Способы контроля нагрева электрооборудования в процессе эксплуатации
Для контроля нагрева электрооборудования применяют четыре метода измерений: метод термометра, метод сопротивления, метод термопары и метод инфракрасного излучения.
Контроль нагрева электрооборудования по методу термометра
Метод термометра применяют для измерения температуры доступных поверхностей. Используют ртутные, спиртовые и толуоловые стеклянные термометры, погружаемые в специальные гильзы, герметически встроенные в крышки и кожухи оборудования.
Ртутные термометры обладают более высокой точностью, но применять их в условиях действия электромагнитных полей не рекомендуется ввиду высокой погрешности, вносимой дополнительным нагревом ртути вихревыми токами.
При необходимости передачи измерительного сигнала на расстояние нескольких метров (например, от теплообменника в крышке трансформатора до уровня 2. 3 м от земли) используют термометры манометрического типа , например термосигнализаторы ТСМ-10 .
Термосигнализатор ТСМ-10 состоит из термобаллона и полой трубки, соединяющей баллон с пружиной показывающей части прибора.
Термосигнализатор заполнен жидким метилом и его парами. При изменении измеряемой температуры изменяется давление паров хлористого метила, который передается стрелке прибора. Достоинство манометрических приборов заключается в их вибрационной устойчивости.
Контроль нагрева электрооборудования по методу сопротивления
Метод сопротивления основан на учете изменения величины сопротивления металлического проводника от его температуры. Для мощных трансформаторов и синхронных компенсаторов применяют термометры с указателем манометрического типа . Схема включения дистанционного электротермометра показаны на рисунке.
В зависимости от температуры жидкость, заполняющая измерительный щуп электротермометра, воздействует через соединительную капиллярную трубку и систему рычагов на стрелку указателя.
В дистанционном электротермометре стрелки указателя имеют контакты 1 и 2 для сигнализации температуры, заданной установкой. При замыкании контактов срабатывает соответствующее реле 3 в схеме сигнализации.
Для измерения температуры в отдельных точках синхронных компенсаторов (в пазах для измерения стали, между стержнями обмоток для измерения температуры обмоток и других точках) устанавливаются терморезисторы . Сопротивление резисторов зависит от температуры нагрева в точках измерения.
Терморезисторы изготовляют из платиновой или медной проволоки, их сопротивления калиброваны при определенных температурах (при температуре О °С для платины сопротивление равно 46 Ом, для меди — 53 Ом; при температуре 100 °С для платины — 64 Ом, для меди — 75,5 Ом соответственно).
Такой терморезистор R4 включается в плечо моста, собранного из резисторов. В одну из диагоналей моста включается источник питания, в другую — измерительный прибор. Резисторы R1. R4 в плечах моста подбираются таким образом, что при номинальной температуре мост находится в равновесии и ток в цепи прибора отсутствует.
При отклонении температуры в любую сторону от номинальной изменяется сопротивление терморезистора R4, нарушается баланс моста и стрелка прибора отклоняется, показывая температуру измеряемой точки. На этом же принципе основан переносной прибор. Перед измерением стрелка прибора должна находиться в нулевом положении.
Для этого кнопкой К подается питание, переключатель П устанавливается в положение 5 и переменным резистором R5 стрелку прибора устанавливают на нуль. Затем переключатель П переводится в положение 6 (измерение). Измерение температуры контактов производится прикосновением головки датчика к поверхности контакта и нажатием штанги на головку электротермометра (при нажатии замыкается кнопка К и питание подается в схему). Через 20. 30 с измеренное значение температуры контакта считывается со шкалы прибора.
Использование термометров сопротивления для измерения температуры нагрева электрооборудования
Средством дистанционного измерения температуры обмотки и стали статора генераторов, синхронных компенсаторов, температуры охлаждающего воздуха, водорода являются термометры сопротивления, в которых также использована зависимость величины сопротивления проводника от температуры.
Конструкции термометров сопротивления разнообразны. В большинстве случаев — это бифилярно намотанная на плоский изоляционный каркас тонкая медная проволока, имеющая входное сопротивление 53 Ом при температуре 0 °С. В качестве измерительной части, работающей в совокупности с термометрами сопротивления, применяют автоматические электронные мосты и логомеры, снабженные температурной шкалой.
Установку термометров сопротивления в статор машины выполняют при ее изготовлении на заводе. Медные термометры сопротивления укладывают между стержнями обмотки и на дно паза.
Метод термопары основан на использовании термоэлектрического эффекта, т. е. зависимости ЭДС в цепи от температуры точек соединения двух разнородных проводников, например: медь — константан, хромель — копель и др.
Если измеряемая температура не превышает 100. 120°С, то между термоЭДС и разностью температур нагретых и холодных концов термопары существует пропорциональная зависимость.
Термопары присоединяют к измерительным приборам компенсационного типа, потенциометрам постоянного тока и автоматическим потенциометрам, которые предварительно градуируют. С помощью термопар измеряют температуры конструктивных элементов турбогенераторов, охлаждающего газа, активных частей, например активной стали статора.
Контроль нагрева электрооборудования по методу инфракрасного излучения
За последнее десятилетие существенно изменился подход к методам диагностики электрооборудования и оценке его состояния. Наряду с традиционными методами диагностики, нашли применение современные высокоэффективные способы контроля, обеспечивающие выявление дефектов электрооборудования на ранней стадии их развития. Существенно расширилась область контроля маслонаполненного оборудования под рабочим напряжением, разработаны методы и браковочные нормативы при оценке состояния оборудования по составу газов, растворенных в масле, осуществляется углубленный анализ трансформаторного масла, что позволяет судить о состоянии бумажной изоляции обмоток силовых трансформаторов, получило широкое распространение термографическое обследование электроустановок и т.п.
Метод инфракрасного излучения положен в основу приборов, работающих с использованием фиксации инфракрасного излучения, испускаемого нагретыми поверхностями. В энергетике получили применение как тепловизоры (термовизоры) , так и радиационные пирометры . Тепловизоры обеспечивают возможность получения картины теплового поля исследуемого объекта и его температурного анализа. С помощью радиационного пирометра определяется только температура объекта контроля.
Очень часто тепловизор используется совместно с пирометром. Вначале с помощью тепловизора выявляют объекты с повышенным нагревом, а затем, используя пирометр, определяют его температуру. Поэтому точность измерения температуры определяется прежде всего параметрами применяемого пирометра.
Источник
Методы и приборы для измерения температуры
Что такое температура
Измерение температуры — предмет теоретической и экспериментальной дисциплины — термометрии, часть которой, охватывающая температуры свыше 500° С, называется пирометрией.
Наиболее общее строгое определение понятия температуры, следующее из второго начала термодинамики, формулируется выражением:
где Т — абсолютная температура изолированной термодинамической системы, d Q — приращение тепла, сообщаемого этой системе, и d S — приращение энтропии этой системы.
Приведенное выражение интерпретируется следующим образом: температура есть мера приращения тепла, сообщенного изолированной термодинамической системе и соответствующего приращению энтропии системы, происходящему при этом, или, иначе говоря, возрастанию неупорядоченности ее состояния.
В статистической механике, описывающей фазы системы с учетом микропроцессов, протекающих в макросистемах, понятие температуры определяется через выражение распределения частиц молекулярной системы между рядом невырожденных энергетических уровней (распределения Гиббса).
Такое определение (согласующееся с предыдущим) подчеркивает вероятностный, статистический аспект понятия температуры как основного параметра микрофизической формы передачи энергии от одного тела (или системы) к другому, т. е. хаотического теплового движения.
Малая наглядность строгих определений понятия температуры, справедливых к тому же только для термодинамически равновесных систем, привела к широкому распространению «утилитарного» определения, исходящего из существа явления передачи энергии: температура — это тепловое состояние тела или системы, характеризующееся его способностью обмениваться теплом с другим телом (или системой).
Эта формулировка применима и к термодинамически неравновесным системам, и (с оговорками) к психофизиологическому понятию «сенсорной» температуры, непосредственно воспринимаемой человеком с помощью органов термического осязания.
«Сенсорная» температуpa субъективно оценивается человеком непосредственно, но лишь качественно и в относительно узком интервале, физическая же температуpa измеряется количественно и объективно, с помощью измерит, приборов, но только косвенно — по значению какой-либо физической величины, зависящей от измеряемой температуры.
Поэтому в последнем случае устанавливают какое-либо опорное (реперное) состояние выбранной для этой цели температурозависимой физической величины и приписывают ему некоторое определенное числовое значение температуры с тем, чтобы любое изменение состояния выбранной физической величины относительно опорного могло быть выражено в единицах температуры.
Совокупность значений температуры, соответствующих ряду последовательных изменений состояния (т. е. ряду значений) выбранной температурозависимой величины, образует температурную шкалу. Наиболее распространенные температурные шкалы: Цельсия, Фаренгейта, Реомюра, Кельвина и Ранкина.
Температурные шкалы Кельвина и Цельсия
Основной единицей измерения термодинамической температуры и одновременно одной из основных единиц Международной системы единиц (СИ) является градус Кельвина.
Размер (температурный промежуток) 1 градуса Кельвина определяется тем, что значение термодинамической температуры тройной точки воды установлено равным в точности 273,16°К.
Эта температура, при которой вода равновесно сосуществует в трех фазах: твердой, жидкой и газообразной, принята в качестве основного репера вследствие ее высокой воспроизводимости, на целый порядок лучшей, чем воспроизводимость температур замерзания и кипения воды.
Градус Цельсия, в единицах которого также может быть выражена термодинамическая температура, по своему температурному промежутку в точности равен градусу Кельвина, но числовое значение любой температуры в градусах Цельсия на 273,15 градусов больше значения той же температуры в градусах Кельвина.
Размер 1 градуса Кельвина (или 1 градуса Цельсия), определенный из числового значения температуры тройной точки воды, при современных точностях измерения не отличается от его размера, определенного (что было принято ранее) как сотая доля температурного промежутка между точками замерзания и кипения воды.
Классификация методов и приборов для измерения температуры
Измерение температуры тела или среды может быть осуществлено двумя принципиально различными косвенными путями.
Первый путь ведет к измерению значений одного из температурозависимых свойств или параметров состояния непосредственно самого тела или среды, второй — к измерению значений температурозависимых свойств или параметров состояния вспомогательного тела, приведенного (прямо или косвенно) в состояние теплового равновесия с телом или средой, температуpa которых измеряется.
Вспомогательное тело, служащее для этих целей и являющееся датчиком комплектного прибора для измерения температуры, называется термометрическим (пирометрическим) зондом, или термоприемником. Поэтому все методы и приборы для измерения температуры разделяются на две принципиально различные группы: беззондовые и зондовые.
Термоприемник или какое-либо вспомогательное устройство прибора может быть приведено в прямое механическое соприкосновение с телом или средой, температура которых измеряется, или же между ними может осуществляться лишь «оптический» контакт.
В зависимости от этого все методы и приборы для измерения температуры делятся на контактные и бесконтактные. Наибольшее практическое значение имеют зондовые контактные и бесконтактные методы и приборы.
Погрешности при измерении температуры
Всем контактным, в первую очередь зондовым, методам измерения температуры, в отличие от других методов, свойственны т. н. тепловые или термические методические погрешности, обусловленные тем, что комплектный зондовый термометр (или пирометр) измеряет значение температуры только чувствительной части термоприемника, усредненное по поверхности или объему этой части.
Между тем эта температура, как правило, не совпадает с измеряемой потому, что термоприемник неизбежно искажает температурное поле, в которое его вносят. При измерении установившейся постоянной температуры тела или среды между ним и термоприемником устанавливается определенный режим теплообмена.
Постоянная разность температур термоприемника и измеряемой температуры тела или среды характеризует статическую термическую погрешность при измерении температуры.
Если измеряемая температуpa изменяется, то термическая погрешность оказывается функцией времени. Такую динамическую погрешность можно рассматривать как состоящую из постоянной части, эквивалентной статической погрешности, и переменной части.
Последняя возникает потому, что при всяком изменении теплообмена между телом или средой, температура которых измеряется, новый режим теплообмена устанавливается не сразу. Обусловленное отставанием искажение показаний термометра или пирометра, являющееся функцией времени, характеризуется тепловой инерцией термоприемника.
Тепловые погрешности и тепловая инерция термоприемника зависят от тех же факторов, что и теплообмен между телом или средой и термоприемником: от температур термоприемника и тела или среды, от их размеров, состава (а значит и свойств) и состояния, от конструкции, размеров, геометрической формы, состояния поверхности и свойств материалов термоприемника и окружающих его тел, от их взаиморасположения, от того, по какому закону изменяются во времени измеряемая температура тела или среды.
Тепловые методические погрешности при измерении температуры, как правило, в несколько раз превосходят инструментальные погрешности термометров и пирометров. Их снижение достигается применением рациональных методик измерения температуры и конструкций термоприемников и целесообразным монтажом последних на местах применения.
Улучшение теплообмена термоприемника и среды или тела, температура которых измеряется, достигается форсированием полезных и подавлением вредных факторов теплообмена.
Например, при измерении температуры газа в замкнутом объеме увеличивают конвективный теплообмен тероприемника с газом, создавая искусств, быстрое обтекание газом термоприемника («отсосная» термопара), и снижают лучистый теплообмен со стенками объема, экранируя термоприемник («экранированная» термопара).
Для снижения тепловой инерции в термометрах и пирометрах с электрическим выходным сигналом применяют также специальные схемы, искусственно сокращающие время нарастания сигнала при быстром изменении измеряемой температуры.
Бесконтактные методы измерения температуры
Возможность применения контактных методов при измерениях определяется не только искажением контактным термоприемником измеряемой температуры, но также реальными физическими и химическими характеристиками материалов термоприемника (коррозионной и механической стойкостью, жаропрочностью и т. д.).
Бесконтактные методы измерения свободны от этих ограничений. Однако важнейшим из них, т.е. основанным на законах температурного излучения, присущи особые погрешности, обусловленные тем, что используемые законы в точности справедливы лишь для абсолютно черного излучателя, от которого по свойствам излучения более или менее значительно отличаются все реальные физические излучатели (тела и среды).
В соответствии с законами излучения Кирхгофа любое физическое тело излучает энергии меньше, чем черное тело, нагретое до той же температуры, что и физическое.
Поэтому прибор для измерения температуру, отградуированный по черному излучателю, при измерении температуры реального физического излучателя покажет температуру, меньшую действительной, а именно такую, при которой свойство черного излучателя, использованное при градуировании (энергия излучения, его яркость, его спектральный состав и т. п.), совпадает по своему значению со свойством физического излучателя при данной действительной его температуре, подлежащей определению. Измеренная заниженная псевдотемпература называется черной температурой.
Различные методы измерения приводят к различным, как правило, не совпадающим черным температурам: пирометр радиационный показывает интегральную или радиационную, пирометр оптический — яркостную, пирометр цветовой — цветовую черные температуры.
Переход от измеренных черных к действительным температурам осуществляется графически или аналитически, если известна излучательная способность объекта, температуpa которого измеряется.
Излучательной способностью называется отношение значений используемого для измерения свойства излучения физического и черного излучателей, имеющих одинаковую температуру: при радиационном методе излучательная способность равна отношению суммарных (по всему спектру) энергий, при оптическом — спектральная излучательная способность равна отношению спектральных плотностей энергетической яркости. При прочих равных условиях наименьшие погрешности от нечерноты излучателя дает пирометр цветовой.
Радикальное решение задачи измерения лучистыми методами действительной температуры нечерного излучателя достигается искусств, созданием для него условий, превращающих его в черный излучатель (например, помещением его в практически замкнутую полость).
В некоторых частных случаях возможно измерение действительной температуры нечерных излучателей обычными пирометрами излучения при применении особых методик измерения температуры (например, подсветки, в лучах трех длин волн, в поляризованном свете и др.).
Распространенные приборы для измерения температуры
Громадный диапазон значений измеряемых температур и неисчерпаемое количество различных условий и объектов измерения обусловливают чрезвычайное разнообразие и многочисленность методов и приборов для измерения температуры.
Самые распространенные приборы для измерения температуры:
- Термоэлектрические пирометры (термометры) ;
- Электрические термометры сопротивления ;
- Радиационные пирометры ;
- Пирометры оптического поглощения ;
- Оптические яркостные пирометры ;
- Цветовые пирометры ;
- Жидкостные термометры расширения ;
- Газовые манометрические термометры ;
- Паровые манометрические термометры ;
- Газовые конденсационные термометры ;
- Стержневые дилатометрические термометры ;
- Биметаллические термометры ;
- Акустические термометры ;
- Калориметрические пирометры-пироскопы ;
- Термокраски ;
- Парамагнитные солевые термометры .
Самые популярные электрические приборы для измерения температуры:
Приборы многих видов, перечисленные выше, используются для измерений различными методами. Например, термоэлектрический термометр используется:
- для контактного измерения температуры сред и тел, а также поверхностей последних без или в сочетании с устройствами, корректирующими тепловое неравновесие термоприемника и объекта измерения;
- для бесконтактного измерения температуры радиационным и некоторыми спектроскопическими методами ;
- для смешанного (контактно-бесконтактного) — измерение температуры жидкого металла по методу газовой каверны (измерение радиационным пирометром температуры излучения газового пузыря, выдуваемого в жидком металле на конце погруженной в него трубки).
Вместе с тем многие методы измерения температуры могут быть реализованы приборами различных видов.
Так, например, температуpa наружного и комнатного воздуха может быть измерена приборами по меньшей мере 15 видов. На фотографии — биметаллический термометр.
Самый большой в мире термометр в Бейкере, Калифорния
Применение приборов для измерения температуры:
Источник