Измерение шлейфа сопротивления кабеля это

Измерение шлейфа сопротивления кабеля это

Понятие «шлейф» в проводной связи сильно отличается от такого же слова используемого в радиотехнике. В описаниях электронных схем шлейф это плоский кабель или гибкая лента с проводниками. В общении связистов понятие шлейф, как правило, обозначает последовательное сопротивление двух жил пары кабеля или кабельных участков. Вероятно упрощено от официального «Электрическое сопротивление шлейфа жил (проводников)» → ОСТ 45.01-98

Электрическое сопротивление шлейфа жил (проводников) — сумма электрических сопротивлений жил (проводников) цепи постоянному току.

Чтобы измерить шлейф коротят две жилы кабеля между собой на дальнем конце, а с другой стороны (ближней) производят измерение. Мерят его не простым тестером, а более сложным прибором, способным измерить сопротивление до десятых долей Ома. Точность эта необходима из-за того, что по сопротивлению шлейфа можно судить о длине кабеля или о длине до места повреждения в случае короткого замыкания в линии.


Схема измерения электрического сопротивления цепи (шлейфа) кабеля

Кабеля в связи используют разные, с разным диаметром жил, соответственно и с разным погонным сопротивлением. Но диаметр жил нормирован, соответственно в какой-то мере нормировано и сопротивление шлейфа. Выпускают кабеля с диаметрами жил: 0.32 мм; 0.4 мм; 0.5 мм; 0.64 мм; 0.9 мм; 1.2 мм. Соответственно, для каждого диаметра есть своя норма сопротивления шлейфа. → Справочные данные о кабелях связи.

Сопротивление шлейфа одной и той же линии меняется в зависимости от температуры среды, в которой находится кабель. Нормы сопротивления приведены для температуры 20°С, а лежащий в грунте кабель имеет совершенно другую температуру. Приходится пользоваться дополнительными поправками.

Пример.
Измерен шлейф кабеля ТПП 10х2х0.5, равный 344.8 (Ом)

температура грунта, предположим 3°С. Для расчёта надо использовать формулу:

,

где а – температурный коэффициент, для меди — 0,004 (алюминий 0,0042)

t – температура кабеля,

Rкм20 – сопротивление 1км цепи, взято из таблицы , для диаметра жилы 0,5 мм,

Rt – тот, шлейф, который мы померили.
Получается:

Можно воспользоваться для расчётов температурными коэффициентами из общей инструкции по строительству ЛС ГТС 1978 год, размещёнными на отдельной странице сайта.

Измерение шлейфа современными приборами

Все эти расчёты становятся всё менее актуальны. В России, и уж тем более за границей, уже достаточно давно выпускают приборы, в память которых уже внесены все необходимые данные и методы измерений. Всё просто, как в компьютерной игрушке: ввёл тип кабеля, температуру, нажал кнопку, получил ответ. Последовательность действий всё есть в инструкциях к приборам.

Не стоит полагаться на точность этих измерений. Вроде бы всё указывает на погрешность в 1 – 0.5 %, но на практике так бывает очень редко. Причины:

1. На местности очень трудно учесть все повороты трассы. Может оказаться, что при прокладке строители просто закопали в каком-то месте запас кабеля метров так 20 — 30 при длине трассы в 200 метров. Естественно, вы на эти 20 – 30 метров ошибётесь.

2. Диаметр жилы не всегда соответствует ГОСТам. Не всегда он точно 0,5 или 0,4 мм бывает 0,51 или 0,41. Соответственно, все расчёты уплывают в сторону уменьшения. Курьез по этому поводу.

3. Очень трудно учесть температуру. Какими бы справочными таблицами вы не пользовались её рассчитать очень проблематично. В одном месте кабель идёт по очень глубокой трубе в канализации (скажем, 1,5 метра), в другом в той же канализации он уже сантиметров 30 от прогретого за день асфальта, в третьем вообще выходит на стену и греется на солнышке до 60 градусов.

4. Если основательно вникнуть в особенности повива пар кабеля то даже в одном десятке шлейф разных пар должен отличаться. Как правило в пределах 1 – 2 %. Но если трасса 2 – 3 км, то это ошибка может достигнуть 60 метров.

5. Если вы ищете повреждение и вам вдруг повезло, мерится шлейф, не сильно обольщайтесь. Rповр. может быть несколько Ом. Соответственно, ошибка неизбежна.

Во многих нормативных документах указывается не последовательное сопротивление пары жил кабеля, а погонное сопротивление одной жилы. В этом случае перерасчёт к шлейфу пары следует производить умножением сопротивление жилы на два. При последовательном включении сопротивления складываются, а так как у жил симметричной пары этот параметр одинаковый, то проще его удвоить.

Источник

Измерение сопротивления изоляции и сопротивления шлейфа сигнализации при проведении технического обслуживания охранно-пожарной сигнализации

В настоящее время нормативная база определяющая порядок производства работ по техническому обслуживанию ОПС опирается ещё на базу, разработанную в СССР. При заключении договоров у Исполнителя с Заказчиком часто возникают разное прочтение одних и тех же документов. Если Исполнитель делает ссылку, на какой — то Руководящий документ (РД), то Заказчик оспаривает его положения, ссылаясь на время создания документа и устаревшие формулировки. Например «на объектах народного хозяйства, независимо от их ведомственной принадлежности.» или «Отраслевыми нормами времени на техническое обслуживание установок ПА и ОПС», которых никто никогда в глаза не видел, или «Стоимость услуг определяется прейскурантом оптовых цен на ремонт приборов, машин и оборудования № 26-05-48.», тоже безнадёжно устаревшем. Хотя эти нормы никто не отменял, и они действуют, ничего лучшего в РФ пока не разработано.

Современные разработанные нормы времени на обслуживание и ремонт, которые разрабатывает ЖКХ и МВД, являются обязательными для применения на всей территории страны. Основным документом, регламентирующим работы по техническому обслуживанию и планово — предупредительному ремонту, на сегодняшний момент является РД 25.964-90 «Система технического обслуживания и ремонта автоматических установок пожаротушения, дымоудаления, охранной, пожарной и охранно-пожарной сигнализации». В этом документе определены виды работ и ремонтов, даны однозначные формулировки, образцы договоров, актов обследований, порядок реагирования.

Все остальные ГОСТ, ППБ, РД, РМ и т.д., в которых упоминается необходимость технического обслуживания систем ОПС, дают регламентацию, обязанности ответственных лиц, перечень работ и т.д.

Для чего измеряется сопротивление изоляции электрической цепи?

Под воздействием влаги, высокой и низкой темпе­ратур, пыли, едких паров, газов с течением време­ни качество изоляции проводов и кабелей ухудша­ется и возрастает опасность возник­новенияэлектротравм. Для предупреждения этой опасности при помощи мегомметра периодически проводят измерение сопротивления изоляции прово­дов и кабелей. В РД 78.145-93 говорится: п.11.6. « При приемке в эксплуатацию выполненных работ по монтажу и наладке технических средств сигнализации рабочая комиссия производит: измерение сопротивления изоляции шлейфа сигнализации, которое должно быть не менее 1 МОм», что соответствует ПУЭ: Глава 1.8. Нормы приемо-сдаточных испытаний, электрические аппараты, вторичные цепи и электропроводки напряжением до 1 кВ.

  • Проверка целостности и фазировки жил кабеля. Проверяются целостность и совпадение обозначений фаз подключаемых жил кабеля.
  • Измерение сопротивления изоляции. Производится мегаомметром на напряжение 2,5 кВ. Для силовых кабелей до 1 кВ сопротивление изоляции должно быть не менее 0,5 МОм. Для силовых кабелей выше 1 кВ сопротивление изоляции не нормируется. Измерение следует производить до и после испытания кабеля повышенным напряжением.
  • Проверка защиты от блуждающих токов.
  • Производится проверка действия установленных катодных защит.

Проверка осуществляется через 3 года, причём есть нюанс, организация, проводящая измерение сопротивления изоляции должна иметь разрешение на проведение данного вида работ. Проведение работ по измерению изоляции электроцепей проводятся совместно с ответственным за электрохозяйство объекта.

При отсутствии на объекте щита дежурного освещения или свободной группы на нем, Заказчик устанавливает самостоятельный щит электропитания на соответствующее количество групп. Щит электропитания, устанавливаемый вне охраняемого помещения, должен размещаться в запираемом металлическом шкафу и заблокирован на открывание.» Питание систем ОПС прерогатива Заказчика. Самостоятельно проникнуть в электрощиток объекта, на котором проводится техническое обслуживание, не только не нужно, но и запрещено ПТЭЭП. Безболезненно в рамках технического обслуживания мы можем провести замеры сопротивления изоляции питающих электроцепей, на участке от автоматического выключателя системы ОПС до ППКОП или блоков питания. Т.е. там, где под воздействием влаги, высокой и низкой темпе­ратур, пыли, едких паров, газов с течением време­ни качество изоляции проводов и кабелей ухудша­ется и возрастает опасность возник­новения электротравм.

Проверка остальных кабелей, электрощитов, устройств и т.д. на этом объекте, это задача ответственного за электрохозяйство этого объекта, которые он должен проводить по графику предприятия и согласно ПУЭ и ПТЭЭП. В том числе и участок от электрощитка до автомата ОПС.

Сопротивление изоляции шлейфов сигнализации при выполнении монтажных работ проводят после укладки кабеля до подключения к ним элементов ОПС (это по РД 78.145-93). Методика такая же как и силовых кабелей. Целесообразность, проведения измерения сопротивления изоляции шлейфов сигнализации, 1 раз в 3 года, лично мне кажется лишней работой, не имеющей никакого смысла не с точки зрения безопасности (получение электротравм от 12- 20В) так и выхода из строя оборудования. По ГОСТ 16962-71 сопротивление изоляции измеряют между электрически не соединенными между собой цепями, электрическими цепями и корпусом. Электрические цепи, содержащие полупроводниковые приборы и микросхемы, необходимо отключить и, при необходимости, подвергнуть испытаниям отдельно.

Основным ежемесячным видом работ по техническому обслуживанию является внешний осмотр и проверка работоспособности. Проверка работоспособности — определение технического состояния путем контроля выполнения техническими средствами и установкой в целом части или всех свойственных им функций.

Шлейф сигнализации и его основные параметры.

Шлейф сигнализации представляет собой проводную линию, электрически связывающую выносной элемент (элементы), выходные цепи охранных, пожарных и охранно-пожарных извещателей с входом приемно-контрольного прибора. С точки зрения необходимости обслуживание элементов ОПС шлейф сигнализации является одним из наиболее уязвимых элементов объектовой системы охранно-пожарной сигнализации, в наибольшей степени подверженный воздействию различных внешних факторов. Практика показывает, что одной из основных причин неустойчивой работы приборов на объекте являются нарушения шлейфа сигнализации. Они представляют собой отказ в виде обрыва или короткого замыкания в шлейфе, происходящих в результате постепенного самопроизвольного ухудшения его параметров. Места электрических соединений шлейфа сигнализации, а также контакты подключения извещателей в процессе эксплуатации подвергаются длительному воздействию повышенной влажности в широком диапазоне температур, а в ряде случаев -воздействию агрессивных сред. На поверхности контактов шлейфа появляются тонкие поверхностные пленки, что приводит к изменению сопротивления шлейфа сигнализации (основному параметру) .

Техническая цель проведения технического обслуживания систем ОПС, которые работают с неадресными извещателями по проводным линиям связи (подавляющее большинство всех обслуживаемых ОПС), является задача поддержания R шс, в том номинале, когда ППКОП выдаёт информацию о состоянии шлейфа «Норма». Из этого следует, что проверка сопротивления шлейфа сигнализации при проведении ежемесячного обслуживания « …средствами контроля, номенклатура которых установлена соответствующей документацией», является совсем не лишней. Измерение происходит тестером в режиме омметра. Шлейф сигнализации отключается от ППКОП и подключается к параллельно к измеряемому проводу. По показаниям сопротивления шлейфа сигнализации можно судить о физическом состоянии шлейфа (плохой контакт, коррозия, окисление приводят к увеличению R шс, влажность совместно с нарушением изоляции проводов к уменьшению R шс и шунтированию участка шлейфа, и т.д.) .

Поэтому, целесообразно к ежемесячным работам по внешнему осмотру и проверке работоспособности, добавить пункт о проверке сопротивления шлейфа сигнализации.

Связаться с нами

Если у Вас остались вопросы, сомнения или необходима консультация специалистов, свяжитесь с нами по телефону или е-mail указанным ниже. Также можно заполнить форму «Отправить заявку» наверху сайта, описав суть вашей задачи или вопроса.

Мы постараемся в кратчайшие сроки ответить Вам. И все же самый быстрый способ это звонок нам, поэтому звоните! Мы ответим на все ваши вопросы!

Чтобы полностью соответствовать ожиданиям наших клиентов, нами была создана схема работы, которая зарекомендовала себя просто идеально. Благодаря четкому алгоритму, полностью исключены какие-либо недоразумения и проволочки.

  • Вы связываетесь с нами, описываете задачу
  • Мы анализируем объект и уточняем все ньюансы
  • Рассчитываем стоимость работ и формируем предложение
  • Выполняем проектирование, монтаж и пусконаладочные работы
  • Сдаем вам объект, согласованный с надзорными органами

© 2001-2020 Группа компаний «Пожарная безопасность»
+7 (495) 774-00-41 Контактная информация

Источник

Измерение электрических параметров линий связи

На различных этапах строительно-монтажных и эксплуатационных работ производят измерения и испытания следующих электрических параметров цепей связи постоянным током: омической асимметрии, электрического сопротивления шлейфа, электрического сопротивления изоляции проводов, электрической емкости цепей и электрической прочности изоляции. Необходимость начинать измерения с определения значения омической асимметрии обусловлена тем, что одной из причин ее увеличения является плохой контакт в месте соединения проводов. При измерении омической асимметрии мост питается небольшим напряжением, недостаточным для создания электрического пробоя в месте плохого контакта. Следовательно, такое повреждение может быть сразу зафиксировано. Если же измерения начать с определения электрического сопротивления изоляции, емкости или с испытания электрической прочности изоляции, то под действием высокого напряжения, применяемого при этих измерениях, в месте плохого контакта может произойти электрический пробой, сопровождаемый временным восстановлением контакта. Следовательно, наличие плохого контакта в проводах не будет зафиксировано.

Измерения в зависимости от типа линии и цели подразделяются на приемо-сдаточные, профилактические, аварийные и контрольные.

Строительно-монтажные измерения проводятся с целью контроля за качеством работ на всех этапах строительства и доведения электрических параметров цепей до установленных норм.

Приемо-сдаточные измерения проводятся в процессе работы комиссий по приемке законченных строительством или реконструируемых линий связи с целью проверки качества выполненных работ и соответствия электрических параметров линейных сооружений нормам.

Профилактические (плановые) измерения проводятся периодически через определенные промежутки времени, установленные руководящими документами Министерства связи Республики Беларусь, с целью проверки соответствия нормам электрических параметров действующих линий связи.

Аварийные измерения проводятся на неисправных цепях с целью определения характера повреждения и расстояния до места повреждения.

Контрольные измерения производятся после окончания ремонтно-восстановительных работ с целью проверки электрических параметров восстановленной цепи.

Одним из важнейших параметров цепей связи является электрическое сопротивление проводов. В проводах линий связи происходит основная потеря мощности электрических сигналов. При расчете нормальных режимов работы приемных устройств систем связи учитывают потери в проводах цепи. Но если электрическое сопротивление проводов по какой-либо причине окажется больше расчетного, качество работы приемного устройства может значительно ухудшиться. Для цепей кабельных линий связи нормируется не электрическое сопротивление отдельных проводов, а электрическое сопротивление шлейфа, составленного из двух проводов цепи.

Электрическим сопротивлением шлейфа ( R ШЛ ) называется сумма электрических сопротивлений проводов двухпроводной цепи постоянному току [58].

Электрическое сопротивление шлейфа измеряется по схеме, приведенной на рисунке 56.

Источник

Зависимость длины кабеля от сопротивления шлейфа

Для передачи двоичной информации с помощью HDSL, SDSL, ADSL модемов используют симметричные пары отечественных городских многопарных кабелей связи (абонентских, межстанционных соединительных) типа Т,ТГ,ТБ,ТБГ,ТПП и т.д. с воздушно-бумажной, полиэтиленовой или стирофлексной изоляцией жил. В руководствах по применению модемов обычно указывается максимальная длина кабельной пары при заданном типе кабеля и диаметре жилы в паре, при которых потенциально могут быть достигнуты паспортные скорости работы для конкретного изделия.

Традиционно простым методом оценки длины трассы кабельной пары и тем самым предполагаемой скорости работы является натурное измерение обычным омметром (тестером) сопротивления шлейфа кабельной пары на постоянном токе.

В таблице приведены расчеты, выполненные на основании нормативной справочной информация для отечественных городских кабелей связи (БрискерА.С. и др. «Городские кабели связи», Справочник, Москва,»РиС»,1984г.)

Шлейфное сопротивление Диаметр жилы в кабельной паре
КОм 0.4 мм 0.5 мм 0.7 мм
Километрическое (погонное) сопротивление одного провода в паре
139+/-9 Ом/км 90+/-5 Ом/км 45+/-3 Ом/км
Длина кабельной пары в Км
0.8 2.9 4.45 8.9
1.0 3.5 5.5 11.1
1.2 4.3 6.7 13.4
1.4 5.0 7.8 15.6
1.5 5.4 8.3 16.7
1.6 5.8 8.9 17.8
2.0 7.2 11.1 22.2
2.7 9.7 15.0 30.0
2.9 10.4 16.1 32.2
3.0 10.8 16.7 33.4
3.3 11.9 18.3 36.6
3.4 12.2 18.9 37.8
3.5 12.6 19.4 38.8
3.8 16.7 21.1 42.2
3.9 14.0 21.7 43.4

Погонное сопротивление слабо зависит от типа кабеля, а определяется только диаметром жилы в паре.

Приведенные в таблице данные относятся к случаю, когда по всей длине трассы используется только заданный диаметр жилы в паре.

Стандартное погонное сопротивление жил симметричных кабелей связи зарубежного производства несколько отличаются от отечественных:

Диаметр жилы в кабельной паре
0.32 мм 0.51 мм 0.64 мм
Километрическое (погонное) сопротивление одного провода в паре
144.4Ом/Км 90.2 Ом/Км 57.1Ом/Км
Германия
Диаметр жилы в кабельной паре
0.4 мм 0.5 мм 0.6 мм
Километрическое (погонное) сопротивление одного провода в паре
150 Ом/Км 96 Ом/Км 65 Ом/Км
ВНИМАНИЕ:
  • Необходимо помнить, что реальная кабельная пара по трассе может состоять из участков с различным диаметром жил.
  • Достижимые дальность, скорость и качество связи зависят не только от диаметра жил пары, но и от:
    • реальных типов кабелей, составляющих участки кабельной трассы, и, следовательно, от реальной сквозной ( из конца в конец) амплитудно-частотной и фазо-частотной характеристик кабельной пары в необходимом диапазоне частот;
    • реальной помеховой обстановки и, в частности, влияния сигналов соседних пар на данную пару на ближнем (NEXT-Near End Crosstalk) и дальнем (FEXT-Far End Crosstalk) концах, т.е переходного затухания между парами кабелей, составляющих трассу, в рабочем диапазоне частот на ближнем и дальних концах ;
    • мощности флюктуационных тепловых шумов и реальных внешних помех (например, от городского электрического транспорта, коммутационного оборудования АТС и т.п. )

Определенное представление о частотных характеристиках симметричной пары массовых отечественных кабелей типа T дает рисунок.

На рисунке представлены частотные зависимости километрических параметров пары в кабеле типа T:

  • характеристическое сопротивление (импеданс) Ом/км
  • рабочее затухание дБ/км
  • коэффициэнт фазы рад/км

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector