- 8. Требования к электрохимической защите
- 8.1. Общие требования
- 8.2 Требования к электрохимической защите при наличии опасного влияния блуждающих токов и индуцированных переменных токов
- 8.3 Требования к протекторной защите
- Технология и основные методы катодной защиты от коррозии
- Основные технологии катодной защиты
- 1 способ
- 2 способ
- Технология катодной поляризации
- Технология создания станций защиты
- Автоматизация
- Особенности катодной защиты труб
- Электрический потенциал
- Выбор способа
- Особенности катодной защиты автомобилей
- Дополнительная обработка
- Заключение
8. Требования к электрохимической защите
8.1. Общие требования
8.1.1 Электрохимическая защита должна обеспечивать непрерывную по времени катодную поляризацию подземных сооружений, подлежащих защите в соответствии с 6.6, 6.8-6.11 настоящего стандарта, в течение всего срока их эксплуатации.
8.1.2 Дополнительные требования к электрохимической защите объектов магистральных трубопроводов определены в ГОСТ 25812.
Примечание. Для трубопроводов, транспортирующих углеводороды с давлением среды свыше 1,2МПа (категория 1а) рекомендуется применять требования к электрохимической защите, соответствующие требованиям ГОСТ 25812.
8.1.3 Средства электрохимической защиты, предусмотренные проектом, вводят в действие в зонах опасного влияния блуждающих токов не позднее одного месяца, а в остальных случаях — не позднее трех месяцев после укладки сооружения в грунт. Если предусматриваются более поздние сроки окончания строительства и ввода в эксплуатацию средств электрохимической защиты, то необходимо предусмотреть временную электрохимическую защиту с указанными в настоящем пункте сроками ввода в эксплуатацию.
8.1.4 Сооружения, температура металла которых весь период эксплуатации ниже чем 268К (минус 5°С), не подлежат электрохимической защите, при отсутствии опасного влияния блуждающих и индуцированных токов, вызванных сторонними источниками. Сбор исходных данных о коррозионной ситуации на проектируемом участке сооружения для принятия решения об отказе от применения электрохимической защиты сооружения должен осуществляться в период максимального растепления грунта и его естественного увлажнения.
8.1.5 Допускается не предусматривать электрохимическую защиту стальных вставок, стальных футляров (кожухов) в составе линейной части неметаллических трубопроводов, участков соединений неметаллических газопроводов со стальными вводами в дома (при наличии на вводе электроизолирующих вставок) с защитным покрытием усиленного типа, длиной не более 10м. При этом засыпку траншеи в той ее части, где проложена стальная вставка, по всей глубине заменяют на песчаную.
8.1.6 Для контроля эффективности электрохимической защиты сооружения измеряют потенциалы на защищаемом сооружении в контрольно-измерительных пунктах, на вводах в здания и других элементах сооружения, доступных для проведения измерения.
8.1.7 Места размещения контрольно-измерительных пунктов магистральных трубопроводов определены в ГОСТ 25812. Для остальных сооружений контрольно-измерительные пункты устанавливают с интервалом не более 200м в пределах поселения и не более 500м — вне пределов поселения, в том числе:
— в пунктах подключения дренажного кабеля к сооружению;
— на границах зоны защиты установки катодной защиты и границах зон защиты смежных установок катодной защиты;
— в местах максимального сближения сооружения с анодным заземлителем;
— в местах пересечения с автомобильными дорогами и железнодорожными путями с контролем параметров электрохимической защиты по обе стороны от пересечения;
— в местах подземного расположения электроизолирующих вставок.
Примечание. Для трубопроводов, транспортирующих углеводороды с давлением среды свыше 1,2 МПа (категория 1а) рекомендуется места размещения контрольно-измерительных пунктов определять в соответствии с требованиями ГОСТ 25812.
8.1.8 Измерение поляризационных потенциалов (потенциалов без омической составляющей) проводят следующими методами (см. приложение X):
— метод отключения тока поляризации датчика потенциала (вспомогательного электрода), имитирующего дефект в защитном покрытии;
— метод отключения тока защиты подземного сооружения;
— метод непосредственного измерения потенциала вспомогательного электрода через электролитический ключ, максимально приближенный к вспомогательному электроду.
Примечание. При использовании для измерения любых датчиков потенциала (вспомогательных электродов), рекомендуется определить соотношение размеров датчика (вспомогательного электрода) и среднего значения размеров дефектов защитного покрытия на контролируемом участке сооружения для учета при оценке результатов измерений согласно основным закономерностям теории электрического поля в грунте.
8.1.9 Катодную поляризацию сооружений осуществляют таким образом, чтобы защитные потенциалы металла относительно насыщенного медно-сульфатного электрода сравнения находились между минимальным и максимальным (по абсолютному значению) значениями в соответствии с таблицей 4. Допускается применение других неполяризующихся электродов сравнения с приведением результатов измерения к насыщенному медно-сульфатному электроду сравнения.
Таблица 4. Защитные потенциалы металла сооружения относительно насыщенного медно-сульфатного электрода сравнения
Сооружения и условия их эксплуатации | Минимальный защитный потенциал(1) относительно насыщенного медно-сульфатного электрода сравнения(2), В | Максимальный защитный потенциал(1) относительно насыщенного медно-сульфатного электрода сравнения(2), В | ||
---|---|---|---|---|
Поляризационный потенциал (без омической составляющей) | Суммарный (с омической составляющей) | Поляризационный потенциал (без омической составляющей) | Суммарный (с омической составляющей) | |
Действующие стальные сооружения до их реконструкции(3); | ||||
С температурой поверхности (транспортируемого продукта) не выше 40°С | ||||
-0,85 | -0,9 | -1,15 | -2,5 | |
С температурой поверхности (транспортируемого продукта) свыше 40°С; сооружения при опасности биокоррозии | -0,95 | -1,05 | -1,15 | -3,5 |
Вновь построенные и реконструированные сооружения: | ||||
С температурой поверхности (транспортируемого продукта) не выше 40°С | -0,85 | — 0,95 | -1,2 | -3,5 |
С температурой поверхности (транспортируемого продукта) свыше 40°С, не имеющие теплоизоляции | -0,95 | -1,05 | — 1,1 | -3,5 |
(1) Здесь и далее под минимальным и максимальным значениями потенциала подразумевают его значения по абсолютной величине.
(2) Электроды сравнения обеспечивают стабильность потенциала по отношению к образцовому электроду сравнения по ГОСТ 17792 в пределах ±15мВ.
(3) Показатели относятся к сооружениям, для которых проектными решениями не был предусмотрен контроль поляризационного потенциала. Допускается оценивать защищенность только по величине потенциала с омической составляющей, который для действующих стальных сооружений с температурой поверхности (транспортируемого продукта) не выше 40°С, с покрытием на основе битумной мастики не отрицательнее минус 2,5В относительно насыщенного медно-сульфатного электрода сравнения.
8.1.10 Катодную поляризацию трубопроводов с теплоизоляцией, в том числе тепловых сетей и горячего водоснабжения бесканальной прокладки, а также канальной прокладки при расположении анодного заземления за пределами канала, проводят таким образом, чтобы потенциал с омической составляющей (суммарный потенциал) трубопровода был в пределах от минус 1,1 до минус 2,5В по медно-сульфатному электроду сравнения. При отсутствии защитного изоляционного покрытия на наружной поверхности трубопровода, его потенциал с омической составляющей трубопровода должен находиться в пределах от минус 1,1 до минус 3,5В по медно-сульфатному электроду сравнения.
8.1.11 Катодную поляризацию трубопроводов тепловых сетей и горячего водоснабжения канальной прокладки применяют при расположении анодных заземлений в канале или вне канала. При расположении анодных заземлений в канале потенциал трубопровода, измеренный относительно установленного у поверхности трубы вспомогательного стального электрода, поддерживают на 0,3-0,8В отрицательнее потенциала трубы относительно этого электрода, измеренного при отсутствии катодной поляризации трубы. Измерение потенциала трубопровода при расположении анодного заземления в канале приведено в приложении Ш.
8.1.12 Катодную поляризацию подземных металлических сооружений осуществляют так, чтобы она не оказывала опасного влияния на смежные подземные металлические сооружения. Если при осуществлении катодной поляризации возникнет опасное влияние на смежные подземные металлические сооружения, то необходимо принять меры по его устранению или выполнить совместную защиту этих сооружений.
Примечание. Опасным влиянием катодной поляризации защищаемого сооружения на соседние металлические сооружения в соответствии с 5.11 считают:
— уменьшение по абсолютной величине минимального или увеличение по абсолютной величине максимального защитного потенциала на соседних металлических сооружениях, имеющих электрохимическую защиту;
— появление опасности коррозии на соседних подземных металлических сооружениях, ранее не требовавших защиты от нее.
8.1.13 Для повышения эффективности электрохимической защиты и ограничения опасного влияния на соседние металлические сооружения, а также электрического секционирования трубопроводов, проходящих в зонах воздействия блуждающих токов, необходимо предусматривать электроизолирующие вставки (фланцы, муфты и т.п.) в соответствии с нормативной документацией. Места их установки определяются проектом.
8.1.14 Контроль работы установок электрохимической защиты в эксплуатационных условиях заключается в периодическом осмотре, оценке технического состояния и проверке эффективности их работы. При значительных изменениях, связанных с развитием сети подземных металлических сооружений и источников блуждающих и индуцированных токов, проводят дополнительный контроль.
8.1.15 Контроль непрерывности работы (перерывов в работе) установок катодной защиты должен быть обеспечен с учетом времени на производство плановых регламентных и ремонтных работ в процессе эксплуатации. Перерывы в работе установок катодной защиты допускаются только для проведения плановых работ. Работу по внеплановому ремонту вышедших из строя установок электрохимической защиты классифицируют как аварийную.
8.1.16 Если в зоне действия вышедшей из строя установки электрохимической защиты защитный потенциал трубопровода обеспечивается соседними (смежными) установками защиты (перекрывание зон защиты), то срок устранения неисправности определяется техническим руководителем эксплуатационной организации.
8.1.17 Стальные трубопроводы, реконструируемые методом санирования (облицовки внутренней поверхности трубы) с помощью полимерных материалов, как правило, подлежат защите в соответствии с 8.1.9. Стальные трубопроводы, реконструируемые методом протяжки неметаллических труб, подлежат защите на тех участках, где стальная труба необходима как защитный футляр (под автомобильными, железными дорогами и др.) с учетом 8.1.5.
8.1.18 Стальные футляры (кожухи) трубопроводов под автомобильными дорогами, железнодорожными и трамвайными путями при бестраншейной прокладке (прокол, продавливание и другие технологии, разрешенные к применению), как правило, защищают защитными покрытиями и средствами электрохимической защиты в соответствии с 6.6 и 8.1.9.
8.1.19 В качестве футляров (кожухов) рекомендуется использовать трубы с внутренним защитным покрытием.
8.1.20 Если обеспечение защитных потенциалов по 8.1.9 на действующих трубопроводах, транспортирующих среды температурой не выше 40°С и длительное время находившихся в эксплуатации в коррозионно-опасных условиях, экономически нецелесообразно, по согласованию с проектной и обследующей организациями допускается применять в качестве минимального поляризационного защитного потенциала трубопровода его значение на 100мВ отрицательнее стационарного потенциала. Стационарный потенциал трубопровода определяют по датчику потенциала (вспомогательному электроду) (см. приложение Щ).
Примечание. Минимальный защитный поляризационный потенциал — более отрицательный, чем минус 0,65В.
8.2 Требования к электрохимической защите при наличии опасного влияния блуждающих токов и индуцированных переменных токов
8.2.1 Защиту стальных подземных трубопроводов от коррозии, вызываемой блуждающими постоянными токами от электрифицированного транспорта, а также переменными токами, в том числе индуцированными от высоковольтных линий электропередач, обеспечивают в опасных зонах, независимо от коррозионной агрессивности грунтов, средствами электрохимической защиты.
8.2.2 Защиту сооружений от опасного влияния блуждающих постоянных токов осуществляют так, чтобы исключить образование на сооружении знакопеременных или стационарных анодных зон.
Допускается кратковременное анодное смещение потенциала сооружения относительно стационарного потенциала, суммарной продолжительностью не более 4 мин в сутки.
8.2.3 Определение смещений потенциала (разность между измеренным потенциалом сооружения и стационарным потенциалом) проводят в соответствии с приложением Д.
Примечание. При отсутствии данных о стационарном потенциале его значение для стали принимают равным минус 0,70В.
8.2.4 В условиях опасного влияния блуждающих постоянных токов при защите стальных трубопроводов и резервуаров с температурой транспортируемого (хранимого) продукта не выше 40°С в грунтах высокой коррозионной агрессивности, трубопроводов оросительных систем и систем обводнения в грунтах средней коррозионной агрессивности, трубопроводов сельскохозяйственного водоснабжения и резервуаров траншейного типа, независимо от коррозионной агрессивности грунтов, средние значения поляризационных и суммарных потенциалов должны быть в пределах, указанных в 8.1.9.
8.2.5 Применение дренажной защиты должно обеспечивать выполнение требований 8.1.9. Если применение поляризованных дренажей неэффективно, то используют катодную защиту, защиту усиленными дренажами или катодную защиту совместно с поляризованным дренажом; электрическое секционирование трубопроводов с применением электроизолирующих вставок.
8.2.6 Подключение дренажных устройств к рельсовым путям производится в соответствии с требованиями НД. Не допускается непосредственно присоединять установки дренажной защиты к отрицательным шинам и к сборке отрицательных линий тяговых подстанций электрифицированного транспорта.
8.3 Требования к протекторной защите
8.3.1 Защиту с использованием протекторов (гальванических анодов) рекомендуется применять при обеспечении токоотдачи единичного протектора не менее 50мА:
— для отдельных участков трубопроводов небольшой протяженности (не имеющих электрических контактов с другими сооружениями) при отсутствии или при наличии опасности блуждающих постоянных токов, если вызываемое ими среднее смещение потенциала от стационарного не превышает плюс 0,3В;
— для участков трубопроводов, электрически отсоединенных от других коммуникаций электроизолирующими вставками;
— при относительно малых расчетных значениях токов (менее или равных 1А);
— как дополнительное средство защиты, когда действующие (предусмотренные проектом) средства электрохимической защиты не обеспечивают защиту отдельных участков трубопроводов;
— для защиты от опасного влияния переменного тока.
8.3.2 Протекторную защиту трубопроводов тепловых сетей и горячего водоснабжения применяют только при их прокладке в каналах с размещением протекторов (гальванических анодов) в канале или непосредственно на поверхности трубопроводов.
Источник
Технология и основные методы катодной защиты от коррозии
Для металлических листов и деталей применяют разные технологии антикоррозийной защиты. Большое распространение получила катодная защита от коррозии. Этот способ обладает рядом характерных особенностей, а чаще всего катодную защиту применяют для крупных объектов. Это могут быть трубы, автомобили, металлические свайные конструкции, морские судна. Как именно происходит защита трубопроводов от коррозии на физическом и химическом уровне?
Основные технологии катодной защиты
Катодная защита — это специальный метод электрохимической защиты металлических объектов от ржавления и коррозии. Главный принцип заключается в том, что на защищаемый металлический объект накладывается отрицательный потенциал электрического тока. Это позволяет минимизировать контакт металла с внешними ионами и веществами, обладающими электрическим зарядом. Технология была разработана примерно 200 лет назад британским ученым Гемфри Дэви. Для подтверждения своей теории он составил несколько докладов, которые были переданы правительству. На основании этих докладов было произведена первая в мире катодная защита крупного промышленного корабля.
Антикоррозийная защита распространяется на различные объекты — трубопроводы, автомобили, дороги, самолеты и так далее. Обратите внимание, что тип металла значения не имеет — это может быть железо, медь, серебро, золото, алюминий, титан и любой другой металл, а также различные сплавы (с лигирующими добавками или без них). Одинаково успешно может выполняться защита от коррозии автомобиля, отдельных фрагментов труб, различных декоративных изделий сложной формы и так далее.
1 способ
Подключение детали к внешнему источнику электрического тока (обычно эту роль выполняются компактные подстанции). В случае применения технологии металлический объект выполняет функцию катода, а электрическая подстанция — функцию анода. Благодаря этому происходит сдвиг электрического потенциала, что позволяет защитить металлический объект от электрически активных частиц. Основные сферы применение данной технологии — защита трубопроводов, сварных конструкций, различных платформ, элементов дорожного покрытия и так далее. Эта технология является достаточно простой и универсальной, поэтому в мире она пользуется высокой популярностью. Ее главный минус — необходимость подключения защитного контура к внешнему источнику тока, что может быть неудобно в случае объектов, которые располагаются вдали от человеческой цивилизации (частично эта проблема решается за счет применения автономных источников энергии).
2 способ
Метод гальванической поляризации (технология гальванических анодов). Эта методика также является достаточно простой и интуитивно понятной: металлический объект присоединяется к другому, который обладает отрицательным зарядом (чаще всего этот элемент из легких металлов — из алюминия, цинка, магния). Технологию гальванической поляризации обычно применяют в тех случаях, когда на поверхности объекта есть защитный слой. Эта технология популярна в Америке, где есть большое количество малонаселенных пунктов и где наблюдается дефицит внешних источников энергии. Эксперты утверждают, что гальваническая поляризации могла бы стать очень популярной в России из-за особенностей нашей географии, если бы на отечественные трубопроводы наносилось защитное покрытие (при таком сценарии применение первой технологии было бы весьма затруднительно, что вынуждало бы людей искать альтернативу).
Технология катодной поляризации
В данном случае используется так называемый наложенный ток. Для его подачи на металлический объект используется внешний проводник (часто) или источник тока (редко). При контакте с электрически активной частицей происходит следующее — частица под действием сил электрического притяжения перемещается к защитному элементу с отрицательным зарядом, где происходит «утилизация» этих частиц.
Последствия такой «утилизации» очевидны — защитный элемент со временем сам покрывается коррозией и приходит в негодность. Поэтому данную технологию очень часто называют методом жертвенного электрода (вместо нашей детали происходит ржавление «электрода-жертвы»).
Помимо силы тока и напряжения при работе с катодной поляризацией нужно учитывать еще один важный параметр — это омическое напряжение. В техническом смысле этот параметр отражает тот факт, что по мере протекания электрического заряда со временем напряжение тока в контуре падает. Само падение происходит из-за того, что протекание катодного тока происходит по контуру с более низким зарядом. В случае правильной сборки контура этот показатель является достаточно маленьким — благодаря этому в контуре будет всегда сохраняться один и тот же ток одинаковой мощности.
Технология создания станций защиты
Еще одной технологией создания катодной защиты является подключение элемента к внешним источникам тока. В большинстве случаев для этих целей сооружаются специальные станции катодной защиты (СКЗ), которые состоят из нескольких элементов — главный источник тока, анодное заземление, различные кабели и провода, соединяющие отдельные элементы конструкции и вспомогательные пункты с механическим или компьютерным управлением, которые позволяют контролировать параметры.
Чаще всего данная технология используется для объектов, расположенных рядом с проводами электропередач — это могут быть трубопроводы, различные фабричные постройки и так далее. СКЗ могут работать во многопоточном режиме — в таком случае они будут обслуживать сразу несколько защитных систем. На трубах большое распространение получила практика, при которой на трубы ставится несколько отдельных блоков для более эффективного распределения тока. Дело все в том, что в случае протяженных трубопроводов в местах подключения труб к источникам тока формируются специальные точки с повышенным уровнем напряжения электрического поля — из-за этого может происходить повреждение труб. Применение подобных блоков позволяет распределить электричество равномерно по всему защитному контуру.
Автоматизация
Контрольные пункты могут работать как в ручном, так и в автоматическое режиме:
- В случае ручного управления изменение параметров напряжения регулируется оператором. На физическом уровне регуляция осуществляется путем переключения работы трансформатора. Регулируется работа обмотки, что позволяет менять параметры электрического тока.
- В случае автоматического управления изменение параметров напряжения регулируется самим устройством на основе параметров, которые когда-то задал оператор. На физическом уровне управление осуществляется с помощью специальных полупроводников-тиристоров. Они включаются или выключаются при отклонении параметров электрического тока от заданных параметров.
Особенности катодной защиты труб
Коррозия в трубопроводах обычно возникает из-за различных дефектов и повреждений труб — разрывы, растрескивание, появление щелей и так далее. Из-за коррозии нарушается герметизация труб, что может привести к полной или частичной поломке трубопровода. Особенно остро эта проблема стоит для подземных трубопроводов. При расположении труб под землей создаются участки с разным электрическим потенциалом. Это связано с неоднородностью грунта и наличия в земли различного мусора неорганического происхождения. При наличии серьезной разности потенциалов отрицательно заряженные ионы в земле начинают вступать в реакцию в металлом. Это приводит к коррозии, которая быстро разрушает трубопровод.
Электрический потенциал
Катодная защита трубопроводов от коррозии осуществляется по двум стандартным схемам. С помощью катодной поляризации и с помощью создания внешних станций. Защита трубопроводов должна быть направлена в первую очередь на снижения скорости разрушения материала трубы. Делается это с помощью уменьшения электрического потенциала трубы в сравнении с электрическим потенциалом грунта:
- Электрический потенциал большинства современных труб составляет приблизительно 0,8-0,9 вольт.
- Экспериментальным путем было показано, что основные породы грунта обладают потенциалом приблизительно 0,5-0,6 вольт.
Для уравнения электрических потенциалов необходимо снизить потенциал труб всего на 0,3-0,4 вольт. Это позволяет практически полностью остановить появление ржавчины. В случае правильного проведения работ скорость естественного ржавления составит менее 1 мм в год.
Выбор способа
Для труб подходит технология создания внешних станций защиты. В качестве источников питания в данном случае используют воздушные электролинии с напряжением от 500 до 10000 вольт. Чем больше напряжение, тем больше труб можно обслужить. Иногда таких линий нет на том или ином участке. В таком случае имеет смысл монтаж различных генераторов.
У технологии внешних станций есть один крупный недостаток. Для создания защиты придется проводить трудоемкие и сложные работы. Это значительно увеличивает стоимость создания трубопровода. При работе с большим напряжением в точке подачи электричества может создаваться избыточное электрическое напряжение — из-за этого может возникнуть водородное растрескивание труб, поэтому при проведении монтажных работ разводку электричества нужно производить аккуратно.
Вместо технологии защитных станций можно использовать методику применения гальванических анодов для создания эффекта поляризации. Эта технология подходит для грунтов с малым удельным сопротивлением (до 50 Ом на 1 кв. м). Если же удельное сопротивление грунта будет очень большим, то технология применения гальванических анодов является практически бесполезной в связи с ее малой эффективностью.
Особенности катодной защиты автомобилей
Коррозия на автомобилях часто появляется внезапно. Скорость её распространения очень высокая, поскольку у авто есть большое количество подвижных элементов. Во время эксплуатации в таких элементах могут образовываться различные маленькие трещины и вмятины. Это значительно увеличивает риск появления коррозии. Катодная защита автомобиля от коррозии обычно осуществляется путем перераспределения электрического потенциала.
Обычно используются специальные электронные модули, которые имеют компактные размеры и монтируются внутри автомобиля. Монтаж подобных блоков занимает не более 20 минут.
Дополнительная обработка
Также стоит обратить внимание, что метод катодной защиты обычно комбинируется с другими техниками:
- Все основные детали автомобиля покрываются специальными красками и мастиками. Они создают на поверхности металла защитный слой. Этот слой обладает электрической нейтральностью. Поэтому при контакте с электрически активными веществами или ионами ржавление не происходит.
- Некоторые элементы автомобиля могут покрываться защитными катодными пластинами, которые также минимизируют риск появления ржавчины. Пластинами обычно покрывают подвижные части, которые растрескиваются и повреждаются чаще всего. Это днище автомобиля, арки задних колес, фары, внутренние поверхности дверей и так далее.
Заключение
Коррозия ухудшает технико-эксплуатационные характеристики металла, из-за нее может происходить обрушение металлического объекта и так далее. Чтобы избежать этого сценария, может применяться катодная защита от коррозии. Принцип работы весьма прост — на поверхности металлического тока создается напряжение, которое приводит к оперативному удалению заряженных частиц, что позволяет избежать ржавления металла. Применяются две технологии катодной защиты — подключение к детали внешнего источника тока или подключение к детали дополнительного проводника, который обладает отрицательным зарядом.
Используемая литература и источники:
- Защита металлов от коррозии (ГРИГОРЬЕВ В. П., 1999)
- Статья в Wikipedia
- A.W. Peabody, Peabody’s Control of Pipeline Corrosion, 2nd Ed., 2001, NACE International.
Источник