Меню

Измерение расстояний недоступных для измерения



Определение недоступных расстояний

Если препятствие (река, обрыв, здание) делает расстояние недоступным для измерения лентой, то его измеряют косвенным методом.

Так, для определения недоступного расстояния d измеряют лентой длину базиса b (рис. 8.3, а, б) и углы a и b . Из DABC находят

d = b sin a / sin (a + b),

где учтено, что sin g = sin (180°-a-b) = sin (a + b).

Рис. 8.3. Определение недоступного расстояния

Для контроля расстояние d определяют ещё раз из треугольника ABC1 ипри отсутствии недопустимых расхождений вычисляют среднее.

Нитяный дальномер

Теория нитяного дальномера. Зрительные трубы многих геодезических приборов снабжены нитяным дальномером. Сетка нитей зрительной трубы, кроме основных штрихов (вертикальных и горизонтальных), имеет дальномерные штрихи a и b (рис. 8.4, а). Расстояние D от оси вращения прибора MM (рис. 8.4, б) до рейки AB равно

где L — расстояние от фокуса объектива до рейки; f — фокусное расстояние; d — расстояние между объективом и осью вращения прибора.

Лучи, идущие через дальномерные штрихи сетки a и b параллельно оптической оси, преломляются объективом, проходят через его фокус F и проецируют изображения дальномерных штрихов на точки A и B, так что дальномерный отсчёт по рейке равен n. Обозначив расстояние между дальномерными штрихами p, из подобных треугольников ABF и a¢b¢F находим L = n f / p. Обозначив f / p = K и f + d = c , получаем

где K — коэффициент дальномера и c — постоянная дальномера.

Рис. 8.4. Нитяный дальномер: а) – сетка нитей; б) – схема определения расстояния

При изготовлении прибора f и p подбирают такими, чтобы K=100, а постоянная c была близкой к нулю. Тогда D = 100 n.

Точность измерения расстояний нитяным дальномером » 1/300.

Определение горизонтального проложения линии, измеренной нитяным дальномером. При измерении наклонной линии отсчёт по рейке это отрезок n = AB (рис. 8.5). Если бы рейку наклонить на угол n, то отсчёт был бы равен n = AB = n cosn и наклонное расстояние D = Kn+ c = Kn ×cosn+c.

Рис. 8.5. Измерение нитяным дальномером наклонного расстояния

Умножив наклонное расстояние D на cosn, получим горизонтальное расстояние d = K n cos2 n + c cos n.

Прибавив и отняв с × cos2n, после преобразований получим

d = (Kn + с) cos 2 n + 2c cosn sin 2 (n¤2).

Вторым слагаемым по его малости пренебрежем. Получим

Вычисления упрощаются, если воспользоваться составленными с использованием этой формулы «Тахеометрическими таблицами».

Светодальномеры, электронные тахеометры

Светодальномер – прибор, измеряющий расстояние по времени прохождения его световым сигналом.

В комплект светодальномера входят приёмопередатчик и отражатель. Приемопередатчик 1 (рис. 8.6) устанавливают на штативе на одном конце измеряемой линии, а отражатель 2 на специальной вешке или тоже на штативе – на другом.

Рис. 8.6. Измерение расстояния светодальномером

Приёмопередатчик излучает световой сигнал, принимает его после возвращения от отражателя, измеряет время t, прошедшее от излучения до приёма, и вычисляет расстояние

Здесь v – скорость света (при средних условиях v » 299710 км/с).

Время t необходимо измерять с высокой точностью. Так, для точности в расстоянии 1 см время надо знать с ошибкой не более 10-10 с. Измерение времени выполняется фазовым или импульсным методом.

Рис. 8.7. Схема импульсного светодальномера

В импульсном светодальномере (рис. 8.7) лазерный источник излучения 3 под воздействием генератора импульсов 2 периодически посылает через объектив 4 световой импульс. Одновременно переключатель 7 запускает счётчик 8 временны¢х импульсов, поступающих от высокочастотного генератора 1. Световой импульс, отразившись от отражателя 5, поступает на преобразователь 6, который через переключатель 7 останавливает счётчик 8. Число импульсов, сосчитанное счётчиком 8, пропорционально прошедшему времени и, следовательно, измеряемому расстоянию. Для повышения точности измерения выполняются многократно и результаты осредняются процессором 9. Измеренное расстояние высвечивается на табло.

Измеренное расстояние исправляют поправками за атмосферное давление, температуру и влажность воздуха, влияющие на скорость света. Для получения горизонтального проложения вводят поправку за наклон.

Конструктивно приемопередатчик представляет собой отдельный прибор, насадку на теодолит или блок, входящий в состав электронного тахеометра.

По их назначению принято различать светодальномеры для построения государственных геодезических сетей, светодальномеры для прикладной геодезии и маркшейдерии и светодальномеры для топографических съёмок.

Точность топографических светодальномеров 2 – 3 см, а применяемых в прикладной геодезии 2 – 3 мм.

Отражатели бывают призменные и плёночные. Основным элементом призменного отражателя (рис. 8.8 б) является стеклянная трипельпризма отражающая световые лучи в тех направлениях, откуда они пришли. Для увеличения дальности измерений изготавливают многопризменные отражатели.

Плёночный отражатель представляет собой отражающую свет пластиковую плёнку размером 1´1 см и больше, на которую нанесены штрихи (например, вертикальный и горизонтальный). Дальность измерений с пленочными отражателями меньше, чем с призменным. Но зато пленочный отражатель можно закрепить там, где установить призменный отражатель невозможно, например – приклеить в нужном месте на сооружение. Кроме того, пленочные отражатели гораздо дешевле призменных. При выполнении угловых измерений центр штрихов на отражателе служит визирной целью.

Существуют светодальномеры, использующие диффузное отражение сигнала от предметов и не требующие отражателя. Таким дальномером является «лазерная рулетка» Disto фирмы Leica (Швейцария). Прибор используют без штатива, с руки. Световой луч наводят на нужные объекты и на шкале читают расстояния до 200 м с точностью 1,5 мм.

Читайте также:  Расчет неопределенности измерений испытательной лаборатории

Электронные тахеометры. Электронным тахеометром (рис. 8.8) называется прибор, объединяющий в себе светодальномер, электронный теодолит и микро-ЭВМ. Светодальномер прибора измеряет расстояние до отражателя. Датчики горизонтального и вертикального кругов электронного теодолита выдают отсчеты по кругам. Отсчеты расстояния и углов передаются на индикацию и регистрацию. Микро-ЭВМ обеспечивает возможность решения целого ряда стандартных геодезических задач, для чего прибор снабжен набором необходимых прикладных программ. Полученная в результате измерений и вычислений информация высвечивается на цифровом табло, а также регистрируется во внутренней памяти прибора и на флэш-картах для последующего ввода в компьютер для дальнейшей обработки.

Электронный тахеометр имеет, как правило, две панели управления, расположенные с обеих сторон прибора. На панели управления расположены дисплей и клавиатура для управления процессом измерений и ввода информации вручную. Ввод информации и управление возможны и с дистанционного пульта управления (контроллера). Тахеометр может иметь световой указатель створа, облегчающий установку вехи с отражателем на линию, по которой направлена труба прибора.

Рис. 8.8. Электронный тахеометр: а) – основной прибор; б) — однопризменный отражатель: 1 – уровень; 2 – визирная марка; 3 – призма; 4, 5 – закрепительные винты; 6 — штанга.

Программное обеспечение электронных тахеометров поддерживает решение достаточно широкого круга задач. Обычно бывает предусмотрен ввод и сохранение данных о станции: ее координат, номера точки, высоты прибора, имени оператора, даты, времени, сведений о погоде (ветре, температуре, давлении). По результатам измерений выполняется вычисление горизонтальных и вертикальных углов, дирекционных углов линий, горизонтальных проложений, превышений, высот точек, где установлен отражатель, приращений координат, плоских и пространственных координат наблюдаемых точек. Предусмотрена возможность вычисления координат по результатам засечек, вычисления расстояния до недоступной для установки отражателя точки и координат недоступной точки, определения высоты недоступного объекта. Для обеспечения разбивочных работ служат программы вычисления угла и расстояния для выноса точки с заданными координатами. При решении задач учитывается рефракция световых лучей в атмосфере.

В настоящее время на рынке имеется широкий выбор электронных тахеометров, выпускаемых разными фирмами, в числе которых Уральский оптико-механический завод (Россия), Sokkia (Япония), Trimble (США), Leica (Швейцария) и др. Характеристики приборов разных марок различаются. Средние квадратические погрешности измерения углов тахеометров лежат в пределах от 1² до 6². Максимальные дальности измерения расстояний на однопризменный отражатель различаются от 1600 до 5000 м. При этом, точность измерений в среднем характеризуется ошибкой 2 мм + 2´10 -6 D, где D – расстояние. Многие из электронных тахеометров позволяют измерять расстояния без отражателя. Дальность таких измерений меняется в разных приборах в пределах 70 – 350 м.

Использование электронных тахеометров значительно повышает производительность труда, упрощает и сокращает время на обработку результатов измерений, исключает такие ошибки исполнителя, которые имеют место при визуальном взятии отсчетов, при записи результатов измерений в журналы, в вычислениях. При работе с электронным тахеометром отпадает необходимость иметь калькулятор для выполнения полевых вычислений.

Методы нивелирования

Нивелированием называется измерение превышений с целью определения высот точек. Путем нивелирования значения высот передают от исходных точек с известными высотами на точки, высоты которых надо определить.

В зависимости от применяемых приборов и методов различают следующие виды нивелирования.

Геометрическое нивелирование — метод определения превышений путем взятия отсчетов по вертикальным рейкам при горизонтальном луче визирования. Это — основной метод нивелирования. Методом геометрического нивелирования создана государственная нивелирная сеть, создаются инженерно-геодезические высотные сети различного назначения.

Тригонометрическое нивелирование — метод определения превышения путем измерения вертикального угла и расстояния. Метод используют при создании высотного обоснования топографических съемок, а также при определении превышений и передаче высот на строительных площадках.

Барометрическое нивелирование основано на зависимости между высотой и атмосферным давлением. Для определения превышений измеряют атмосферное давление и температуру в точке с известной высотой и в точках, высоты которых определяют. По разностям давлений вычисляют превышения. Метод применяют при работах в труднодоступной местности, им пользуются геологи, геофизики. Точность измерений этим методом невысокая: на равнинной местности — 0.5 м, в горной — 1.5 м.

Гидростатическое нивелирование основано на свойстве жидкости в сообщающихся сосудах устанавливаться на одном уровне. Простейший гидростатический нивелир представляет собой два сосуда с делениями, соединенные шлангом. Систему заполняют дистиллированной водой. Точность метода очень высокая (0,1 мм), поэтому он применяется при монтаже и выверке конструкций по высоте, особенно при работе в стесненных условиях, при передаче отметок через водные преграды, для наблюдений за деформациями сооружений (плотин, мостов, ускорителей частиц и пр.).

Читайте также:  Срок поверки приборов измерения

Определение превышений и высот точек с помощью спутниковых измерений. Автономное определение высот точек аппаратурой ГЛОНАСС и GPS выполняется с точностью нескольких метров, а определение превышений между точками — с точностью 10 — 15 мм.

Геометрическое нивелирование

Геометрическое нивелирование выполняют, используя нивелир и нивелирные рейки. Нивелир – прибор, в котором визирный луч приводится в горизонтальное положение. Отсчеты берут по шкалам устанавливаемых вертикально нивелирных реек. Оцифровка шкал на рейках возрастает от пятки рейки вверх. Если на пятке рейки расположен ноль шкалы, то отсчет по рейке равен расстоянию от пятки до луча визирования.

Геометрическое нивелирование выполняют двумя способами — “из середины” и “вперед”.

Рис. 9.1. Нивелирование: а — из середины; б — вперед; ee – исходная уровенная поверхность

Нивелирование из середины – основной способ. Для измерения превышения точки B над точкой A (рис. 9.1 а) нивелир устанавливают в середине между точками (как правило, на равных расстояниях) и приводят его визирную ось в горизонтальное положение. На точках А и В устанавливают нивелирные рейки. Берут отсчет a по задней рейке и отсчет b по передней рейке. Превышение вычисляют по формуле

Обычно для контроля превышение измеряют дважды – по черным и красным сторонам реек. За окончательный результат принимают среднее.

Если известна высота HA точки А, то высоту H В точки В вычисляют по формуле

При нивелировании вперед (рис. 9.1 б) нивелир устанавливают над точкой A и измеряют (обычно с помощью рейки) высоту прибора k. В точке B, высоту которой требуется определить, устанавливают рейку. Приведя визирную ось нивелира в горизонтальное положение, берут отсчет b по черной стороне рейки. Вычислив превышение

по формуле (9.1) находят высоту точки В.

На строительной площадке, где на земляных работах, укладке бетона или асфальта и пр. требуется с одной стоянки нивелира определить высоты многих точек, сначала вычисляют общую для всех точек высоту HГИ горизонта инструмента, то есть высоту визирной оси нивелира

а затем – высоты определяемых точек

где 1, 2, … — номера определяемых точек.

Если точки А и В, расположены так, что измерить между ними превышение с одной установки нивелира невозможно, превышение измеряют по частям, то есть прокладывают нивелирный ход (рис. 9.2).

Рис. 9.2. Нивелирный ход

Превышения вычисляют по формулам (см. рис. 9.2):

Превышение между конечными точками хода А и В равно сумме вычисленных превышений

а высота точки В определится по формуле (9.1).

Нивелиры

Дата добавления: 2018-10-27 ; просмотров: 906 ; Мы поможем в написании вашей работы!

Источник

Билет №53. Определение расстояний, недоступных для измерения лентой, рулеткой. Параллактический метод измерения расстояний.

Билет № 57. Теодолитная (горизонтальная) съемка. Содержание полевых работ. Способы определения положения точек во время съемки. Абрис.

Теодолитная съемка – горизонтальная съемка местности, то есть съемка только контуров местности. Съемка выполняется с помощью теодолита и мерных приборов: ленты, рулетки или дальномера. Применяется для составления крупномасштабных контурных планов (без изображения рельефа) внутриквартальной застройки городов, населенных пунктов в сельской местности, внутризаводских территорий, железнодорожных станций и узлов, при съемке подъездных путей к промышленным предприятиям, при создании городского и земельного кадастров. При съемке объектов разной ведомственной принадлежности имеются некоторые особенности, которые оговариваются в соответствующих инструкциях.

Съемочной основой теодолитной съемки служат, теодолитные ходы (замкнутые и разомкнутые). При необходимости сгущение съемочной сети может быть выполнено путем определения дополнительных точек методами полярной, линейной, угловой засечки, опирающихся на пункты проложенных ранее теодолитных ходов, или, в редких случаях, проложением висячего теодолитного хода.

Съемка ситуации выполняется путем измерений, связывающих контуры местных предметов с пунктами съемочной основы. Работа на каждой съемочной точке начинается составлением абриса – схематического чертежа снимаемого участка местности. На абрисе в произвольном крупном масштабе показывают взаимное расположение пунктов съемочной сети и снимаемых объектов, сюда же по мере выполнения измерений заносят результаты обмеров капитальных строений и характеристики снимаемых объектов.

Съемку контуров выполняют следующими способами.

Способ прямоугольных координат применяют, в основном, для съемки четких контуров (здания, сооружения и пр.). Положение точек на местности (рис. 11.1, а) определяется в системе координат, осью x в которой является сторона теодолитного хода (линия 1 — 2), а осью y — перпендикулярное направление. Расстояния измеряют рулеткой или лентой, положение оснований перпендикуляров находят с помощью экера. Здания и сооружения обмеряют.

Способ угловой засечки применяют при съемке объектов, до которых трудно или невозможно измерить расстояние. В этом случае для определения положения снимаемого объекта на пунктах съемочной основы 1 и 2 (рис. 11. б) измеряют горизонтальных углы. При этом угол при засекаемой точке должен быть в пределах 30° £ g £ 150°.

Способ линейной засечки (рис. 11.1, в) заключается в том, что положение снимаемого объекта определяется измерением расстояний до него от точек, положение которых известно. Для удобства измерений расстояния выбирают такие, которые не превышают длины мерного прибора.

Способ полярных координат (рис. 11.1, г)– для определения положения съемочного пикета измеряют горизонтальный угол и расстояние. Углы измеряют теодолитом, а расстояния — дальномером. Способ применяют для съемки объектов с нечеткими контурами (лес, луг, грунтовая дорога, урез воды и пр.).

Существуют и другие способы съемки, например, способ створов, способ обхода.

Рис. 11.2. Способы съемки ситуации: а – прямоугольных координат; б – угловой засечки; в – линейной засечки; г – полярных координат

Составление плана теодолитной съемки включает:

§ Вычисление координат пунктов съемочной основы — вершин теодолитных ходов и точек, полученных засечками.

§ Разбивку на планшете сетки прямоугольных координат и ее оцифровку в заданном масштабе.

§ Нанесение на план пунктов съемочной основы.

§ Нанесение на план точек контуров местных предметов. Вычерчивание контуров.

§ Оформление плана в соответствии с указаниями руководства “Условные знаки”.

Билет №59.Тахеометрическая съемка. Работа на станции при съемке подробностей. Абрис.

Тахеометрической называют топографическую съемку местности, выполняемую с помощью тахеометров. При этом съемке подлежат и ситуация, и рельеф.

Тахеометром называют прибор, сочетающий теодолит для измерения углов и дальномер – для измерения расстояний. Простейшим тахеометром является любой теодолит, снабженный нитяным дальномером.

Тахеометрическую съемку применяют при съемке в крупных масштабах небольших участков местности, особенно незастроенных или мало застроенных, при съемках трасс существующих и проектируемых линейных сооружений (автомобильных и железных дорог, ЛЭП, трубопроводов и т.п.).

Съемочной основойтахеометрической съемки служат геодезические сети, в которых определяют не только координаты, но и высоты пунктов. Чаще всего съемочную сеть образуют теодолитно-высотные ходы – теодолитные ходы, в которых измеряют ещё и вертикальные углы, что позволяет вычислить превышения между вершинами хода и их высоты. Другой вид съемочного обоснования – теодолитно-нивелирные ходы – теодолитные ходы, в которых высоты пунктов определяют геометрическим нивелированием по сторонам хода. Применяют также менее точные — тахеометрические ходы, в которых длины линий измеряют нитяным дальномером, а превышения методом тригонометрического нивелирования.

Съемка ситуации и рельефа выполняется тахеометром, основным методом съемки является метод полярных координат.

Съемке подлежат все элементы ситуации, выражающиеся в масштабе составляемого плана и характерные точки, отображающие рельеф местности.

Для выполнения съемки тахеометр устанавливают на точке съемоч­ной сети (точка А на рис. 11.2) и приводят его в рабочее положение.

Измеряют высоту прибора k над центром пункта.

Ориентируют прибор — устанавливают ноль лимба горизонтального круга в такое положение, чтобы при трубе, направленной по стороне хода AB отчет по лимбу был равен 0° 0¢.

Определяют место нуля М0 вертикального круга.

Речник устанавливает рейку на пикете 1 (рис. 11.2). Наблюдатель наводит трубу прибора на рейку и берет отсчеты: по нитяному дальномеру (расстояние s), по горизонтальному кругу (угол b), по вертикальному кругу (Л или П), по шкале рейки (высоту точки наведения l).

Помощник наблюдателя записывает результаты измерений в полевой журнал, и составляет схематический чертеж снимаемого участка местности — абрис (рис. 11.2).

Речник переносит рейку на следующие пикеты (2, 3, …), а наблюдатель вновь выполняет наведения и отсчеты.

Если съемка выполняется электронным тахеометром, то, после наведения трубы на заменяющий рейку отражатель, отсчеты расстояния и углов выполняются автоматически; по ним вычисляются и выдаются на индикацию горизонтальное расстояние d, превышение h и высота пикета НП. Вместо записей в журнал ведется регистрация результатов измерений на магнитную карту. Необходимость рисовки абриса сохраняется.

Обработка результатов измерений, выполненных теодолитом с нитяным дальномером, включает:

— вычисление углов наклона v = Л — М0 (или v = М0 — П);- вычисление горизонтальных расстояний d = s·cos2ν,- вычисление превышений h = ½ s·sin(2ν) + kl или h = d tgν + kl,

Составление плана местностивключает:

— вычисление Вычисление координат (x, y) и высот (Н) точек хода.

— разбивку на планшете сетки прямоугольных координат,

— нанесение по координатам точек хода,

— нанесение результатов съемки (в плане),

— рисовку рельефа (горизонталей) в соответствии с высотами точек и заданной высотой сечения рельефа,

— оформление плана по “Условным знакам”.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Источник

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.