложение В) и ГОСТ 8.586.5 (раздел 8).

Формулы для определения объемного расхода среды при рабочих условиях измерений и объемного расхода среды, приведенного к стандартным условиям, приведены в ГОСТ 8.586.5 (раздел 5).

5 Трубы Вентури

5.1 Границы применения

5.1.1 Общие положения

Применение труб Вентури зависит от их разновидности, обусловленной способом изготовления их входной конической части и профиля пересечения входного конуса и горловины. Способы изготовления труб Вентури и границы их применения приведены в 5.1.2-5.1.4.

5.2 Профиль труб Вентури

5.2.1 На рисунке 1 приведен разрез трубы Вентури в плоскости, проходящей через ее ось. Обозначения элементов и геометрических параметров трубы Вентури, приведенные на рисунке 1, применяют в настоящем разделе.

Рисунок 1 — Геометрический профиль трубы Вентури

— диффузор; — горловина; — сужающаяся коническая часть; — входной цилиндрический
участок; — плоскости соединения элементов трубы Вентури; — см. 5.4.7

Рисунок 1 — Геометрический профиль трубы Вентури

Труба Вентури состоит из входного цилиндрического участка , сужающейся конической части , цилиндрической горловины и диффузора . Внутренняя поверхность трубы Вентури является цилиндрической и концентрической к оси ИТ. Соосность сужающейся конической части и цилиндрической горловины проверяют визуально.

5.2.2 Минимальная длина входного цилиндрического участка , измеренная от места его соединения с ИТ до плоскости пересечения внутренних поверхностей и , должна соответствовать требованиям 5.2.8, 5.2.9 и 5.2.10.

Диаметр определяют измерениями внутренних диаметров входного цилиндрического участка в плоскости отверстий для отбора давления. Минимальное число измерений должно быть равно числу отверстий для отборов давления (но не менее четырех). Измерения проводят вблизи отверстий для отбора давления, а также между ними в диаметральных плоскостях, расположенных приблизительно под одинаковыми углами друг к другу. Среднее значение результатов измерений принимают за значение . При этом относительная неопределенность результата измерения, вносимая измерительным инструментом, не должна превышать 0,1%.

Диаметр входного цилиндрического участка также должен быть измерен в плоскостях, размещенных в его начале и конце. Ни одно из значений диаметров, измеренных по длине входного цилиндрического участка, не должно отличаться более чем на 0,4% среднего значения

5.2.3 Сужающаяся коническая часть для всех разновидностей труб Вентури должна иметь угол конуса 21°±1° (см. рисунок 1). Эта часть ограничена на входе плоскостью, проходящей через пересечение поверхностей и (или их продолжением), и на выходе — плоскостью пересечения поверхностей и (или их продолжением).

Общая длина сужающейся конической части , измеренная параллельно оси трубы Вентури, приблизительно равна .

Место перехода сужающейся конической части во входной цилиндрический участок имеет радиус , значение которого зависит от разновидности трубы Вентури.

Профиль сужающейся конической части и места его перехода во входной цилиндрический участок и горловину проверяют шаблоном. Отклонение профиля сужающейся конической части от профиля шаблона в любом месте не должно превышать 0,004 .

За внутреннюю поверхность сужающейся конической части принимают поверхность вращения, для которой два диаметра, измеренные в одной плоскости, перпендикулярной к оси вращения, отличаются от среднего значения диаметра не более чем на

5.2.4 Горловина должна быть цилиндрической. На входе горловина ограничена плоскостью, проходящей через пересечение части с горловиной (или их продолжениями), на выходе — плоскостью пересечения горловины с поверхностью диффузора (или их продолжениями). Длина горловины , т.е. расстояние между указанными плоскостями, должна быть равна независимо от разновидности трубы Вентури.

В месте соединения горловины с сужающейся конической частью имеется закругление с радиусом , а в месте сопряжения горловины и диффузора — закругление с радиусом . Величины и зависят от разновидности трубы Вентури.

Значение диаметра горловины рассчитывают по ГОСТ 8.586.1 [формула (5.4)]. За значение диаметра принимают среднее значение результатов измерений внутреннего диаметра горловины в плоскости отверстий для отбора давления. Минимальное число измерений должно быть равно числу отверстий для отборов давления (но не менее четырех). Измерения проводят вблизи отверстий для отбора давления, а также между ними в диаметральных плоскостях, расположенных под приблизительно равными углами друг к другу. При этом относительная неопределенность результата измерений диаметра, обусловленная измерительным инструментом, не должна превышать 0,02%.

Диаметры горловины должны также быть измерены в плоскостях, размещенных в ее начале и конце. Ни одно из значений диаметров, измеренных по длине горловины, не должно отличаться от среднего значения более чем на ±0,1%.

Горловина трубы Вентури должна быть обработана на станке или иметь по всей длине гладкую поверхность, чистота обработки которой должна соответствовать требованиям 5.2.7.

Кривые с радиусом и , сопрягающие горловину с диффузором и входной конической частью, должны являться образующими поверхностями вращения, как указано в 5.2.3. Это требование считают выполненным, если значения двух диаметров, измеренные в одной плоскости, перпендикулярной к оси вращения, отличаются от значения среднего диаметра не более чем на ±0,1%.

Значения радиусов и должны быть проверены шаблоном.

Для каждого радиуса, приблизительно в средней части профиля шаблона, определяют его максимальное отклонение от профиля трубы Вентури. Значение максимального отклонения не должно пр

5.2.5 Диффузор должен иметь угол (см. рисунок 1) в пределах от 7° до 15°.

Рекомендуется выбирать угол не более 8°.

Наименьший диаметр диффузора должен быть не менее диаметра горловины.

5.2.7 Чистота обработки горловины и поверхностей сопряжения должна удовлетворять условию: . Внутренняя поверхность диффузора не требует механической обработки, но должна быть чистой и гладкой. Чистота обработки других частей трубы Вентури зависит от ее разновидности.

5.2.8 Профиль трубы Вентури с литой (без обработки) входной конической частью имеет следующие характеристики:

— внутренняя поверхность входной конической части должна быть без раковин, трещин, выбоин, неровностей и загрязнений, ;

— минимальная длина входного цилиндрического участка должна быть равна меньшему из двух значений — или мм (см. 5.2.2);

— внутренняя поверхность входного цилиндра может быть не обработана, если ее качество такое же, как качество поверхности входной конической части ;

— ;

— ;

— длина цилиндрической части горловины должна быть не менее ;

— длина цилиндрической части горловины, находящейся между концом радиуса и плоскостью, проходящей через оси отверстия для отбора давления, так же как и длина цилиндрической части между плоскостью, проходящей через оси отверстий для отбора давления, и началом радиуса должна быть не менее (для длины горловины также см. 5.2.4);

— радиус должен быть от 5 и до 15 , оптимальное значение равно 10 (если выбрано не оптимальное значение, то рекомендуется при малых углах устанавливать значение радиуса

5.2.9 Профиль трубы Вентури с обработанной входной конической частью имеет следующие характеристики:

— минимальная длина входного цилиндрического участка должна быть равна ;

— должен быть менее 0,25 и предпочтительно равен нулю;

— должен быть менее 0,25 и предпочтительно равен нулю;

— длина цилиндрической части горловины, находящейся между концом радиуса и плоскостью, проходящей через оси отверстия для отбора давления, должна быть не менее 0,25 ;

— радиус должен быть менее 0,25 и предпочтительно равен нулю.

Поверхность входного цилиндрического и сужающегося конического участков обрабатывают так же, как и поверхность горловины (см. 5.2.

5.2.10 Профиль трубы Вентури со сварной входной конической частью из листовой стали имеет следующие характеристики:

— минимальная длина входного цилиндрического участка должна быть равна ;

— между цилиндрическим участком и входным конусом не должно быть переходных кривых, кроме образуемых за счет сварки;

— между входным конусом и горловиной не должно быть переходных кривых, кроме образуемых за счет сварки;

— между горловиной и диффузором не должно быть переходных кривых;

— внутренняя поверхность участков и должна быть чистой, без отложений и наплывов сварки, допускается цинкование этой поверхности, ;

— внутренние сварные швы должны быть заподлицо с прилегающими поверхностями и не должны находиться вблизи отверстий для отбора давления.

5.3 Материал и изготовление

5.3.1 Труба Вентури может быть изготовлена из любого материала, соответствующего требованиям ГОСТ 8.586.1 (подпункт 6.1.2), и любым способом при условии, что она будет соответствовать техническим требованиям 5.2.

5.3.2 Рекомендуется входную коническую часть и горловину изготовлять как одно целое. Горловину и часть трубы Вентури с обработанной входной конической частью рекомендуется изготовлять из одной заготовки. При изготовлении этих деталей из двух отдельных частей их собирают до окончательной обработки внутренней поверхности.

5.3.3 Обращают особое внимание на центрирование диффузора относительно горловины. Уступ в месте соединения диффузора и горловины не допускается. Отсутствие уступа устанавливают пальпированием поверхностей после сборки горловины и диффузора до установки трубы Вентури.

5.4 Отбор давления

5.4.1 Отбор давления до трубы Вентури и в горловине проводят через отдельные отверстия, соединенные по схеме, приведенной в ГОСТ 8.586.1 (рисунок 1), или с помощью кольцевой камеры усреднения, или пьезометрического кольца. Использование для отбора давления сплошных кольцевых щелей или равномерно распределенных по горловине пазов не допускается.

5.4.2 Если не менее 33,3 мм, то диаметр отверстий для отбора давления должен быть от 4 до 10 мм. При этом диаметр отверстий для отбора давления до трубы Вентури должен быть не более 0,1 , а в горловине трубы Вентури — не более 0,13 . Если — менее 33,3 мм, то диаметр отверстий для отбора давления в горловине должен быть в пределах от 0,1 до 0,13 , а диаметр отверстий до трубы Вентури — от 0,1 до 0,1 .

При выборе значения диаметра отверстий дополнительно учитывают необходимость исключения случайного их засорени

5.4.3 До трубы Вентури и в ее горловине должно быть не менее чем по четыре отверстия для отбора давления. Оси отверстий должны образовывать между собой равные углы и должны быть расположены в плоскости, перпендикулярной к оси трубы Вентури.

5.4.4 В месте выхода во внутреннюю полость трубы Вентури отверстие должно быть круглым. Кромки отверстия должны быть заподлицо с внутренней поверхностью трубы Вентури. Для ликвидации заусенцев на кромке отверстия допускается ее притупление радиусом не более одной десятой диаметра отверстия.

Не допускаются какие-либо неровности на поверхности отверстия и внутренней поверхности трубы Вентури вблизи отверстий.

5.4.5 Отверстие для отбора давления должно быть цилиндрическим на глубине не менее 2,5 внутренних диаметров этого отверстия.

5.4.6 Соответствие отверстий требованиям, приведенным в 5.4.4, может быть установлено визуально.

5.4.7 Расстояния, указанные на рисунке 1, до места размещения отверстий для отбора давления измеряют по прямой линии, параллельной оси трубы Вентури, между осью отверстий для отбора давления и плоскостью, определенной ниже.

Для трубы Вентури с литой (без обработки) входной конической частью расстояние между осью отверстия для отбора давления, расположенного до трубы Вентури, и плоскостью пересечения поверхностей и (или их продолжениями) должно быть равно:

— для ;

— для .

Для труб Вентури с обработанной входной конической частью или со сварной входной конической частью из листовой стали расстояние между осью отверстия для отбора давления, расположенного до трубы Вентури, и плоскостью пересечения поверхностей и (или их продолжениями) должно быть равно .

Для всех разновидностей труб Вентури расстояние между плоскостью пересечения поверхностей и горловины (или их продолжениями) и осью отверстий для отбора давления, расположенных в горловине, должно быть ра

5.4.8 Площадь свободного сечения кольцевой камеры усреднения или пьезометрического кольца должна быть не менее половины общей площади отверстий отбора.

Рекомендуется применять кольцевые камеры или пьезометрические кольца, площадь которых в два раза больше указанной, если труба Вентури установлена после МС, создающих асимметричную деформацию эпюры скоростей потока.

5.5 Коэффициент истечения

5.5.1 Ограничения по применению

Независимо от разновидности трубы Вентури необходимо избегать одновременного сочетания крайних допускаемых значений , и .

Вне пределов, определенных в 5.1.2, 5.1.3 и 5.1.4 для , и , трубу Вентури можно применять только после определения ее коэффициента истечения в условиях, соответствующих условиям ее эксплуатации.

При применении трубы Вентури для измерения расхода газа высокого давления ( 1 МПа) рекомендуется ее градуировка при рабочем давлении и числах , соответствующих условиям эксплуатации.

Трубы Вентури применяют на ИТ, для которых допускают широкий диапазон значений , без введения поправочного коэффициента, учитывающего шероховатость внутренней поверхности ИТ (см. 6.4.

5.5.2 Коэффициент истечения трубы Вентури с литой (без обработки) входной конической частью

Коэффициент истечения трубы Вентури с литой (без обработки) входной конической частью рассчитывают по формулам:

5.5.3 Коэффициент истечения трубы Вентури с обработанной входной конической частью

Коэффициент истечения труб Вентури с обработанной входной конической частью рассчитывают по формулам:

5.5.4 Коэффициент истечения труб Вентури со сварной входной конической частью из листовой стали

Коэффициент истечения труб Вентури со сварной входной конической частью из листовой стали рассчитывают по формулам:

5.6 Коэффициент расширения

Коэффициент расширения для всех разновидностей труб Вентури рассчитывают по формуле

где .

Формулу применяют только при соблюдении условия: .

5.7 Неопределенность коэффициента истечения

5.7.1 Неопределенность коэффициента истечения трубы Вентури с литой (без обработки) входной конической частью рассчитывают по формулам:

5.7.2 Неопределенность коэффициента истечения трубы Вентури с обработанной входной конической частью рассчитывают по формулам:

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector