Меню

Измерение температуры цифровыми датчиками



2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

Цифровые датчики температуры

Для измерения температуры различных сред — воздуха, жидкостей, твёрдых веществ, современная электроника использует специальные цифровые датчики, представляющие из себя готовые модули, подключаемые не только к Arduino, но и любой аналогичной микроконтроллерной платформе. Про их ассортимент на известных китайских (и не только) площадках, а также возможности каждого из модулей, мы сейчас и узнаем.

Датчик температуры KY-001 с интерфейсом 1-Wire

Этот датчик служит для точного измерения температуры. Связь с датчиком осуществляется по интерфейсу 1-Wire [1-2], что позволяет подключить к плате Arduino несколько подобных устройств, используя один вывод микроконтроллера [3-4]. Основой модуля является микросхема ds18b20 [5].

Размер модуля 24 х 15 х 10 мм, масса 1,3 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

На плате имеется красный светодиод, который загорается, когда совершается обмен информации.

Потребляемый ток 0,6 мА при обмене информации и 20 мкА в ждущем режиме.

Подключение данного типа датчиков к Arduino хорошо описано во многих источниках [6-8]. В данном случае снова проявляются основные достоинства Arduino – универсальность и наличие огромного количества справочной информации. Для работы с датчиком потребуется библиотека OneWire Library [9]. Загрузив программу из [8] (в первом варианте программы есть ошибка – в заголовке кода нет подключения библиотеки #include ) можно наблюдать в мониторе последовательного порта следующую информацию.

Так же автор тестировал код из [7], тут все заработало сразу, в мониторе последовательного порта можно прочитать информацию о типе подключенного датчика и собственно данные о температуре.

В целом очень полезный датчик, дающий возможность познакомиться на практике с интерфейсом 1-Wire. Корректные данные о температуре датчик выдает сразу, пользователю не нужно производить калибровку.

Модуль датчика температуры KY-013

Модуль представляет собой делитель напряжения, в одно из плеч которого включен терморезистор. Сопротивление датчика меняется при изменении температуры, второе плечо делителя образует резистор сопротивлением 10 кОм [10]. Подключение датчика аналогично фоторезистору [11].

Размер модуля 30 х 15 мм, масса 1 г. Для подключения служит трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

При изменении температуры происходит изменение сопротивления терморезистора, что приводит к изменению уровня напряжения на сигнальном выводе модуля. Если загрузить в Arduino программу AnalogInput2, то в мониторе последовательного порта среды разработки Arduino IDE можно наблюдать, как меняются показания, снимаемые с аналогового входа платы Arduino. На иллюстрации изменение показаний обусловлено нагревом терморезистора подушечками пальцев.

В общем, это один из простейших аналоговых датчиков, наряду с фоторезистором и потенциометром это датчик с которого обычно начинается изучение работы со встроенным АЦП.

Модуль датчика влажности и температуры KY-015 [12-13]

Модуль позволяет измерять температуру и влажность, передача информации осуществляется по интерфейсу 1-Wire [1-2].

Размер модуля 27 х 15 х 8 мм, масса 2,2 г. Для подключения служит стандартный трехконтактный разъем. Центральный контакт – питание +5В, контакт «-» — общий, контакт «S» — информационный.

В ждущем режиме модуль потребляет около 60 мкА, и до 3 мА при обмене данными.

Для работы датчику необходима специальная библиотека [14], для проверки работоспособности датчика был использован код, взятый из следующего источника [15]. После загрузки можно наблюдать в мониторе последовательного порта данные о температуре и влажности. Изменения показаний датчика обусловлены тем, что автор поднес его ко рту.

Следует иметь в виду, что показания датчика влажности при быстром понижении влажности становятся корректными с задержкой, достигающей 2 мин. В целом этот модуль так и просится в состав простой метеостанции или системы умного дома.

Модуль датчика температуры KY-028 [16-17]

Этот датчик предназначен для грубого измерения температуры и обнаружения превышения заданного температурного порога.

Датчик имеет габариты 45 х 15 х 13 мм, массу 2,7 г, в печатной плате модуля предусмотрено крепежное отверстие диаметром 3 мм. Чувствительным элементом датчика является терморезистор. Индикация питания осуществляется светодиодом L1.

При срабатывании датчика загорается светодиод L2.

На плате датчика расположено четыре контакта. «A0» — аналоговый выход, выходное напряжение на котором меняется при изменении сопротивления терморезистора. Если в память Arduino UNO загрузить программу AnalogInput2, то можно наблюдать следующее изменение показаний датчика при его прижатии к коже человека.

Выводы питания «G» — общий провод, «+»– питание +5В. На цифровом входе «D0» присутствует низкий логический уровень, если температура не превышает заданного порога, при срабатывании датчика низкий уровень меняется на высокий. Регулировать положение порога срабатывания датчика можно подстроечным резистором. В дежурном режиме датчик потребляет около 4 мА, при срабатывании ток возрастает до 6 мА

Модуль можно легко настроить на срабатывание от тепла тела (используется программа LED_with_button).

В целом данная часть набора оставляет весьма приятное впечатление. Во всяком случае, ни один из датчиков температуры не является просто радиоэлементом без какой-либо обвязки, непонятно зачем приделанным к плате.

Литература

1) http://cxem.net/comp/comp53.php
2) http://cxem.net/comp/comp54.php
3) http://arduino-kit.ru/catalog/id/modul-datchika-temperaturyi-ds18b20
4) http://www.zi-zi.ru/module/module-ky001
5) http://cxem.net/ckfinder/userfiles/comments/43118_ds18b20-rus.pdf
6) http://mypractic.ru/urok-26-podklyuchenie-termodatchikov-ds18b20-k-arduino-biblioteka-onewire-tochnyj-arduino-termometr-registrator.html
7) http://arduino-diy.com/arduino-tsifrovoy-datchik-temperatury-DS18B20
8) http://it-chainik.ru/podklyuchenie-datchika-temperatury-ds18b20-k-arduino/
9) https://www.pjrc.com/teensy/td_libs_OneWire.html
10) http://www.zi-zi.ru/module/module-ky013
11) http://robocraft.ru/blog/arduino/68.html
12) http://arduino-kit.ru/catalog/id/modul-datchika-vlajnosti-i-temperaturyi
13) http://www.zi-zi.ru/module/module-ky015
14) https://drive.google.com/file/d/0B-DqglGyhA7eVlAyYkhUaXYwWGc/view
15) http://роботехника18.рф/датчик-температуры-и-влажности/
16) http://arduino-kit.ru/catalog/id/modul-datchika-temperaturyi_
17) http://www.zi-zi.ru/module/modul-ky-028

Все файлы (прошивки и документация) в едином архиве. Материал подготовил специально для сайта 2 Схемы — Denev.

Читайте также:  Натуральный метод измерения производительности труда позволяет определить

Источник

Микроконтроллеры Процессоры, проекты, программирование

Nav view search

Навигация

Искать

Датчики

Полупроводниковые датчики температуры

Полупроводниковые датчики температуры предназначены для измерения температуры от -55° до 150°С. В этот диапазон попадает огромное количество задач, как в бытовых, так и в промышленных приложениях. Благодаря высоким характеристикам, простоте применения и низкой стоимости полупроводниковые датчики температуры оказываются очень привлекательными для применения в микропроцессорных устройствах измерения и автоматики.

Принцип работы

Полупроводниковые датчики температуры

Физический принцип работы полупроводникового термометра основан на зависимости от температуры падения напряжения на p-n переходе, смещенном в прямом направлении. Данная зависимость близка к линейной, что позволяет создавать датчики, не требующие сложных схем коррекции. В качестве чувствительных элементов на практике используются диоды, либо транзисторы, включенные по схеме диода. Для проведения измерений, необходимо протекание стабильного тока через чувствительный элемент. Выходным сигналом является падение напряжения на датчике.

Схемы, использующие одиночный p-n переход, отличаются низкой точностью и большим разбросом параметров, связанных с особенностями изготовления и работы полупроводниковых приборов. Поэтому промышленность выпускает множество типов специализированных датчиков, имеющих в своей основе вышеописанный принцип, но дополнительно оснащенных цепями, устраняющими негативные особенности и значительно расширяющими функционал приборов.

Аналоговые полупроводниковые датчики

Типовая схема включения полупроводникового термометра с коррекцией

Простые аналоговые полупроводниковые датчики практически в чистом виде реализуют идею измерения температуры, с помощью определения падения напряжения на p-n переходе. Для устранения всех отрицательных явлений, связанных с работой такого перехода, используется специальная схема, содержащая в своем составе два чувствительных элемента (транзистора) с различными характеристиками. Выходной сигнал формируется как разность падений напряжения на каждом чувствительном элементе. При вычитании значительно сокращаются негативные моменты. Дальнейшее повышение точности измерения осуществляется калибровкой датчика с помощью внешних цепей.

Основной характеристикой датчика температуры является точность измерений. Для полупроводниковых моделей она колеблется от ±1°С до ±3.5°С. Самые точные модели редко обеспечивают точность лучше чем ±0.5°С. При этом данный параметр сильно зависит от температуры. Как правило, в суженном диапазоне от -25° до 100°С точность в полтора раза выше, чем в полном диапазоне измерений — 40°С до +125°С. Большинство аналоговых датчиков температуры, иначе называемых интегральными датчиками, содержит три вывода и включается по схеме диода. Третий вывод обычно используется для целей калибровки. Выходной сигнал датчика представляет собой напряжение, пропорциональное температуре. Величина изменения напряжения различна и, например, составляет 10мВ/градус. Для точного определения значения температуры необходимо знать падение напряжения при каком-либо ее фиксированном значении. Обычно в качестве такового используется значение начала диапазона измерений либо 0°С.

Примеры аналоговых датчиков температуры

Модель Диапазон измерений Точность Температурный коэффициент Производитель
LM35 от -55 °С до +150°С ±2°С 10 мВ/°С National Semiconductor
LM135 от — 50°С до +150°С ±1.5°С 10 мВ/°С National Semiconductor
LM335 от — 40°С до +100°С ±2°С 10 мВ/°С National Semiconductor
TC1047 от — 40°С до +125°С ±2°С 10 мВ/°С Microchip
TMP37 от — 40°С до +125°С ±2°С 20 мВ/°С Analog Devices

Кроме простых датчиков, производители предлагают также готовые интегральные системы термостатирования. Подобные микросхемы, например LM56 от National Semiconductor, оснащены выходом для управления нагрузкой. Температура срабатывания выхода задается в виде заводской установки, либо с помощью навесных элементов, подключаемых к специальным входам задания. Невысокое качество регулирования, обеспечиваемое данными элементами, компенсируется их простотой использования и сверхнизкой стоимостью готовых систем управления.

Полупроводниковые датчики с цифровым выходом

Технология изготовления полупроводниковых термометров позволяет размещать их на кристаллах интегральных микросхем. Температурные датчики можно встретить в составе микропроцессоров и микроконтроллеров, служебных мониторов микропроцессорных систем, а также в других измерительных устройствах, например датчиках влажности. Возможен и противоположный вариант — добавления различных элементов к датчикам. Примером подобных изделий могут служить датчики температуры с цифровым выходом. В отличие от аналоговых вариантов, эти устройства содержат встроенный АЦП и формирователь сигналов какого-либо стандартного интерфейса. Наибольшую популярность получили интерфейсы SPI, I2C и 1-Wire. Использование термометров с цифровым выходом значительно упрощает схемотехнику измерительного устройства, при незначительном увеличении стоимости относительно аналоговых вариантов. Также использование стандартных интерфейсов позволяет интегрировать датчики в различные системы управления или подключать несколько датчиков на одну шину. Программирование протокола обмена с большинством датчиков не представляется сложной задачей, что обусловило огромную популярность применения этих элементов в любительской практике и мелкосерийном производстве.

Источник

Виды датчиков температуры и особенности их применения

Проконтролировать степень нагрева любого объекта независимо от его агрегатного состояния помогают специальные устройства — датчики температуры. Их принцип работы и исполнение могут существенно отличаться. Это позволяет подобрать оптимальный вариант в зависимости от преследуемых целей. Зная для чего предназначено устройство, стоит разобраться, как подключить прибор, чтобы он позволил снимать показатели с заданной точностью.

Основные разновидности

Чтобы было проще выбрать подходящую модель, стоит рассмотреть основные виды датчиков температуры, разобраться с их устройством и конструктивными особенностями. Это позволит определиться с наилучшим решением для конкретной ситуации.

Термопара

В состав температурного датчика входят две проволоки, изготовленные из разных металлов. Концы этих проволочек образуют контакт, формируемый посредством скручивания, сваркой встык либо путем формирования узкого сварного шва. Этот контакт называют горячим спаем.

К свободным концам крепятся компенсационные провода, используемые для присоединения измерительного прибора либо автоматического устройства управления. Контакт, образующийся в этих точках соединения, называют холодным спаем.

Читайте также:  Измерение кифоза по чаклину

Когда концы проводов оказываются в зонах, нагретых до различной температуры, внутри термодатчика формируется электрический ток. Его сила напрямую зависит от материалов, которые использовались при изготовлении термопары, и может варьироваться в широком диапазоне.

Наибольшее распространение получили термопары:

  • Хромоалюминиевые;
  • Железоникелевые;
  • Медно-константановые и другие.

Внимание! Стоимость термопары напрямую зависит от вида материала, который использовался для изготовления проволок.

Термопара позволяют определять температуру с достаточно высокой точностью. Однако получить искомый параметры бывает достаточно сложно. Принцип работы датчика предполагает наличие разности температур между разъемами. Используется так называемый термоэлектрический эффект. Горячий спай должен находиться внутри вещества, степень нагрева которого предстоит проконтролировать. Холодный — в окружающей среде.

Терморезисторы

Для подобных приборов характерен более простой принцип работы. Они используют зависимость сопротивления материала от степени нагрева окружающего воздуха. Делятся на отрицательные (NTC) и положительные (PTC). Наибольшую точность демонстрируются температурные датчики, для изготовления которых использовалась платина.

Параметры работы терморезисторов определяются двумя характеристиками:

  • базовое сопротивление;
  • температура, при которой был найден первый параметр.

Согласно ГОСТ базовое сопротивление должно определяться при 0 °С с использованием нескольких номинальных сопротивлений и температурным коэффициентом, зависящим от значения сопротивления при искомой и нулевой температуре. Для расчета используется специальная формула.

В нормативном документе также можно найти табличное значение температурного коэффициента для термопар, изготовленных из никеля, платины и меди, и коэффициенты полинома, позволяющие рассчитать температуру объекта в зависимости от действительного значения сопротивления.

Проблемой терморезистора считается низкий температурный коэффициент сопротивления. Порядок использования напрямую зависит от комплектации конкретной модели. Базовые включаются в цепь с источника и контролируемого дифференциального напряжения. Для более точного определения предпочтительно использование аналого-цифровых преобразователей. При наличии в датчике аналогового выхода оцифровка значение осуществляется путем подключения терморезистора к преобразователю.

Комбинированные

В состав устройства входит несколько проводников, формирующих единое устройство. У некоторых моделей имеется встроенный цифровой интерфейс. К комбинированным датчикам прибегают, если надо подключить устройства параллельно. Такое устройство позволяет произвести расчеты с погрешностью в 2 °С. Однако необходимо оптимизировать интерфейс.

Цифровые

Имеют трехвыводную микросхему. Для считывания показателей используются несколько датчиков, работающих параллельно. Они снимают показания с достаточно высокой точностью. Около 0.5 °С. Могут эксплуатироваться в широком температурном диапазоне. Однако для получения искомого значения необходимо много времени, порядка 750 секунд. Уменьшить время можно путем регулировки параметров.

Бесконтактные

В состав устройства входит тонкая пленка, нагреваемая под воздействием инфракрасных лучей. Такие термодатчики устанавливаются внутрь пирометров, позволяющих определить степень нагрева объекта на расстоянии. Это актуально при измерении температуры тел, разогреваемых до достаточно высокой температуры. В такой ситуации использование контактных устройств становится невозможным. Однако точность показаний в этом случае остаточно низкая.

Существуют также бесконтактные датчики для измерения степени нагрева металла. Благодаря такому прибору, подключенному к специальному оборудованию, удается проконтролировать состояния сплава, нагретого до температуры более 1000 °С. Это подходящий вариант для литейных и прокатных предприятий, кузнечнопрессового производства и ряда специализированных предприятий, занимающихся выпуском огнеупорных материалов.

Кварцевые

Актуальны для объектов, уровень нагрева которых выходит за стандартные значения. Они востребованы, если температура колеблется в интервале от −80 °С до 250 °С. Их принцип работы основан на использовании частотной зависимости. Может выполнять несколько функций, зависящих от расположения среза по осям кристалла.

Для датчиков кварцевого типа характерна высокая стабильность, разрешение и точность определения искомого параметра. Считаются более предпочтительными при измерении искомого параметра. Чаще всего устанавливаются внутрь цифровых термометров.

Шумовые

Позволяет снять показания, используя разность потенциалов на резисторе. Последняя зависит от степени нагрева устройства. Для использования подобного прибора надо знать одну из температур. Сравнивая два полученных шума, от известной и найденной температуры, определяются искомый параметр.

Благодаря принципу работы такого датчика можно менять температуру в интервале от −270 °С до +1100 °С. При этом имеется возможность изменения показателей в термодинамике, однако реализовать данный способ на практике достаточно сложно.

Ядерного квадрупольного резонанса

Биметаллический терморегулятор использует момент ядра, образующегося при отклонении заряда от симметрии сферы и градиент поля тока решетки кристалла. На частоту влияет градиент поля решетки, который может меняться в достаточно широком диапазоне в зависимости от вещества. Чем выше степень нагрева объекта, тем выше частота.

ЯКР образует ампулу, внутрь которой помещено вещество. Она помещается внутрь обмотки индуктивности для дальнейшего соединения с контуром генератора. При совпадении частот энергия, излучаемая генератором, поглощается. Если измерения производятся на морозе, погрешность составляет 0.02 градуса. При нагреве до 27 °С точность измерения повышается. К преимуществам стоит отнести стабильность показателей. Однако преобразующая функция является нелинейной.

Объемные

Биметаллическое устройства в своей работе использует способность материала расширяться и сжиматься при изменении температуры. Диапазон действия напрямую зависит от стабильности материала. Температура может варьироваться от −60 °С до +400 °С. Погрешность варьируется в интервале 1–5 %.

Если устройство используется для измерения степени нагрева жидкости, точность измерения повышается и погрешность снижается до 1–3 %, зависит от среды. На интервал работы также влияет температура, при которой закипает либо замерзает жидкость.

Канальный

К данному типу относятся все цифровые модели, использующие для передачи сигнала каналы. Канальность устройства зависит от количества задействованных «магистралей». У одной модели может быть один канал, у другой три.

Читайте также:  Определение единиц измерения магнитного потока

Назначение

Необходимость в использовании датчиков, контролирующих температурные параметры, может возникнуть в различных ситуациях. Это универсальные приборы используются повсеместно на предприятиях, где стабильность температурных параметров способно нанести вред качеству выпускаемой продукции либо повлиять на технические характеристики эксплуатируемого оборудования.

Их активно подключают на предприятиях нефтегазового и энергетического комплекса, обеспечивается реализация технологических процессов на литейном, машиностроительном, прокатном производстве, при изготовлении металлоконструкций и выполнении механической обработки. Они незаменимы в транспортной индустрии, на предприятиях пищевой промышленности, в фармацевтики, сельском хозяйстве.

  • контролирует протекание химических реакций;
  • проводятся научные исследования;
  • обеспечивается поддержание степени нагрева обрабатываемого изделия в заданном диапазоне;
  • поддерживаются оптимальные температурные параметры в различных узлах автомобильного и железнодорожного транспорта;
  • создаются нужные условия для обработки зерна и при производстве комбикорма;
  • измеряется температура конкретного объекта с заданной точностью;
  • реализуется обратная связь, благодаря которой удается избежать преждевременного выхода оборудования из строя.

Внимание! Термопары могут не только использоваться для контроля температуры, но и выступать в качестве источника энергии.

Как выбрать

Чтобы определиться с тем, какой датчик для измерения температуры нужен, стоит учесть ряд параметров. При правильном подборе, удастся обеспечить комфортную работу прибора. Внимания заслуживает:

  • Рабочая температура. Устройства конкретного типа ориентированы на использование в определенном температурном диапазоне. При этом учитывается погрешность, с которой определяются результаты. При небольших перепадах, можно воспользоваться термисторами. Если эксплуатация будет производиться в достаточно жестких условиях, стоит выбрать приборы шумового типа;
  • Условия проведения замеров. Схема подключения может отличаться. Одни устройства позволяют поместить термометр внутрь материала, другие допускают измерения только снаружи. Радиационные модели позволят снять показания через преграду. При наличии агрессивной среды предпочтительны модели в коррозионно-стойком корпусе либо выносные датчики бесконтактного типа;
  • Время до замены либо калибровки. Зависит от условий работы. Датчик температуры воздуха может эксплуатироваться в обычных условиях, при повышенной влажности, пожароопасности, в условиях окислительной среды. Если калибровка невозможна, устройство придется заменить;
  • Величина выходного сигнала. Его параметры должны соотноситься с возможностями электроприборов и учитывать порядок дальнейшей обработки. Параметры выходного сигнала зависят от показателей температуры, которые в дальнейшем будут преобразованы в энергию.
  • Погрешность. Для измерения показателей с высокой точностью потребуется больше времени. Наибольшей точностью обладают цифровые модели датчиков, измеряющих температуру воздуха в помещении. Биметаллический термометр, использующий принцип ЯКР, позволяет снять показания быстрее прочих аналогов;
  • Разрешение. Влияет на точность производимых измерений. При работе в малом режиме 0.5 °С, в максимальном — 0.625 °С;
  • Напряжение. Сопротивление резистора существенно влияет на выходное напряжение. Последнее бывает линейным и нелинейным. Температура объекта влияет на эталонные величины, устанавливаемые на выводах термометра каждого датчика;
  • Время сработки. Влияет на скорость получения замеров. Быстрые замеры получаются с большой погрешность. Если требуется точность, придется пренебречь временем срабатывания.

Где купить

Различные датчики всегда можно купить в близлежащем специализированном магазине. Но существует другой вариант, который недавно получил ещё и значительные улучшения. Долго ждать посылку из Китая больше не требуется: в интернет-магазине АлиЭкспресс появилась возможность отгрузки с перевалочных складов, расположенных в различных странах. Например, при заказе вы можете указать опцию «Доставка из Российской Федерации».

Переходите по ссылкам и выбирайте:

Порядок подключения

Схема подключения датчика температуры может существенно отличаться. Все зависит от того, какой разновидности отдано предпочтение. Прежде чем приступить к монтажу, надо определиться с требуемой точностью и назначением прибора. Если он будет использоваться для контроля температуры воздуха внутри помещения, потребуется одна схема. Если понадобиться измерить степень нагрева вещества, придется воспользоваться другой.

Как подключить кремниевый

Для подключения датчика температуры кремниевого типа может использоваться схема:

  • 2-х проводная. Актуальна при отсутствии повышенных требований к высокой точности, так как в этом случае к измеренному сопротивлению добавляется сопротивление присоединенных проводов. Это существенно увеличивает величину дополнительной погрешности;
  • 3-х проводная. Установка датчика температуры по данной схеме позволяет повысить точность. Такое подключение допускает измерение сопротивления проводов, а затем вычесть полученное значение из измеренного;
  • 4-х проводная. По такой схеме устройство подключается таким образом, чтобы полностью исключить влияния подводящих проводов. Это позволяет избавиться от дополнительной ошибки и существенно повысить точность контроля.

Как подключить термопару

Для подключения холодных концов используются компенсационные провода либо монтаж производится напрямую к клеммам аналогового входа. При этом важно соблюдать полярность на входе в промышленный контроллер, используемый для программной компенсации температуры холодного спая и последующего расчета температуры в заданной точке.

Внутреннюю компенсацию выполняют с использованием температуры модуля, используемого для подключения термопары. Для точной внешней компенсации температуру холодного спая контролируют дополнительным термометром сопротивления, подключаемым к специальному входу.

Как воспользоваться бесконтактным устройством

У датчиков температуры бесконтактного типа есть особенность определения степени нагрева устройства. Непосредственное подключение в этом случае не требуется. Устройство приближается к контролируемому объекту и обеспечивается его совмещение с соответствующим датчиком. Это оказывает существенно влияние на конечный результат, который во многом зависит от опыта и знаний специалиста, производящего измерения. Если поменяем бесконтактное устройство на контактную модель, точность увеличится.

На схеме, приводимой в инструкции к конкретному устройству, указан порядок подключения и последующей эксплуатации датчика температуры. Прежде чем приступить к монтажным работам, стоит с ней тщательно ознакомиться, чтобы избежать типовых ошибок, допускаемых неопытными пользователями при самостоятельном выполнении монтажных работ.

Видео по теме

Источник