Измерение тока с помощью операционный усилитель

Измерение тока верхнего плеча в схемах с большим синфазным напряжением

Николя Опети (STMicroelectronics)

В типовой разработке компании STMicroelectronics показано, каким образом обычный операционный усилитель с однополярным питанием 5 В можно использовать для измерения тока верхнего плеча в схеме с большим синфазным напряжением.

Обычно для измерения тока верхнего плеча используют специализированные усилители, например, семейства TSC10x. Они способны усиливать дифференциальное входное напряжение при наличии значительного синфазного напряжения.

Несмотря на то, что усилители TSC10x могут работать с большими синфазными напряжениями, значительно превышающими напряжение питания, диапазон этих допустимых синфазных напряжений ограничен. Например, для TSC103 максимальное входное синфазное напряжение составляет 70 В.

Давайте рассмотрим, как можно решить эту проблему и измерить ток верхнего плеча с помощью обычного операционного усилителя.

Принципиальная схема и описание

На рисунке 1 представлена схема, построенная на базе обычных операционных усилителей, которая позволяет измерять ток верхнего плеча при наличии большого синфазного напряжения.

Рис. 1. Предлагаемая схема измерения тока верхнего плеча

В данной схеме выходное напряжение источника питания V1 составляет 150 В. Основная задача, стоящая перед схемой, заключается в измерении тока верхнего плеча с помощью измерительного шунта (Rsense). Чтобы ограничить мощность, рассеиваемую на шунте, следует использовать шунт с минимально возможным сопротивлением. Если значение сопротивления Rsense мало, то напряжение Vsense, равное произведению Isense × Rsense, также будет небольшим. Чтобы обеспечить высокую точность измерений при небольших токах, необходимо использовать прецизионный операционный усилитель, такой как TSZ121. TSZ121 представляет собой операционный усилитель с чрезвычайно малым входным смещением, не превышающим 8 мкВ во всем диапазоне рабочих температур. Ток смещения для TSZ121 также мал и составляет 40 мкА.

Напряжение с выхода схемы может быть оцифровано с помощью встроенного АЦП микроконтроллера STM32 (с питающим напряжением 3,3 В). Операционный усилитель TSZ121 требует однополярного питания 5 В. В то же время входное синфазное напряжение для данной схемы составляет 150 В.

Чтобы использовать TSZ121 и не повредить его высоким входным напряжением 150 В, в качестве положительного источника питания для первого ОУ (OP1) выступает V1 (Vcc_H). Отрицательное напряжение питания для этого же усилителя формируется с помощью дополнительного стабилитрона с напряжением ограничения 4,7 В (Vcc_L). Таким образом, поскольку Vcc_H = 150 В, а Vcc_L = 145,3 В, то размах питающего напряжения для OP1 составляет 4,7 В.

Резистор Rz ограничивает ток стабилитрона (

5 мА) и обеспечивает возвратный путь для тока смещения TSZ121 (

Измеряемый ток преобразуется в напряжение Vsense с помощью измерительного шунта Rsense. Далее это напряжение усиливается с помощью измерительной схемы, содержащей операционные усилители и несколько резисторов.

P-канальный МОП-транзистор M1 формирует выходной ток, пропорциональный току, протекающему в Rsense. Далее ток транзистора повторно преобразуется в напряжение с помощью резистора R4. Таким образом, на резисторе R4 будет присутствовать низковольтное напряжение, пропорциональное измеряемому току, но отсчитываемое относительно потенциала земли. Выходное напряжение Vo может быть рассчитано в соответствии с формулой 1:

Второй операционный усилитель OP2 необходим для буферизации напряжения Vo перед его подачей на вход АЦП. Резистор R5 необходим для защиты встроенных защитных диодов OP2 в случае появления большого тока на входе схемы, например, при пусковых переходных процессах.

Приложение

В этом разделе мы рассмотрим использование предлагаемой схемы в составе системы управления промышленным двигателем с питанием 150 В (рисунок 2).

Рис. 2. Схема измерения тока промышленного двигателя

Максимальный ток, потребляемый двигателем, составляет 100 А. Таким образом, при использовании измерительного шунта с сопротивлением 0,1 мОм максимальное значение напряжения Vsense составит 10 мВ. Максимальное выходное напряжение Vo зависит от напряжения Vsense и выходного тока, протекающего через R4. Поскольку для оцифровки напряжения Vo используется встроенный АЦП микроконтроллера STM32 с питанием 3,3 В, то максимальное значение Vo не должно превышать 3,3 В.

Коэффициент усиления всей системы определяется по формуле 2:

Для правильной работы системы необходимо тщательно выбирать номиналы резисторов.

Транзистор должен работать с низким |Vgs|, чтобы не насыщать выход OP1. При увеличении тока |Ids| напряжение |Vds| уменьшается, поэтому |Vgs| должен увеличиваться при уменьшении Vs. Таким образом, напряжение затвора ограничивается нижним порогом насыщения OP1 (Vcc_L) при высоком токе Ids (формула 3):

Источник

Как контролировать ток с помощью операционного усилителя, биполярного транзистора и трех резисторов

Данная статья объясняет работу умной схемы, которая точно измеряет ток источника питания.

Прежде всего, я должен признать, что заголовок немного вводит в заблуждение. Схема, представленная в данной статье, действительно требует только операционного усилителя, транзистора и трех резисторов. Однако она не является самостоятельным контроллером тока в том смысле, что она не измеряет ток и не инициирует действия, основанные на этих измерениях. Поэтому, возможно, «измеритель тока» будет более точным названием, чем «контроллер тока», но даже «измеритель тока» – не совсем корректное название, так как схема не записывает значения тока или не преобразует их в визуальную индикацию.

В конечном счете, я полагаю, что данная схема представляет собой нечто большее, чем «преобразователь ток-напряжение», но имейте в виду, что она преобразует ток в напряжение таким образом, который совместим с приложениями мониторинга потребляемого тока. Поэтому, может быть, мы должны назвать ее «преобразователь тока в напряжение для приложений мониторинга подачи тока от источника питания» («current-to-voltage converter for power-supply-current-delivery-monitoring applications», или аббревиатура CTVCFPSCDMA). Идеально.

Зачем?

Существуют различные ситуации, в которых вы, возможно, захотите измерить ток, потребляемый вашим проектом. Возможно, вы хотите динамически настроить работу одной подсистемы на основе потребления тока другой подсистемы. Возможно, вы пытаетесь оценить срок службы аккумулятора или подобрать минимально возможную микросхему регулятора, которая может обеспечить достаточный выходной ток. Вы даже можете использовать записанные измерения потребления тока как способ с минимальным вмешательством для отслеживания переходов микроконтроллера между состояниями низкого и высокого потребления электроэнергии.

Как обсуждалось выше, данная схема преобразует ток в напряжение. Это может удовлетворить ваши требования к мониторингу тока, если всё, что вам нужно сделать, – это вручную наблюдать за потреблением тока с помощью мультиметра или осциллографа. Я полагаю, вы могли бы даже записывать и анализировать свои измерения потребления тока с помощью устройства сбора данных и некоторого соответствующего программного обеспечения.

Если вам нужна более автономная схема в смысле возможности записывать и/или реагировать на потребление тока, вы, вероятно, захотите оцифровать измерения с помощью микроконтроллера. Если требуется только базовый функционал, и у вас нет других потребностей в процессоре, вы можете использовать компаратор или аналоговый детектор диапазона пороговых напряжений.

Схема

CTVC. представленный в данной статье, основан на схеме, найденной в руководстве к применению под названием «Op Amp Circuit Collection», опубликованном (в далеком 2002 году) компанией National Semiconductor. Моя версия выглядит так:

Преобразователь тока в напряжение. Схема электрическая принципиальная

И моя реализация схемы в LTspice:

Преобразователь тока в напряжение. Схема в LTspice

На первый взгляд схема может показаться немного запутанной, но ее работа довольно проста:

  • Ток протекает от источника питания к нагрузке через резистор R1. R1 работает как типовой резистор датчика тока (токовый шунт), и, как и другие токовые шунты, он имеет очень низкое сопротивление, чтобы уменьшить рассеивание мощности и минимизировать его влияние на измерения и схему нагрузки.
  • Напряжение, подаваемое на неинвертирующий вход операционного усилителя, равно напряжению источника питания минус (ток источника питания × R1).
  • Не позволяйте PNP транзистору отвлекать вас от того факта, что операционный усилитель на самом деле охвачен петлей отрицательной обратной связи. Наличие отрицательной обратной связи означает, что мы можем применить принцип виртуального замыкания, т.е. можно предположить, что напряжение на инвертирующем входе равно напряжению источника питания минус (ток источника питания × R1).
  • Поскольку верхние выводы R1 и R2 подключены к источнику питания, предположение виртуального замыкания говорит нам о том, что на обоих этих резисторах появляется одинаковое напряжение, и, следовательно, ток через R2 равен току через R1. В схеме LTspice, показанной выше, R2 в 1000 раз больше, чем R1, а это означает, что ток через R2 будет в 1000 раз меньше тока через R1.
  • Ток базы биполярного транзистора очень мал, поэтому можно сказать, что ток через R3 более или менее равен току через R2. Таким образом, мы используем R3 для получения напряжения, которое прямо пропорционально току через R2, который, в свою очередь, прямо пропорционален току через R1.

Схема, приведенная ниже, должна помочь понять это объяснение:

Преобразователь тока в напряжение. Принцип действия

Как вы можете видеть, окончательная формула Vвых представляет собой:

Что именно делает PNP транзистор?

Вы можете думать о транзисторе либо как о регулируемом клапане, который позволяет операционному усилителю увеличивать или уменьшать ток, протекающий через R2 и R3, либо как об устройстве с переменным падением напряжения, которое операционный усилитель может использовать для установки правильного напряжения в точке Vвых. В обоих случаях конечный результат один и тот же: транзистор является средством, с помощью которого операционный усилитель может заставить напряжение на инвертирующем входе равняться напряжению на неинвертирующем входе.

Транзистор действительно является самой интересной частью данной схемы. Мы часто используем биполярные транзисторы в приложениях «включить или выключить», и важно понимать, что ситуация в данной схеме совершенно иная. Операционный усилитель (конечно с помощью отрицательной обратной связи) на самом деле делает небольшие точные подстройки напряжения эмиттер-база (VЭБ) биполярного транзистора. На следующем графике показано напряжение VЭБ для диапазона токов нагрузки (соответствующих сопротивлениям нагрузки от 50 до 300 Ом).

Зависимость напряжения эмиттер-база транзистора от сопротивления нагрузки

Обратите внимание, что все эти напряжения близки к типовому порогу открытия (

0,6 В) для кремниевого PN перехода. Это говорит о том, что операционный усилитель очень тщательно согласовывает пороговую область биполярного транзистора, чтобы обеспечить требуемые (и относительно большие) изменения падения напряжения эмиттер-коллектор. Весь диапазон значений VЭБ составляет всего

50 мВ, зависимость изменения напряжения эмиттер-коллектор, равного

4 В, от изменения напряжения эмиттер-база, равного

50 мВ, приведена ниже:

Зависимость напряжения эмиттер-коллектор от напряжения эмиттер-база

Эффективность

Реальные реализации данной схемы конечно будут иметь источники ошибок, которые приведут к тому, что связь между током нагрузки и выходным напряжением отклонится от приведенной выше идеальной формулы. Даже схема LTspice не совсем идеальна из-за реалистичного поведения, реализованного в модели биполярного транзистора (и, возможно, в модели операционного усилителя). Однако, если у вас есть резисторы высокой точности и хороший операционный усилитель, я думаю, эта схема может быть довольно точной. Следующий график показывает смоделированную ошибку в том же диапазоне сопротивлений нагрузки (помните, что «V_collector» совпадает с Vвых).

Зависимость выходного напряжения схемы от сопротивления нагрузки при моделировании ошибки

Два графика почти идеально совпадают, что указывает на хорошую точность. Обратите внимание, как оранжевый график заметно ниже, чем синий, при наименьшем значении сопротивления нагрузки; это обусловлено тем, что сопротивление нагрузки 50 Ом соответствует выходному напряжению 5 В, но Vвых не может быть ровно 5 В, потому что по меньшей мере небольшое напряжение должно падать на R2 и на соединении эмиттер-коллектор.

Заключение

Мы рассмотрели интересную и эффективную схему, которая точно преобразует ток источника питания в напряжение, которое можно измерить, оцифровать или использовать в качестве входного сигнала компаратора. Если вы хотите продолжить изучение этой удобной схемы, то не стесняйтесь сэкономить немного времени, загрузив мою схему LTspice по ссылке ниже.

Источник

Микросхемы для измерения тока

Один из самых простых способов измерения тока в электрической цепи — это измерение падения напряжения на резисторе, включенном последовательно с нагрузкой. Но при прохождении тока через этот резистор, на нем выделяется бесполезная мощность в виде тепла, поэтому оно выбирается минимально возможной величины, что в свою очередь влечет за собой последующее усиление сигнала. Следует отметить, что приведенные ниже схемы позволяют контролировать не только постоянный, но и импульсный ток, правда, с соответствующими искажениями, определяемыми полосой пропускания усилительных элементов.

Схема измерения тока нагрузки в отрицательном полюсе приведена на рисунке 1.

Эта схема и часть информации заимствована из журнала «Компоненты и технологии» №10 за 2006г. Михаил Пушкарев pmm@midaus.com
Преимущества:
• низкое входное синфазное напряжение;
• входной и выходной сигнал имеют общую «землю»;
• простота реализации с одним источником питания.
Недостатки:
• нагрузка не имеет непосредственной связи с «землей»;
• отсутствует возможность коммутации нагрузки ключом в отрицательном полюсе;
• возможность выхода из строя измерительной схемы при коротком замыкании в нагрузке.

Измерение тока в отрицательном полюсе нагрузки не представляет сложности. Для этой цели подходит много ОУ, предназначенных для работы с однополярным питанием. Схема измерения тока с применением операционного уси¬лителя приведена на рис. 1. Выбор конкретного типа усилителя определяется требуемой точностью, на которую в основном влияет смещение нуля усилителя, его температурный дрейф и погрешность установки усиления, и необходимым быстродействием схемы. В начале шкалы неизбежна значительная погрешность преобразования, вызванная ненулевым значением минимального выходного напряжения усилителя, что для большинства практических применений несущественно. Для исключения этого недостатка требуется двухполярное питание усилителя.

Измерение тока в положительном полюсе нагрузки


Достоинства:
• нагрузка заземлена;
• обнаруживается короткое замыкание в нагрузке.
Недостатки:
• высокое синфазное входное напряжение (зачастую очень высокое);
• необходимость смещения выходного сигнала до уровня, приемлемого для последующей обработки в системе (привязка к «земле»).
Рассмотрим схемы измерения тока в положительном полюсе нагрузки с использованием операционных усилителей.

В схеме на рис. 2 можно применить любой из подходящих по допустимому напряжению питания операционный усилитель, предназначенный для работы с однополярным питанием и максимальным входным синфазным напряжением, достигающим напряжения питания, например AD8603. Максимальное напряжение питания схемы не может превышать максимально допустимого напряжения питания усилителя.

Но есть ОУ, которые способны работать при входном синфазном напряжении, значительно превышающем напряжение питания. В схеме с применением ОУ LT1637, изображенной на рис. 3, напряжение питания нагрузки может достигать 44 В при напряжении питания ОУ, равном 3 В. Для измерения тока в положительном полюсе нагрузки с весьма малой погрешностью подходят такие инструментальные усилители, как LTC2053, LTC6800 от Linear Technology, INA337 от Texas Instruments. Для измерения тока в положительном полюсе есть и специализированные микросхемы, например — INA138 и INA168.

INA138 и INA168

— высоковольтные, униполярные мониторы тока. Широкий диапазон входных напряжений, низкий потребляемый ток и малые габариты — SOT23, позволяют использовать эту микросхему во многих схемах. Напряжение источника питания от 2.7 В до 36 В для INA138 и от 2.7 В до 60 В для INA168. Входной ток — не более 25мкA, что позволяет производить измерение падения напряжения на шунте с минимальной ошибкой. Микросхемы являются преобразователями ток — напряжение с коэффициентом преобразования от1 до 100 и более. INA138 и INA168 в корпусах SOT23-5 имеют диапазон рабочих температур -40°C к +125°C.
Типовая схема включения взята из документации на эти микросхемы и показана на рисунке 4.

OPA454

— новый недорогой высоковольтный операционный усилитель компании Texas Instruments с выходным током более 50 мА и полосой пропускания 2,5 МГц. Одно из преимуществ — высокая стабильность OPA454 при единичном коэффициенте усиления.

Внутри ОУ организована защита от превышения температуры и перегрузки по току. Работоспособность ИС сохраняется в широком диапазоне напряжений питания от ±5 до ±50 В или, в случае однополярного питания, от 10 до 100 В (максимум 120 В). У OPA454 существует дополнительный вывод «Status Flag» — статусный выход ОУ с открытым стоком, — что позволяет работать с логикой любого уровня. Этот высоковольтный операционный усилитель обладает высокой точностью, широким диапазоном выходных напряжений, не вызывает проблем при инвертировании фазы, которые часто встречаются при работе с простыми усилителями.
Технические особенности OPA454:
Широкий диапазон питающих напряжений от ±5 В (10 В) до ±50 В (100 В)
(предельно до 120 В)
Большой максимальный выходной ток > ±50 мА
Широкий диапазон рабочих температур от -40 до 85°С (предельно от -55 до 125°С)
Корпусное исполнение SOIC или HSOP (PowerPADTM)
Данные на микросхему приведены в «Новости электроники» №7 за 2008г. Сергей Пичугин

Усилитель сигнала токового шунта на основной шине питания.

В радиолюбительской практике для схем, параметры которых не столь жесткие, подойдут дешевые сдвоенные ОУ LM358, допускающие работу с входными напряжениями до 32В. На рисунке 5 показана одна из многих типовых схем включения микросхемы LM358 в качестве монитора тока нагрузки. Кстати не во всех «даташитах» имеются схемы ее включения. По всей вероятности эта схема явилась прототипом схемы, приведенной в журнале «Радио» И. Нечаевым и о которой я упоминал в статье «Индикатор предельного тока».
Приведенные схемы очень удобно применять в самодельных БП для контроля, телеметрии и измерения тока нагрузки, для построения схем защиты от коротких замыканий. Датчик тока в этих схемах может иметь очень маленькое сопротивление и отпадает необходимость подгонки этого резистора, как это делается в случае обычного амперметра. Например, напряжение на резисторе R3, в схеме на рисунке 5 равно: Vo = R3∙R1∙IL / R2 т.е. Vo = 1000∙0,1∙1A / 100 = 1В. Одному амперу тока, протекающему через датчик, соответствует один вольт падения напряжения на резисторе R3. Величина этого соотношения зависит от величины всех резисторов входящих в схему преобразователя. Отсюда следует, что сделав резистор R2 подстроечным, можно спокойно им компенсировать разброс сопротивления резистора R1. Это относится и к схемам, показанным на рисунках 2 и 3. В схеме, представленной на рис. 4, можно изменять сопротивление нагрузочного резистора RL. Для уменьшения провала выходного напряжения блока питания, сопротивление датчика тока – резистор R1 в схеме на рис.5 вообще лучше взять равным 0,01 Ом, изменив при этом номинал резистора R2 на 10 Ом или увеличив номинал резистора R3 до 10кОм.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector