Меню

Измерение сопротивления мостом постоянного тока это метод



Измерений сопротивлений мостом постоянного тока

Ответ:Никакую книгу по электрическим измерениям нельзя было бы назвать полной без раздела о мостовых схемах. Эти гениальные схемы используют индикатор баланса для сравнения двух напряжений, точно так же как и лабораторные весы сравнивают две массы и указывают на то, что они равны. В отличие от «потенциометрических» схем, используемых для простого измерения неизвестного напряжения, мостовые схемы могут использоваться для измерения всех видов электрических величин, в том числе и сопротивлений. Стандартная мостовая схема, часто называемая мостом Уитстона (Wheatstone bridge), изображена на рисунке 1.

Рис. 1.

Когда напряжение между точкой 1 и минусом батареи равно напряжению между точкой 2 и отрицательным выводом батареи, то индикатор баланса будет показывать ноль, и про такой мост говорят что он «сбалансирован». Состояние баланса моста полностью зависит от отношений Ra/Rb и R1/R2, и оно не зависит от напряжения питания. Для измерения сопротивлений с помощью моста Уитстона на место резисторов Ra или Rb устанавливается неизвестное сопротивление, в то время как остальные три резистора являются прецизионными и их номинал известен. Каждый из этих трёх резисторов может быть заменён сопротивлением другой величины или их номиналы могут быть скорректированы, что бы мост сбалансировался, и когда это произойдёт то величина сопротивления неизвестного резистора может быть определена из соотношения величин известных сопротивлений. Для этого необходимо, что бы измерительная система имела набор переменных резисторов с точно известными значениями, которые могут служить эталонными стандартами. Например, если мост настроен на измерение сопротивления Rx (рисунок 2), то мы должны знать точное значение остальных трёх сопротивлений при сбалансированном мосте, что бы определить величину сопротивления Rx:

Рис. 2.

Каждое из четырёх сопротивлений в мостовой схеме называют плечом. Резистор, последовательно соединённый с неизвестным сопротивлением, Rx обычно называют реостатом моста (это будет сопротивление Ra на рисунке 2), а другие два сопротивления называют плечами отношений моста.

Точные и стабильные образцовые сопротивления к счастью, не сложно изготовить. В действительности они были одними из первых электрических «Стандартных» устройств, изготовленных в научных целях. На рисунке 3 приведена фотография старинного блока стандартных сопротивлений:

Рис. 3. Магазин образцовых сопротивлений

Стандарт сопротивлений, изображённый на рисунке 3, является переменным с дискретным шагом изменения сопротивления: величина сопротивления между клеммами может изменяться в зависимости от количества и положения медных вставок, вставленных в разъёмы. Мосты Уитстона считаются превосходным средством измерения сопротивления среди схем различных омметров. Но в отличие от всех этих схем, являющихся нелинейными (и имеющих нелинейные шкалы), и связанные с этим погрешности измерений, мостовая схема является линейной (математика описания её работы основана на простых отношениях и пропорциях) и довольно точной. Имея стандартные сопротивления достаточной точности и нуль-детектор с необходимой чувствительностью, достижимая точность измерения сопротивления может быть не хуже +-0,05% при использовании моста Уитстона. Это метод измерения сопротивления предпочитают использовать в калибровочных лабораториях из-за его высокой точности. Существует много вариаций основной схемы моста Уитстона. Большинство мостов постоянного тока используются для измерения сопротивления, в то время как мосты переменного тока могут быть использованы для измерения различных электрических величин, таких как индуктивность, ёмкость и частота.

Источник

ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЙ ПРИ ПОМОЩИ МОСТОВОЙ СХЕМЫ

Одним из наиболее точных методов измерения сопротивлений является мостовой метод, при котором неизвестное измеряемое сопротивление сравнивают с тремя известными. На рис. I показана схема моста постоянного тока. Четыре сопротивления: R1, R2, R3 и RХ соединены в замкнутый четырехугольник, стороны которого образуют плечи моста. В одну из диагоналей моста включают источник тока, в другую — магнитоэлектрический индикатор высокой чувствительности. Если в цепи прибора тока нет, мост считается уравновешенным. Это может быть только при равенстве потенциалов

в точках C и D т.е. jC -jD =0.

Уравновешивают мост, подбирая сопротивления R2 или R3. В уравновешенном мосте произведения сопротивлений противоположных плеч равны: R1×R3 =R2 ×RХ .

Докажем это соотношение, пользуясь вторым правилом Кирхгофа. Для замкнутых контуров ACDA и CBDC можно записать следующие уравнения (при условии равновесия моста):

Решая эту систему уравнений, получим:

Из этого соотношения видно, что равновесие моста может быть получено двумя способами: при постоянном отношении постоянных сопротивлений R3/R2 изменением сопротивления R1, или при постоянном сопротивлении одного плеча R1 изменением соотношения сопротивлений двух других плеч R3/R2 .

В зависимости от способа получения равновесия моста существуют различные его конструкции. На рис. 2 показана мостовая схема, в которой

равновесие моста достигает­ся вторым способом. Эта схема называется мостом Уитстона.

Так как сопротивления плеч потенциометра RП: RАC и RCB пропорциональных их длинам l1 и l2, тогда

Читайте также:  Что такое требуемая точность измерения

Таким образом, процесс измерения сопротивления с помощью моста Уитстона сводится к балансировке моста и измерению длин плеч l1 и l2 потенциометра RП. Последнее может осуществляться с помощью линейки или шкалы, смонтированной на потенциометре.

Точность измерения сопротивлений определяется точностью уравновешенности моста, которая существенно зависит от чувствительности индикатора и величины напряжения питания.

Мостовые схемы образуют обширный класс измерительных цепей, широко используемый в радиотехнике, автоматике и других областях техники.

Описание установки, измерения и обработка результатов измерений

Электрическая схема передней панели лабораторной установки приведена на рис.3.

ВНИМАНИЕ! В установке для данной лабораторной работы используется высокоточный круговой потенциометр, который размещен горизонтально на передней панели установки. Его шкала расположена впереди, а ручка вращения сзади. Максимальный угол поворота ручки потенциометра 330 0 . Шкала потенциометра разбита на 33 части (по 10 0 ) Внимательно изучите шкалу потенциометра.

Работу выполняют в следующем порядке:

1. С помощью проводов собирают на лабораторном стенде схему моста Уитстона, вклю­чив в нее резистор с неизвестным сопротивлением R1. Для этого необходимо соединить клеммы I и 2, а также 4 и 5.

2. Подключают источник питания 12 В и балансируют мост, перемещая движок потенциометра до тех пор, пока стрелка индикатора (миллиамперметра А) не установится на отметке «О».

3. Измеряют длины плеч потенциометра и результат заносят в таблицу 1.

ВНИМАНИЕ! При использовании кругового потенциометра длины плеч l1 и l2 необходимо представить в угловой мере, как: j1 и j2 . В этом случае формулы (1),(2) будут иметь вид:

Измерения повторяют не менее 3 раз. При каждом последующем измерении (для снятия второго и следующих отсчетов ) необходимо повернуть ручку переменного резистора (расположен в левом верхнем углу на передней панели лабораторной установки) на угол »10-20 0 , а затем выполнить балансировку моста.

4. В той же последовательности измеряют сопротивление резистора R2 , а затем сопротивление последовательно и параллельно соединенных резисторов R1 и R2

5. Результаты всех измерений и вычислений заносят в таблицу I.

RИЗВ Ом j1 град j2 град Rx Ом Ом D Rx Ом
Резистор R1
Резистор R2
Последовательное соединение R1 и R2
Параллельное соединение R1 и R2

6. Погрешность измерений вычисляют по формуле:

(4)

В формуле (4): ∆RИЗВ/RИЗВ принять равным 5% , Dj=2,5 0 (половина наименьшего деления шкалы кругового потенциометра).

Формулу (4) можно упростить, полагая j1=jm/2 (в этом случае точность измерений наибольшая) и Dj1=Dj. Сделайте это самостоятельно.

7. Результаты измерений сопротивлений при их последовательном и параллельном соединениях сравнивают с величинами, рассчитанными по известным формулам: RПОСЛ=R1+R2 и RПАРАЛ =(R1× R2) /(R1+R2).

Вывод записать письменно.

ИЗУЧЕНИЕ ЗАКОНОВ ОМА ДЛЯ ЦЕПЕЙ ПОСТОЯННОГО ТОКА

Обобщённый закон Ома.

Рассмотрим участок электрической цепи, изображенный на рис.1.

Подчеркнём, что нами выбран участок из некоторой произвольной электрической цепи. В ней могут быть другие ЭДС, не входящие в выделенный участок, под действием которых ток по данному участку может течь и навстречу данной ЭДС Е.

Примечание. 1) На рис.1 вертикальными линиями показано изображение источника тока, имеющего характеристики: ЭДС E и внутреннее сопротивление r. Часто вместо слов источник тока говорят: ЭДС. 2)Терминология: участок цепи, содержащий ЭДС и сопротивление R называется неоднородным, а содержащий только сопротивление R –однородным.

Найдем взаимосвязь между величинами I, Е, j1, j2, j3 для рассматриваемого участка. Обозначим общее сопротивление между точками 1-3 через R: R=R+r, гдеR-сопротивление внешнего участка цепи, r- внутреннее сопротивление источника ЭДС.

Выразим потенциал точки I через потенциал точки 3.

Дата добавления: 2015-10-06 ; просмотров: 7921 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Измерительный мост

Измерительный мост – электрическая схема, усовершенствованная английским физиком Чарльзом Уинстоном. Она источник постоянного тока и базовая мостовая схема, которую применяют в конструкциях многих измерительных приборов. Например, в устройствах контроля и измерения температур – термометрах.

Что такое измерительный мост?

Как пример, объясняющий электросхему моста, возьмём терморезистор или термометр. В таких системах механизм ставят в одной ветви схемы. Можно провести аналогию с аптечными весами. Разница только в том, что мост — электрическое устройство.

Рычажные весы и приборы с мостовой схемой действуют компенсационным способом. Величина тока в по Уинстону есть разница между сопротивлениями — чем она выше, тем обширнее протекает электрический ток. При изменении разности меняется и количество электрических зарядов.

Это свойство применяют в различных системах и приборах контроля. Точность замеров достигается за счет изменения сопротивления. Во время измерения электричества, проходящего через измерительный мост постоянного тока, обнаруживаются любые изменения физической величины сопротивления.

Принцип работы моста Уитстона

Мостовая схема Ч. Уинстона состоит из 2-х плеч. В каждом 2 резистора. Соединяет 2 параллельные ветви еще одна. Ее название – мостик. Ток проходит от клеммы с минусом к верхнему пику мостовой схемы.

Читайте также:  Как самой измерить матку при беременности

Разделившись по 2 параллельным ветвям, ток идёт к положительной клемме. Величина сопротивления в каждой ветви непосредственно влияет на количество тока. Равное сопротивление на обеих ветвях говорит о том, что в них течет аналогичное количество тока. В таких условиях мостовой элемент уравновешен.

Если в ветвях неравное сопротивление, ток в электросхеме начинает движение от ветви с высоким уровнем сопротивления к ветви с наименьшим. Так продолжается, пока 2 верхних элемента цепей остаются равны по своей величине. Аналогичное положение резисторы имеют в схемах, которые используют в системах контроля и измерения.

Типы и модификации измерительных мостов

Основная схема измерительного моста – Уинстона. Одинарный мост меряет сопротивление от 1 Ом до 100 Мом. Но есть и модификации, позволяющие измерять разные типы сопротивлений — те, для которых базовая схема не годится.

Разновидности

  1. Небольшие сопротивления измеряются посредством прибора Кери Фотера. Можно узнать разницу между противодействиями больших значений.
  2. Еще один тип – делитель Кельвина-Варлея. Применяется в приборах лабораторного оборудования. Максимальная измеряющая способность, зафиксированная этим делителем напряжения, достигает 1,0*10-7.
  3. Мост Кельвина, который в некоторых странах называют именем Томсона, предназначен для замера неизвестных сопротивлений небольших величин (меньше 1 Ом). По принципу работы похож на одинарный мост Уинстона. Разница лишь в наличии дополнительного сопротивления, снижающего погрешности в измерении, которые появляются в результате падения напряжения в одном из плеч.
  4. Еще один тип – мост Максвелла. Измеряет низкодобротную индуктивность неизвестной величины.

Схемы измерительных мостов

Измерительные мосты переменного тока делят на 2 группы: двойные и одинарные. Одинарные имеют 4 плеча. В них 3 ветви создают цепь с 4 точками подключения.

В диагонали моста есть электромагнитный гальванометр, показывающий равновесие. В другой диагонали моста действует источник постоянного питания. Измерения могут происходить с погрешностями, которые зависят от их диапазона. По мере роста сопротивления чувствительность прибора уменьшается.

Двойной мост называют шестиплечим. Его плечи – измеряемое сопротивление (Rx), резистор (Ro) и 2 пары дополнительных резисторов (Rl, R2, R3, R4).

Двойные измерительные мосты

Небольшие сопротивления измеряются двойными мостами, состоящими из таких компонентов:

  • резисторы R (4);
  • гальванометр;
  • резистор образцовый;
  • источник питания;
  • амперметр;
  • резистор, устанавливающий рабочий ток.

Чтобы узнать условия, при которых возникает равновесие, для замкнутых контуров применяют уравнение Кирхгофа. Соблюдается условие: по гальванометру должен идти нулевой ток.

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

Заключение

С помощью прибора Уинстона можно мерить индуктивность, содержание газа в воздухе или другом веществе, емкость и иные физические величины. Подробно о данных схемах можно прочитать в учебнике «Измерительные соединения». В книге представлены основные понятия, базовые методики, примеры, иллюстрирующие принцип действия.

Источник

Измерительный мост или мост Уитстона.Как измерить сопротивление и как это работает

Для относительно точного измерения сопротивления,есть схема под названием измерительный мост или мост Уитстона. Собран мост на трех резисторах а четвертый,является измеряемым сопротивлением.Мост состоит из двух плеч.Первое плечо R1-R4,второе R2-R3.Если сопротивление резисторов R1-R2 будет равняться по 3кОм а сопротивление R3-R4 будет по 4.7кОм,то вольтметр покажет ноль.Если в каком либо из плеч произойдет дисбаланс сопротивлений,вольтметр покажет значение напряжения в плюс или минус.Возле ротора переменного резистора надо установить шкалу с делениями сопротивлений до 4.7кОм или если применяется другой переменный резистор,то на соответствующее сопротивление.

На место R4 подключаете измеряемое сопротивление.Ротором переменного резистора устанавливаете показания ноль на вольтметре,а по шкале смотрите сопротивление(стрелка ротора),это и будет измеряемая величина.По указанной схеме,можно измерять сопротивление до 4.7кОм.

Вместо R4 можно установить датчик влажности,тензорезистор для измерения давления,терморезистор для измерения температуры.

По этой схеме можно собрать датчик температуры.Вместо R4 установить диод 1n4148 катодом к минусу.Установить переменным резистором ноль на вольтметре.Теперь при нагреве диода показания вольтметра будут повышаться выше ноля ,при охлаждении,показания будут со знаком минус на вольтметре.

Источник

Мостовые измерения

Мостовая схема — схема соединения элементов электрической цепи (сопротивлений, выпрямительных диодов и т.д.), характеризующаяся наличием мостовой ветви между двумя точками схемы, не соединенными непосредственно с источником электрической энергии. В основу мостовой схемы положена схема моста Уитстона (рис. 1).

Читайте также:  Акт измерения базовой высоты резервуара

Принцип действия мостовой схемы основан на том, что при равенстве отношений полных сопротивлений в плечах моста Za/Zb = Z х/ Zd в диагонали моста (в индикаторном устройстве) нет тока. Повышая чувствительность нуль-индикатора, можно добиться в мостовой схеме весьма точного соблюдения равенства отношений полных сопротивлений. На этом принципе основаны мостовые измерения.

Рис. 1. Мостовая схема (схема моста Уитстона)

Источниками питания мостовых схем могут служить источники напряжения как постоянного так и переменного тока. Балансировка мостовой схемы совершенно не зависит от колебаний напряжения источника питания.

Мостовые измерения — методы измерения параметров электрических цепей на постоянном токе (сопротивления пост, току) и на переменном токе (активного сопротивления, емкости, индуктивности, взаимной индуктивности, частоты, угла потерь, добротности и др.) посредством мостовых схем. Мостовые измерения широко распространены также для электрических измерений неэлектрических величин при помощи датчиков — промежуточных преобразователей измеряемой величины в функционально связанный с ней параметр электрической цепи.

Мостовые измерения осуществляются с помощью измерит, мостов (мостовых установок), относящихся к категории приборов сравнения. В общем случае они основаны на применении некоторой электрической цепи, состоящей из нескольких известных и одного неизвестного (измеряемого) сопротивлений, питаемой одним источником и снабженной указывающим прибором.

Изменением известных сопротивлений эта цепь регулируется до достижения определенного, отмечаемого указателем, распределения напряжений на отдельных участках цепи. Очевидно, что заданному соотношению напряжений соответствует также определенное соотношение сопротивлений цепи, по которому можно вычислить неизвестное сопротивление, если остальные сопротивления известны.

Исторически первый, простейший и наиболее распространенный вариант мостовых измерений был реализован посредством четырехплечего уравновешенного моста , представляющего собой кольцевую цепь из 4 сопротивлений («плечи» моста), в которой источник питания и указатель включаются диагонально, к противолежащим вершинам, в виде «мостов» (рис. 2).

При соблюдении условия R1R3 = R2R4 (соответственно Z1Z3 = Z2Z4 на переменном токе) напряжение на выходе мостовой цепи (независимо от питающего напряжения) равно нулю (Ucd=0), т. е. мост «уравновешен», что отмечается нулевым указателем.

Состояние равновесия моста постоянного тока, соответствующее условию R1R3 = R2R4, может быть достигнуто регулировкой только одного переменного параметра и позволяет определить также только одно неизвестное сопротивление.

Для достижения комплексного условия равновесия на переменном токе Z1Z3 = Z2Z4, распадающегося при подстановке комплексных значений сопротивлений Z=R+jx на два самостоятельных условия, требуется регулировка не менее двух переменных параметров. При этом можно одновременно определять две составляющие комплексного сопротивления (например, L и R или L и Q, С и tg φ и т. д.).

Разновидностью четырехплечих мостов переменного тока являются мосты резонансные . Помимо четырехплечих применяются более сложные мостовые цепи — двойные мосты на постоянном токе (рис. 3) и многоплечие (шести- или семиплечие) — на переменном (например, рис. 4). Условия равновесия для этих цепей, естественно, отличаются от приведенных выше.

Мосты могут использоваться как в уравновешенном, так и в неуравновешенном режиме. В последнем результат измерения определяется без регулировки сопротивлений, непосредственно по току или напряжению на выходе мостовой цепи, которые являются функциями измеряемого сопротивления и напряжения источника питания (последнее должно быть стабильным). Выходной прибор при этом градуируется непосредственно в значениях измеряемой величины.

Мостовые измерения на переменном токе могут применяться еще в двух режимах: квазиуравновешенном и полууравновешенном. Последний характеризуется тем, что обычная четырехплечая цепь (рис. 2) регулируется при помощи только одного переменного параметра до получения минимального выходного напряжения (полное равновесие, т. е. Ucd =0, при котором требуется регулировка двух параметров, в данном случае недостижимо).

Момент достижения минимума напряжения Uс d может быть определен непосредственно обычным указателем на выходе цепи или более точно — косвенно — на основании, например, фазовых соотношений векторов напряжений мостовой цепи, имеющих место в момент полуравновесия.

Во втором случае эксперимент и указывающая аппаратура аналогичны применяемым при квазиуравновешенном режиме. Составляющие измеряемого сопротивления определяются: одна — по значению переменного параметра в момент полуравновесия, другая — по напряжению на выходе моста. Напряжение питания необходимо стабилизировать.

Уравновешивание измерительных мостов может производиться как непосредственно человеком (мосты с ручной наводкой), так и при помощи автоматического устройства (автоматические измерительные мосты).

Мостовые измерения применяются как для измерения значений сопротивлений, так и для определения отклонений этих значений от заданного номинала. Они относятся к числу самых распространенных и совершенных методов измерения. Серийно выпускаемые мосты имеют классы точности от 0,02 до 5 на пост, токе и от 0,1 до 5 — на переменном.

Источник