Меню

Измерение температуры оптическим методом



Вопрос 6. Оптическая пирометрия.

Для измерения температуры нагретых тел используются различные приборы (например, термометры расширения, электрические термометры сопротивления, термопары и т. д.). Однако для сильно нагретых тел (свыше 2000 0 С) эти методы измерения температуры непригодны, особенно если раскаленные тела, температуру которых необходимо определить, чрезвычайно удалены от наблюдателя (например, Солнце, звезды). В таких случаях используются методы, основанные на законах теплового излучения.

Совокупность оптических бесконтактных методов измерения высоких температур на основе зависимости между температурой и излучательной способностью (спектральной или интегральной) исследуемого тела называют оптической пирометрией. Приборы, используемые для этой цели, называются пирометрами излучения. В радиационных пирометрах регистрируется интегральное излучение исследуемого нагретого тела, а в оптических пирометрах − его излучение на одном или двух участках спектра.

В зависимости от того, какой закон теплового излучения АЧТ положен в основу при измерении температуры нагретых тел, различают три температуры − радиационную, цветовую и яркостную.

Радиационная температура Тр – это такая температура абсолютно черного тела, при которой его энергетическая светимость равна энергетической светимости исследуемого тела. Так как все реальные тела, температура которых измеряется, являются серыми и для них поглощательная способность А(T) 3 − 10 4 ) К, которые обычно измеряются с помощью пирометров с исчезающей нитью в видимой области спектра, в знаменателе в выражении единицей можно пренебречь. Тогда получаем:

. (16.29)

После логарифмирования выражения (16.29) и последующего преобразования получаем окончательную формулу для определения истинной температуры исследуемого нагретого тела:

. (16.30)

В качестве яркостного пирометра обычно используется пирометр с исчезающей нитью, принцип работы которого основывается на сравнении излучения нагретого тела в определенном спектральном интервале с длиной волны λ с излучением абсолютно черного тела с той же длиной волны. Накал нити пирометра подбирается таким образом, что ее изображение становится неразличимым на фоне поверхности нагретого тела, т.е. нить как бы «исчезает». В этом случае яркости излучения нити и нагретого тела для данной длины волны λ совпадают и, следовательно, совпадают их излучательные способности. Используя предварительно проградуированный по абсолютно черному телу миллиамперметр, измеряющий ток нити пирометра, можно определить яркостную температуру. Если исследуемый источник излучения также является черным телом, то найденная температура является его истинной температурой. В противном случае при известных значениях А(λ,T) и λ можно определить истинную температуру исследуемого нагретого тела, используя формулу (16.30). .

Кроме пирометров с исчезающей нитью существуют и другие пирометры для определения яркостной температуры, а через нее и истинной температуры нагретых тел. Яркостные пирометры обеспечивают наибольшую точность измерений температуры в диапазоне (10 3 − 10 4 ) K.

В заключение необходимо отметить, что блестящие результаты, достигнутые при применении гипотезы Планка, стали первым серьезным указанием на то, что к явлениям лучеиспускания законы классической физики уже неприменимы. Эта гипотеза показывала, что должна быть создана новая теория, в которой необходимо четко зафиксировать то, что некоторые физические величины способны принимать не непрерывный, а дискретный ряд значений. Гипотеза Планка не только положила начало квантовым представлениям о природе света, но и стала базой для создания квантовой механики.

1. В чем отличие теплового излучения от люминесценции?

Читайте также:  Грамм это единица измерения чего

2. Какие из видов излучения являются равновесными?

3. Что такое энергетическая светимость тела?

4. Дайте определение лучеиспускательной способности тела.

5. Чем отличается серое тело от черного?

6. В чем заключается физический смысл универсальной функции Кирхгофа?

7. Как и во сколько раз изменится энергетическая светимость черного тела, если его термодинамическая температура уменьшится вдвое?

8. Как сместится максимум спектральной плотности энергетической светимости черного тела с повышением температуры?

9. Какова связь между энергетической светимостью тела и температурой?

10. Чему равна постоянная Стефана–Больцмана?

11. Напишите формулу Вина. В какой части спектра эта формула согласуется с экспериментальными данными?

12. В чем смысл закона смещения Вина?

13. Приведите формулу Рэлея–Джинса. В какой части спектра эта формула согласуется с экспериментальными данными?

14. В чем смысл ультрафиолетовой катастрофы?

15. В чем физический смысл гипотезы о квантах?

16. Какой вид имеет формула Планка для универсальной функции Кирхгоффа?

17. Как, используя формулу Планка, найти постоянную Стефана–Больцмана?

18. При каких условиях из формулы Планка получаются закон смещения Вина и формула Рэлея–Джинса?

Источник

МЕТОДЫ ИЗМЕРЕНИЯ ТЕМПЕРАТУРЫ

Рассмотрим следующие методы измерения температуры: объ­емный, манометрический, терморезисторный (метод термосопро­тивлений), термоэлектрический и пирометрический.

1. Объемный метод [14], [15]

Объемный метод измерения температуры основан на тепловом расширении (изменении объема) различных тел. По этому прин­ципу строятся дилатометрические, биметаллические и жидкост­ные термометры.

Дилатометрический термометр (рис. 7.1) состоит из патрона 1 и штока 2, изготовленных из материалов с различ­ными коэффициентами линейного расширения и .

Для повышения чувствительности необходимо применять ма­териалы, у которых и возможно больше отличаются друг от друга, в то же время коэффициент линей­ного расширения материала штока следует выбирать близким к нулю для умень­шения теплового запаздыва­ния, обусловленного тем, что шток прогревается мед­леннее, чем патрон (патрон непосредственно соприка­сается со средой, темпера­тура которой измеряется, а шток отделен от нее воз­душной прослойкой). Исходя из этого шток целесообразно изго­товлять из сплава типа инвар ( =l*10- 6 ), a патрон — из мате­риала с большим , например из дуралюмина ( = 23-10

Ввиду малости перемещения штока (десятые доли мм) ди­латометрический термометр содержит передаточно-множительный механизм, увеличивающий перемещение штока до величины, удобной для отсчета.

Биметаллические термометры (рис. 7.2) так же, как и дилатометрические, основаны на тепловом расширении твердых тел и отличаются лишь способом соединения компонент Теплочувствительный элемент представляет собой биметалличе­скую пластину, состоящую из двух сваренных или сплавленных (реже спаянных) по всей длине пластин с различными коэффи­циентами линейного расширения и . При нагревании биме­таллическая пластина изгибается таким образом, что ее выпук­лость образуется со стороны материала с большим .

Угол изгиба биметаллической пластины определяется фор­мулой [15] ,

где l — длина биметаллической пластины;

h — суммарная толщина биметаллической пластины;

— величина изменения температуры.

Линейное перемещение прямой консольно закрепленной пла­стины

,

где — чувствительность.

В авиационных приборах применяют биметаллические пла­стины, состоящие из стали ( = 19 • 10 -6 ) и инвара ( =1 • 10 -6 ).

По сравнению с дилатометрическим элементом биметалличе­ский элемент дает большее перемещение при меньших габаритах, что позволяет уменьшить передаточное отношение механизма.

При выполнении биметаллического чувствительного элемента в виде спиральной или винтовой пластины (см. рис. 7.2,6, в), один конец которой закреплен неподвижно, а другой — связан с выходной осью, можно получить большой угол поворота вы­ходной оси (до 360°), что позволяет поместить указывающую стрелку непосредственно на эту ось и исключить из конструк­ции термометра передаточно-множительный механизм.

Читайте также:  Что такое интерпретация результатов измерений

Биметаллические термометры подобного рода применяются для измерения температуры окружающей среды (см. рис. 7.2, г).

Жидкостные термометры действуют на основе тепло­вого изменения объема жидкостей.

Схемы двух вариантов жидкостных термометров показаны на рис. 7.3.

Жидкостный термометр (см. рис. 7.3, а) состоит из цилиндри­ческого баллона 1, внутрь которого впаян сильфон 2. Свободный конец сильфона связан со штоком 3, выпущенным наружу бал­лона, а пространство между стенками сильфона и баллона за­полнено жидкостью. Баллон помещается в среду, температура

которой измеряется. Объем жидкости зависит от температуры следующим образом:

,

где — начальный объем жидкости при 0 0 С,

— коэффициент объемного расширения жидкости,

— температура в 0 С.

Значения для некоторых жидкостей приведены в таблице 7.1.

Линейное перемещение конца штока при нагревании элемента от 0 0 С до температуры С определяется выражением

,

где F- эффективная площадь сильфона.

Увеличение жесткости сильфона приводит к увеличению дав­ления внутри системы, что, однако, не влияет на величину s ра­бочего хода. Вследствие практической несжимаемости жидкости величина s определяется приращением объема жидкости иэф­фективной площадью сильфона. В то же время увеличение жест­кости сильфона позволяет повысить верхний предел измерения, так как температура кипения жидкости увеличивается с увеличе­нием давления.

Жидкостный термометр дистанционного типа (см. рис. 7.3, б) состоит из заполненного жидкостью баллона, погруженного в сре­ду, температура которой измеряется, и соединенного капиллярной трубкой с упругим чувствительным элементом (сильфоном, мано­метрической коробкой или трубчатой пружиной), перемещение которого через передаточно-множительный механизм передается на указывающую стрелку. Показания дистанционного жидкост­ного термометра подвержены влиянию температуры воздуха, ок­ружающего соединительную трубку и указатель. Погрешность пропорциональна объему соединительной трубки и упругого чув­ствительного элемента.

2. Манометрический метод[3], [12]

Манометрический метод измерения температуры основан на тепловом изменении давления газа (пара) внутри замкнутого объема. По этому методу действуют газовые и парожидкостные термометры.

Схемы газовых термометров подобны схемам жидкостных термометров. Различие состоит в том, что внутренняя полость теплочувствительного элемента заполняется вместо жидкости инертным газом.

Вследствие сжимаемости газа действие газового термометра принципиально отличается от действия жидкостного термометра: газовый термометр работает не на принципе расширения рабо­чего тела, а на принципе изменения его давления. В жидкостном термометре рабочий ход сильфона благодаря практической не­сжимаемости жидкости определяется тепловым приращением объема жидкости и эффективной площадью сильфона и не зави­сит от жесткости сильфона, в то время как давление жидкости пропорционально жесткости сильфона. В газовом термометре, наоборот, давление газа почти не зависит от жесткости сильфо­на (если пренебречь изменением его объема по сравнению с на­чальным объемом всей системы), а рабочий ход сильфона обрат­но пропорционален его жесткости.

В газовом термометре, построенном по схеме рис. 73, а, абсо­лютное давление газа (при условии постоянства его объема) равно

,

где — термический коэффициент давления,

р – начальное давление внутри баллона при .

Перемещение центра сильфона

,

где сж коэффициент линейной жесткости сильфона,

р2 давление окружающей среды.

В газовом термометре, построенном по схеме, представленной на рис. 7.3, б, возникают погрешности при изменении давления и температуры окружающего воздуха. Для исключения влияния давления окружающей среды можно применить вместо диффе­ренциального манометра манометр абсолютного давления; для уменьшения влияния температуры окружающей среды объемы соединительной трубки и упругого чувствительного элемента должны быть как можно меньшими.

Читайте также:  Закон защиты прав потребителей средства измерений

Принципиальная схема парожидкостного термометра также соответствует схеме жидкостного термометра (см. рис. 7.3), но заполняется система специальной жидкостью, кото­рая при нормальном давлении закипает при низкой температуре. К числу таких жидкостей, получивших название низкокипящих, относятся, например, метилхлорид (СН3С1), закипающий при —24° С (при р = 760 мм рт. ст.) и ацетон (С3Н6О), закипающий при + 56° С (при р = 760 мм рт. ст.).

При нагревании баллона до некоторой температуры абсолют­ное, давление в системе возрастает до определенной величины р1 , при которой часть жидкости переходит в пар и устанавливается равновесие, при котором дальнейшее испарение жидкости пре­кращается. С уменьшением температуры часть пара конденси­руется, т. е. переходит в жидкое состояние, и давление в системе уменьшается.

Давление p1 однозначно зависит от ; вид функциональной зависимости определяется только составом жидкости и не связан с формой и геометрическими размерами баллона и упругого чувствительного элемента.

В табл. 7.2 приведены характеристики некоторых низкокипя­щих жидкостей.

Нижний предел измерения ограничен температурой, при ко­торой весь пар переходит в жидкость и зависит от начального давления, при котором заполняется система. Верхний предел из­мерения ограничен критической температурой, выше которой давление резко возрастает и нарушается функциональная связь между р и .

3. Терморезисторный метод (метод термосопротивлений) [4], [9]

Терморезисторный метод измерения температуры основан на тепловом изменении электрического сопротивления проводников или полупроводников.

Верхний предел измеряемых температур зависит от материа­ла терморезистора. Применяются терморезисторы медные (до + 180° С), никелевые (до +300°С) платиновые (до +1250° С) иполупроводниковые (до + 180° С).

Подробнее приборы и датчики температуры, основанные на терморезисторном методе, рассматриваются в § 7.4.

4. Термоэлектрический метод [4], [7]

Термоэлектрический метод измерения температуры основан на возникновении контактного потенциала между двумя контак­тирующими между собой разнородными проводниками (или по­лупроводниками) при разности температур свободных и рабочего концов этих проводников.

Верхний предел измеряемых температур, определяемый глав­ным образом теплостойкостью термоэлектродов, достигает для хромель-копелевых термопар +800° С, платино-платинородиевых + 1600° С, вольфрам-молибденовых до 2400° С и т. д.

Подробнее приборы и датчики температуры, основанные на термоэлектрическом методе, рассматриваются в § 7.5.

5. Оптический метод[6]

Оптический метод измерения температуры основан на зави­симости энергии, излучаемой нагретым телом, от его темпера­туры. Яркость излучения оценивается визуально с помощью оптических устройств или преобразуется в электрический сигнал спомощью чувствительных фотоэлектрических элементов. По­строенные по этому методу приборы называют пирометрами из­лучения. Различают пирометры полного излучения (радиацион­ные), пирометры частичного излучения (яркостные) и пиромет­ры цветовые (спектрального соотношения).

На летательных аппаратах нашли преобладающее примене­ние терморезисторные датчики температуры (термосопротивле­ния) итермоэлектрические датчики (термопары) благодаря сво­ей простоте, стабильности характеристик ивозможности преоб­разования температуры непосредственно в электрическую вели­чину ‘.

Терморезисторы и термопары используются как в качестве воспринимающих устройств систем автоматического регулирова­ния и управления, так и в качестве датчиков электрических ди­станционных термометров.

Источник