Измерение силы тока напряжения сопротивления авометром

§ 2.9. Измерение силы тока, напряжения и сопротивления

Измерение силы тока

Для измерения силы тока в проводнике применяют специальный прибор — амперметр, который включают последовательно с этим проводником (рис. 2.23).

Угол отклонения стрелки амперметра зависит от силы тока в его измерительном механизме. В цепях постоянного тока сила тока измеряется обычно амперметрами магнитоэлектрической системы, устройство и принцип действия которых будут рассмотрены в главе 4.

Включение амперметра не должно вызывать изменения в режиме работы цепи, поэтому сопротивление амперметра должно быть малым по сравнению с сопротивлением соответствующего участка цепи.

Шунты к амперметру

Для измерения силы тока, превышающей силу тока Iа, на которую рассчитан амперметр, можно воспользоваться этим же амперметром. Для этого надо параллельно амперметру подключить резистор так, чтобы сила тока через амперметр была не больше величины Iа. Такой резистор называется шунтом (рис. 2.24).

При шунтировании амперметра измеряемый ток (I) в точке (узле) I делится на две части: часть тока проходит через амперметр (Iа), а остальная часть — через шунт (Iш), т. е. I = Iа + Iш. Разность потенциалов (напряжение) между точками 1 и 2 (см. рис. 2.24) равна:

где Rа — сопротивление амперметра и Rш — сопротивление шунта.

Из последнего выражения находим:

Отношение (обозначим его буквой n) показывает, во сколько раз (с применением шунта) расширяется предел измерения силы тока амперметром, т. е. возрастает цена его деления. Иначе говоря, при включении шунта чувствительность амперметра уменьшается в n раз: стрелка прибора отклонится на угол, в n раз меньший, чем без шунта.

Из выражения (2.9.1) с учетом того, что = n, найдем сопротивление шунта:

Сечение шунтов должно быть таким, чтобы была исключена возможность их нагревания, так как в противном случае сопротивление шунта Rш будет изменяться в процессе измерения.

Измерение напряжения

О приборе для измерения напряжения — вольтметре — мы уже говорили в § 2.4 в связи с опытной проверкой закона Ома. Вольтметр присоединяют параллельно участку цепи, напряжение на котором хотят измерить (рис. 2.25).

Напряжение на вольтметре такое же, как и на участке цепи. Однако включение вольтметра в цепь изменяет сопротивление участка, где он включен. Оно теперь равно не R, а

где Rв — сопротивление вольтметра. Из-за этого измеряемое напряжение на участке уменьшается. Для того чтобы вольтметр не вносил заметных искажений в измеряемое напряжение, его сопротивление должно быть большим по сравнению с сопротивлением того участка цепи, параллельно которому он включается. В этом легко убедиться, если выражение для R’ преобразовать так:

Если

Добавочное сопротивление

Любой вольтметр рассчитан на измерение напряжения, не превышающего некоторого предела (номинальное напряжение) Uв. Однако в ряде случаев измеряемое напряжение U может оказаться больше номинального напряжения имеющегося в нашем распоряжении вольтметра. Но если к вольтметру присоединить последовательно с ним дополнительный резистор сопротивлением R (рис. 2.26), то предел измерения напряжения вольтметром расширится.

При включении в цепь вольтметра добавочного сопротивления измеряемое напряжение U делится на две части: одна часть Uв приходится на вольтметр, другая Uд — на добавочный резистор:

Если

Сила тока в цепи вольтметра

Если

Если

Отношение = n показывает, во сколько раз расширяется предел измерения напряжения вольтметром, т. е. возрастает цена его деления. Иначе говоря, при подсоединении дополнительного резистора чувствительность вольтметра уменьшается в n раз.

Из выражения (2.9.3) с учетом того, что = n, найдем значение добавочного сопротивления к вольтметру:

Измерение сопротивления амперметром и вольтметром

Включив в цепь постоянного тока приборы, соединенные по схеме, изображенной на рисунке 2.27, и записав их показания, можно по формуле

определить значение сопротивления участка цепи между точками В и С.

Однако R’x больше искомого сопротивления Rx на сопротивление амперметра, так как вольтметр измеряет сумму напряжений на резисторе и на амперметре. Эту схему следует применять при измерении сопротивлений, значительно больших сопротивления амперметра.

Соединив приборы по схеме, изображенной на рисунке 2.28, и записав их показания, можно по аналогичной формуле определить значение сопротивления участка цепи ВС: R»x = .

Однако R»x теперь оказывается меньше искомого сопротивления R , так как сила тока, измеряемая амперметром, равна сумме сил токов в резисторе и вольтметре. Этой схемой следует пользоваться при измерении сопротивлений, значительно меньших сопротивления вольтметра.

Таким образом, ни одна из приведенных схем не дает возможности точного измерения сопротивления.

Определение сопротивления мостиком Уитстона

С помощью установки, называемой мостиком Уитстона, сопротивление измеряют более точно, чем на основе закона Ома.

В схему мостика Уитстона входит реохорд, состоящий из линейки с делениями, на которой натянута тонкая однородная проволока из никелина или другого сплава, имеющего большое удельное сопротивление (рис. 2.29). Между концами A и В проволоки включены соединенные последовательно: резистор с известным сопротивлением R (между точками А и С) и резистор, сопротивление R0 которого должно быть измерено (между точками В и С). Точка С соединена с одним из зажимов гальванометра с нулем посередине шкалы. Другой зажим гальванометра гибкой проволокой присоединен к ползунку D, скользящему вдоль проволоки реохорда. Эта часть прибора CD похожа на мостик, перекинутый между двумя ветвями измерительной цепи, и дает название всей установке.

К концам A и В реохорда присоединены провода от зажимов источника тока (аккумулятора или гальванического элемента).

При замыкании цепи ток пойдет по ветвям АСВ и ADB. Ток пройдет также по мостику CD и вызовет отклонение стрелки гальванометра.

Передвигая ползунок D и тем самым меняя сопротивления R1 и R2 частей проволоки, можно добиться того, чтобы стрелка гальванометра установилась на нуле. А это означает, что ток через мостик не идет. Следовательно, потенциалы точек С и D равны между собой:

Обозначим потенциалы точек А и В соответственно через ωA и ωB, а силу тока в ветвях АСВ и ADB через I1 и I2.

Тогда на основании закона Ома для участка цепи имеем:

Разделим почленно первое равенство на второе:

Так как проволока реохорда однородная, то сопротивления ее частей пропорциональны их длинам:

Эта формула позволяет измерить неизвестное сопротивление. Включив резисторы с измеряемым и известным сопротивлениями так, как показано на рисунке 2.29, передвигают ползунок до тех пор, пока стрелка гальванометра не установится на нуле. Затем измеряют «плечи» реохорда l1 и l2 и вычисляют неизвестное сопротивление по формуле (2.9.5).

Источник

Измерение силы тока и напряжения.

Наиболее распространенными видами электрических измерений являются измерения силы тока и напряжения.

В зависимости от вида тока (напряжения), его величины, частоты, формы, требуемой точности измерения, сопротивления цепи, в которой производится измерение, используются различные типы приборов.

При измерении силы тока на участке цепи сопротивлением R последовательно с R в разрыв цепи включается амперметр (рис 7а). Тогда сила тока, текущего через измерительный прибор и участок с сопротивлением R, будет одинаковой.

Вольтметрподсоединяется параллельно участку цепи с сопротивлением R, напряжение на котором измеряется (рис 7б). При параллельном подключении напряжение на измерительном приборе и участке цепи R одинаково. Подключение в электрическую цепь измерительного прибора оказывает влияние на режим работы этой цепи, что приводит к ошибкам в измерениях.

Рис. 7. Подключение амперметра (а) и вольтметра (б)

Последовательное подключение амперметра с сопротивлением rа увеличивает общее сопротивление участка цепи до значения R+ rа, что больше R. В результате ток уменьшится. Чтобы изменение тока было незначительным, необходимо, чтобы выполнялось условие: rа > R.

Шунты к амперметру

Ток, вызывающий отклонение подвижной части прибора на всю шкалу, называется током полного отклонения I0. Если с помощью амперметра необходимо измерить силу тока I больше, чем I0, к нему параллельно подключается дополнительное сопротивление Rш, называемое шунтом (рис 8)

Рис. 8. Подключение шунта к амперметру.

Измеряемый ток разветвляется и только часть его проходит через измерительный прибор. Так достигается расширение предела измерений амперметра. По первому правилу Кирхгофа величины токов связаны соотношением:

, (12)

где I – сила измеряемого тока, Ip – сила тока, текущего через измерительный механизм (рамку) прибора, Iш – сила тока, текущего через шунт.

По второму правилу Кирхгофа имеем:

, (13)

где r — сопротивление рамки амперметра, Rш – сопротивление шунта. Из (12) и (13) следует, что

. (14)

Выражение (14) позволяет определить Rш, при котором отклонение стрелки измерительного прибора на всю шкалу будет соответствовать требуемому пределу измерения силы тока Iпр. Иначе говоря, при I = Iпр ток через амперметр Iр будет равен току полного отклонения: Iр = I0. В таком случае выражение (14) принимает вид:

. (15)

На практике используют коэффициент шунтирования (или коэффициент растяжения предела измерений) n для данного значения Iпр, который равен

(16)

Тогда выражение (15) принимает вид:

. (17)

С данным шунтом цена деления амперметра также возрастет в n раз.

Добавочные сопротивления к вольтметру

Предел измерения вольтметра зависит от силы тока полного отклонения подвижной части прибора Iо и его внутреннего сопротивления r. Для расширения пределов измерения вольтметра последовательно с измерительным механизмом прибора подключают добавочное сопротивление (рис 9).

Напряжение на измерительном механизме Uр меньше измеряемого напряжения U и связано с ним соотношением:

,

где – напряжение на добавочном сопротивлении . По такой цепи течет ток

Из последней формулы следует, что

(18)

Рис. 9. Подключение добавочного сопротивления к вольтметру.

Из (18) можно определить величину , при котором отклонение стрелки на всю шкалу (I = I0 ) будет соответствовать требуемому пределу измерения напряжения U = Uпр

. (19)

Набор добавочных сопротивлений позволяет создать многопредельный вольтметр. Применяются также и наружные по отношению к прибору добавочные сопротивления.

Задание

1. Определить основные характеристики аналогового прибора.

2. Определить характеристики цифрового вольтметра.

3. По формулам (16) и (17) определить коэффициент шунтирования n и сопротивление шунта Rш для создания на основе стрелочного прибора амперметра с пределом измерения Iпр = 1,5 мА. Исследовать данный амперметр.

4. По формуле (19) определить величину добавочного сопротивления для создания вольтметра постоянного тока с пределом измерения Uпр = 5В. Исследовать данный вольтметр.

1. Что такое аналоговые и цифровые приборы?

2. Приведите основные характеристики электроизмерительных приборов.

3. Принцип действия и устройство электромеханических измерительных приборов.

4. Структурные схемы аналоговых электронных вольтметров постоянного и переменного тока.

5. Каков принцип действия и устройство цифрового вольтметра с времяимпульсным преобразованием?

6. Как расширить пределы измерения амперметра и вольтметра? Получите формулы для сопротивления шунта и для добавочного сопротивления.

7. Как расширить предел измерения вольтметра? Получите формулу для добавочного сопротивления.

1. Хромой Б.П., Моисеев Ю.П. Электрорадиоизмерения. – М.:Радио исвязь, 1985. – с. 30 – 70.

2. Детлаф А.А.,Яворский Б.М. Курс физики. – М.:Высш. шк., 2001, с. 293 – 296.

3. Мирский Г.Я. Электронные измерения. – М.: Радио и связь, 1986, с. 152 – 207.

4. Мейзда Ф. Электронные измерительные приборы и методы измерений: Пер. с англ. – М.: Мир. 1990, с. 112 – 146.

Источник

Измерение напряжения и тока

В практике измерений широко используется комбинированный прибор — авометр. В последнее время вместо стрелочных авометров все чаще применяются комбинированные измерительные приборы с цифровой индикацией — мультиметры, отличающиеся большей точностью и удобством считывания.
При измерении напряжения, силы тока или сопротивления авометр устанавливают в нужный режим (род работы), а затем устанавливают нужный предел измерений. Порядок использования авометра конкретного типа указан в прилагаемой к нему инструкции по эксплуатации. Не следует забывать, что попытка измерения напряжения авометром, установленным в режим измерения тока, может не только вывести из строя прибор, но и дополнительно испортить устройство, которое мы ремонтируем. Ни к чему хорошему не приведет измерение тока или напряжения авометром, установленным в режим омметра. Если неизвестно точное значение напряжения или тока, действующих в цепи, то устанавливать авометр надо на больший предел измерения, а затем уменьшить его до нужного значения.
При измерениях стрелочным авометром выбирают такой предел измерений, чтобы стрелка устанавливалась не на самом краю шкалы. Особенно это необходимо при работе в режиме омметра, где шкала имеет значительную нелинейность и отсчет на краях шкалы будет с большей погрешностью. При отсчете показаний стрелочного авометра надо обращать внимание на оцифровку шкалы, цену деления и предел измерения, на который установлен авометр.
Разница в методе измерения напряжения и тока заключается в том, что при измерении величины напряжения вольтметр подключается параллельно участку цепи, на котором действует проверяемое напряжение, а при измерении силы тока амперметр включается последовательно, в разрыв проверяемой цепи

Стрелками обозначены щупы авометра, значком X место разрыва цепи.
При измерении постоянного напряжения один щуп авометра подключается к общему проводу, а второй — к точкам в схеме устройства, в которых контролируется величина напряжения.
На рисунке показана схема блока питания с простейшим транзисторным стабилизатором напряжения.

Принцип действия стабилизатора основан на свойстве стабилитрона VD3 поддерживать неизменным напряжение на своих выводах при изменении тока, протекающего через стабилитрон. Стабильное напряжение поступает на базу регулирующего транзистора VT1, включенного по схеме эмиттерного повторителя, поэтому напряжение на эмиттере транзистора стабильно и равно напряжению на базе. Резистор R1 ограничивает ток через стабилитрон, конденсатор С2 дополнительно сглаживает пульсации на базе и на выходе стабилизатора.
Общий провод обозначается значком .

Все элементы схемы, оканчивающиеся этим значком, соединены между собой и присоединены к металлическому шасси или корпусу, если они есть.
На принципиальной схеме, обычно вблизи выводов активных элементов (транзисторов, микросхем), обозначена величина действующего на этих выводах напряжения. Для нашего случая, величина напряжения относительно общего провода на коллекторе, базе и эмиттере транзистора VT3 равна, соответственно, 16В, 12В и 12В.
Напряжения в реальном устройстве могут несколько отличаться от приведенных в принципиальной схеме. Происходит это из-за разброса параметров элементов схемы и погрешности измерения. В нашем примере напряжение на базе VT1 и, соответственно, эмиттере определяется напряжением стабилизации стабилитрона VD3. Отдельные экземпляры стабилитронов с одинаковой маркировкой могут иметь несколько различные напряжения стабилизации (U ст.). К примеру, стабилитроны Д814Г имеют разброс по U ст. от 10 до 12В. Напряжение на коллекторе VT1 то же самое, что и на выходе выпрямителя и зависит от общего сопротивления цепей, нагружающих выпрямитель. Чем меньше величина RH, тем больший ток протекает через нагрузку и выпрямитель и тем больше падение выходного напряжения выпрямителя за счет его внутреннего сопротивления. Поэтому напряжение на коллекторе VT1 при отключенной нагрузке будет иметь несколько большее значение, чем при подключенной. Конечно, так происходит в том случае, когда нагрузка потребляет достаточно большую мощность и ток выпрямителя достаточно велик.
Ток через нагрузку RH можно измерить, вынув предохранитель FU2, и подключив вместо него амперметр. В схеме на рисунке нас может еще интересовать ток, протекающий через стабилитрон. Ток стабилизации (I ст.) стабилитрона данного типа имеет определенный диапазон значений. Для стабилитрона Д814Г Iст.= 3-29 мА, в большинстве случаев он выбирается в пределах 5-10 мА. Ток через стабилитрон можно проверить, отпаяв любой из его выводов, и подключив один щуп амперметра к этому выводу, а второй — к дорожке печатной платы, к которой был припаян и вывод стабилитрона.
Переменное напряжение на обмотках II и III трансформатора Т1, можно измерить, подключив вольтметр параллельно их выводам. Напряжение на выводах обмотки I равно сетевому.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector