Измерение токов выполняется методом

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Методы измерения тока

С помощью каких способов можно измерить ток в цепи

Ток является очень важным параметром в электронике или электротехнике. В электронных устройствах ток может иметь пропускную способность от нескольких наноампер до сотен ампер. Этот диапазон может быть намного шире в области электротехники, обычно до нескольких тысяч ампер, особенно в электрических сетях. Существуют разные методы измерения тока внутри цепи или проводника. В этой статье мы обсудим, как измерить ток с использованием различных методов измерения тока с их преимуществами, недостатками и приложениями.

Измерение тока с использованием датчика Холла

Эффект Холла был обнаружен американским физиком Эдвином Гербертом Холлом и может использоваться для определения тока. Он обычно используется для обнаружения магнитного поля и может быть полезен во многих приложениях, таких как спидометры, дверная сигнализация, бесколлекторные двигатели и т.п.

Датчик Холла выдает выходное напряжение в зависимости от магнитного поля. Соотношение выходного напряжения пропорционально магнитному полю. В процессе измерения ток определяется путем измерения магнитного поля. Выходное напряжение очень низкое и его необходимо увеличить до полезного значения с помощью усилителя с высоким коэффициентом усиления и очень низким уровнем шума. Помимо схемы усилителя датчик Холла требует дополнительных схем, так как это линейный преобразователь.

  • Может использоваться на более высокой частоте
  • Может использоваться как в устройствах переменного, так и постоянного тока
  • Бесконтактный метод
  • Может использоваться в суровых условиях
  • Высокая надежность

  • Датчик дрейфует и требует компенсации
  • Дополнительная схема требует для надежного выходного сигнала
  • Дороже, чем метод на основе шунта

Датчики с эффектом Холла используются в токоизмерительных клещах, а также во многих промышленных и автомобильных системах измерения тока. Многие типы линейных датчиков на эффекте Холла могут измерять ток от нескольких миллиампер до тысяч ампер.

Метод определения тока с помощью датчика потока

Насыщаемый индуктор является основным компонентом метода обнаружения с помощью датчика потока (Fluxgate). Из-за этого датчик Fluxgate называется датчиком тока насыщаемой индуктивности. Сердечник индуктора, который используется для датчика потока, работает в области насыщения. Уровень насыщения этого индуктора высокочувствителен, и любая внутренняя или внешняя плотность потока изменяет уровень насыщения индуктора. Проницаемость сердечника прямо пропорциональна уровню насыщения, поэтому индуктивность также изменяется. Это изменение значения индуктивности анализируется датчиком потока для измерения тока. Если ток высокий, индуктивность становится меньше, если ток низкий, индуктивность становится высокой.

Датчик Холла работает аналогично датчику потока, но между ними есть одно отличие. Разница в основном материале. Датчик потока использует насыщаемый индуктор, а датчик эффекта Холла использует воздушный сердечник.

На изображении выше показана базовая конструкция датчика потока. В нем есть две катушки первичной и вторичной обмотки вокруг насыщаемого сердечника индуктора. Изменения в потоке тока могут изменить проницаемость сердечника, что приведет к изменению индуктивности через другую катушку.

  • Можно измерять ток в широком диапазоне частот
  • Имеет большую точность
  • Низкое смещение

  • Высокое вторичное энергопотребление
  • Увеличивается фактор риска повышения шума напряжения или тока в первичном проводнике
  • Подходит только для постоянного или низкочастотного переменного тока

Датчики потока используются в инверторах солнечной энергии для измерения тока. Кроме этого, измерение переменного и постоянного тока с обратной связью может быть легко выполнено с помощью таких датчиков. Этот датчик тока также может быть использован для измерения тока утечки, обнаружения перегрузки по току и т. д.

Метод измерения тока с помощью катушки Роговского

Катушка Роговского названа в честь немецкого физика Вальтера Роговского. Катушка Роговского выполнена с использованием спиральной катушки с воздушным сердечником и намотана на целевой проводник для измерения тока.

На изображении выше показана катушка Роговского с дополнительной схемой. Дополнительная схема является интегральной цепью. Катушка Роговского обеспечивает выходное напряжение в зависимости от скорости изменения тока в проводнике. Для создания выходного напряжения, пропорционального току, требуется дополнительная схема интегратора.

  • Это хороший метод для обнаружения быстрого высокочастотного изменения тока
  • Безопасная работа с точки зрения обращения с вторичной обмоткой
  • Недорогое решение
  • Гибкость в использовании благодаря конструкции с разомкнутым контуром
  • Температурная компенсация не сложна

  • Подходит только для переменного тока
  • Имеет более низкую чувствительность, чем трансформатор тока

Катушка Роговского имеет широкий спектр применения. Например, измерение тока в больших силовых модулях, особенно на полевых МОП-транзисторах или мощных транзисторах IGBT. Катушка Роговского обеспечивает гибкость измерения. Поскольку отклик катушки Роговского очень быстр по переходным процессам или высокочастотным синусоидальным волнам, это хороший выбор для измерения высокочастотных переходных процессов в линиях электропередачи. В приложениях распределения мощности или в интеллектуальной электросети катушка Роговского обеспечивает превосходную гибкость для измерений тока.

Измерение тока с помощью трансформатора тока

Трансформатор тока или ТТ используется для измерения тока по вторичному напряжению, которое пропорционально току во вторичной катушке. Это промышленный трансформатор, который преобразует большое значение напряжения или тока в намного меньшее значение в своей вторичной катушке. Измерение производится через вторичный выход.

На изображении выше показана конструкция такого трансформатора. Это идеальный трансформатор тока с первичным и вторичным соотношением 1:N. N зависит от технических характеристик трансформатора.

  • Большая пропускная способность, больше, чем у других рассмотренных методов
  • Не требует дополнительных схем

  • Требуется техническое обслуживание
  • Из-за намагниченности возникает гистерезис
  • Высокий первичный ток насыщает материалы ферритового сердечника

Основное применение метода измерения тока на основе ТТ – в энергосистеме из-за очень высокой способности измерения тока. Некоторые токовые клещи также используют трансформатор тока для измерения переменного тока.

Измерение тока с помощью шунтирующего резистора

Это наиболее используемый метод в современной электронике. Этот метод основана на законе Ома. Здесь последовательно подключенный в цепь резистор с малым сопротивлением используется для измерения тока. Когда ток протекает через резистор, он создает разницу напряжения на резисторе.

Давайте рассмотрим пример. Предположим, что ток 1А протекает через резистор на 1 Ом. Согласно закону Ома, напряжение эквивалентно току, умноженному на сопротивление. Следовательно, когда ток 1A протекает через резистор с сопротивлением 1 Ом, он создает напряжение 1В на резисторе. Мощность резистора является критическим фактором, который необходимо учитывать. Тем не менее, на рынке также есть резисторы очень малого значения, сопротивление которых находится в диапазоне миллиом. В таком случае разница напряжения на резисторе также очень мала. Но усилитель с высоким коэффициентом усиления необходим для увеличения амплитуды напряжения, и, наконец, ток измеряется с использованием обратного расчета.

Альтернативный подход для этого типа метода измерения тока заключается в использовании трассировки печатной платы в качестве шунтирующего резистора. Поскольку медные дорожки на печатной плате имеют очень небольшое сопротивление, можно использовать часть дорожки для измерения тока. Однако при таком альтернативном подходе несколько зависимостей также являются огромной проблемой для получения точного результата. Основным фактором является температурный дрейф. В зависимости от температуры, сопротивление трассировки изменяется, что приводит к ошибке. Нужно компенсировать эту ошибку в приложении.

  • Очень экономичное решение
  • Может работать с переменным и постоянным током
  • Дополнительное оборудование не требуется

  • Не подходит для работы с большим током из-за рассеивания тепла
  • Измерение с помощью шунта обеспечивает ненужное снижение эффективности системы из-за потери энергии на резисторе
  • Тепловой дрейф обеспечивает ошибку в высокотемпературном приложении

Применение шунтирующего резистора в первую очередь – цифровой амперметр. Это точный и более дешевый метод, кроме датчика Холла. Шунтирующий резистор также может обеспечивать путь с низким сопротивлением.

Как выбрать метод измерения тока

Выбор правильного метода для измерения тока не является сложной задачей. Для выбора правильного метода необходимо учитывать несколько вопросов, таких как:

  • Какая требуется точность
  • Предполагается измерение постоянного или переменного тока (или обоих)
  • Сколько потребляется энергии
  • Какой диапазон тока и полоса пропускания
  • Стоимость

Помимо них, также необходимо учитывать приемлемую чувствительность и подавление помех. Поскольку все факторы не могут быть соблюдены одновременно, приходится идти на некоторые компромиссы в зависимости от приоритета требования приложения.

Источник

МЕТОДЫ ИЗМЕРЕНИЯ НАПРЯЖЕНИЯ И ТОКА

Общие сведения

Измерение тока и напряжения осуществляется в цепях постоян­ного, переменного токов широкого диапазона частот и импульс­ных.

Наиболее высокую точность измерений получают в цепях постоянного тока. При измерениях в цепях переменного тока точность измерений понижается с повышением частоты; здесь кроме оценки среднеквадратичного, средневыпрямленного, среднего и максималь­ного значений иногда требуется наблюдение формы исследуе­мого сигнала и знание мгновенных значений тока и напряже­ния.

Измерители тока и напряжения независимо от их назначения должны при включении не нарушать режима работы цепи измеряемого объекта; обеспечивать малую погрешность измерений, исключив при этом влияние внешних факторов на работу прибора, высокую чувствительность измерения на оптимальном пределе, быструю готовность к работе и высокую надежность.

Выбор приборов, выполняющих измерения тока и напряжения, определяется совокупностью многих факторов, важнейшие из кото­рых: род измеряемого тока; примерные диапазон частот измеряе­мой величины и амплитудный диапазон; форма кривой измеряемого напряжения (тока); мощность цепи, в которой осуществляется измерение; мощность потребления прибора; возможная погрешность измерения (ниже будут указаны требования к конкретным приборам).

Если необходимая точность измерения, допустимая мощность потребления и другие требования могут быть обеспечены ампер­метрами и вольтметрами электромеханической группы, то следует предпочестьэтот простой метод непосредственного отсчета. В мало­мощных цепях постоянного и переменного токов для измерения напряжения обычно пользуются цифровыми и аналоговыми элек­тронными вольтметрами. Если необходимо измерить напряжения с более высокой точностью, следует использовать приборы, дей­ствие которых основано на методах сравнения, в частности на ме­тоде противопоставления.

Измерение тока возможно методом непосредственной оценки аналоговыми и цифровыми амперметрами, а также косвенное. При этом напряжение измеряется на образцовом резисторе с из­вестным сопротивлением. Для исследования формы и определения мгновенных значений напряжения и тока применяют осцилло­графы.

Измерение напряжения в цепях постоянного тока

Метод непосредственной оценки. При использовании метода непосредственной оценки вольтметр подключается параллельно тому участку цепи, на котором необходимо измерить напряжение; При измерении напряжения на нагрузке в цепи с источником энер­гии, ЭДС которого и внутреннее сопротивление , вольтметр включают параллельно нагрузке (рис. 7.1). Если внутреннее сопро­тивление вольтметра , то будет иметь место следующая отно­сительная погрешность измерения напряжения:

(7.1)

где — действительное значение напряжения на нагрузке до включения вольтметра; измеренное значение напряжения на нагрузке .

Отношение сопротивлений обратно пропорционально отношению мощности потребления вольтметра к мощности цепи , поэтому

(7.2)

( как при , так и при ).

Для уменьшенияметодической погрешности измерения напряжения мощностьпотребления вольтметра должна быть мала, а его внутреннее сопротивление велико .

Рисунок 7.1 – Схема включения вольтметра

Измерение напряжения в цепях постоянного тока может быть выпол­нено любым измерителем напряжения, работающим на постоянном токе магнитоэлектрическими, электродинамическими, электромагнитными, электростатическими, аналоговыми и цифровыми электронными вольтметрами). Выбор измерителя напряжения обусловлен мощно­стью объекта измерения и необходимой точностью. Диапазонизме­ряемых напряжений лежит в пределах от микровольт до десятка киловольт.Если объект измерения мощный, используются элек­тромеханические вольтметры и мощность потребления ими не учитывается, если же объект измерения маломощный, то мощность по­требления должна быть учтена, либо используются электронные вольтметры.

Методы сравнения. Компенсационный метод (метод противопоставления) измерениязаключается в уравновешивании, осуществляемом включением на индикатор равновесия либо двух электрически не связанных между собой, но противоположно направленных напряжений или ЭДС, либо двух раздельно регулируемых токов. Компенсационный метод используют для непосредственного срав­нения напряжений или ЭДС, тока и косвенно для измерения других электрических, а также неэлектри­ческих величин, преобразуемых в электрические.

Рисунок 7.2 –Схема компенсации напряжений

Применяют следующие схемы компенсации: а) напряжений или ЭДС (рис. 7.2); б) электрических токов (рис. 7.3).

Схема, показанная на рис. 7.2, наиболее распространенная. В ней измеряемое напряжение компенсируется равным, но про­тивоположным по знаку известным напряжением . Падение на­пряжения создается током на изменяемом по значению ком­пенсирующем образцовом сопротивлении . Изменение про­исходит до тех пор, пока не будет равно . Момент компен­сации определяют по отсутствию тока в цепи магнитоэлектриче­ского гальванометра ; при этом мощность от объекта измерения не потребляется.

Рисунок 7.3 – Схема компенсации токов

Компенсационный метод обес­печивает высокую точность изме­рения.

Устройства, служащие для вы­полнения измерений компенсацион­ным методом, называют потенциометрами или компенсаторами. В практических схемах компенсаторов для обеспечения необходи­мой точности измерения ток в рабочей цепи определяют не ампер­метром непосредственной оценки, а компенсационным методом с помощью эталона ЭДС нормального элемента. Нормальные эле­менты обеспечивают постоянную во времени ЭДС, равную 1,01865 В при температуре 20 °С, внутреннее сопротивление 500-1000 Ом, ток перегрузки 1 мкА. С изменением температуры окружающей среды значение ЭДС уменьшается на каждый градус повышения температуры:

(7.3)

где ЭДС при температуре ; — ЭДС при 20 s w:space=»720″/> «> ;.

Схема компенсатора представлена на рис. 75. Она содержит источник вспомогательной ЭДС ; для питания рабочей цепи, в которую включают регулировочное , компенсирующее и образцовое сопротивления. К зажимам НЭ подключают нор­мальный элемент, ЭДС которого , к зажимам X – искомую ЭДС . В качестве индикатора равновесия используют высоко­чувствительный магнитоэлектрический гальванометр G. При работе с компенсатором выполняют две операции:

1) устанавливают ток в рабочей цепи компенсатора с помощью источника вспомогательной ЭДС (положение 1 переключателя В);

2) измеряют искомую ЭДС (положение 2 переключателя В).

Рисунок 7.4 – Схема компенсатора

Для установки рабочего тока предварительно определяют температуру окружающей среды, затем по (7.3) вычисляют точное значение ЭДС нормального элемента для данной температуры. Далее устанавливают образцовое сопротивление , значение которого выбирают в зависимости от значений тока в рабочей цепи и ЭДС при температуре (сопротивление состоит из катушки с постоянным значением сопротивления и последовательно соединенной с ней температурной декадой). Затем переключатель В ставят в положение 1 и ЭДС нормального элемента противопоставляют падению напряжения на , которое регулируется с помощью изменяющего значение тока в рабочей цепи резистором . Момент компенсации соответствует нулевому отклонению гальванометра , т. е. .

После установления рабочего тока для измерения пере­ключатель В ставят в положение 2 и регулировкой образцового компенсирующего сопротивления вновь доводят до нуля ток в цепи гальванометра . Тогда

(7.4)

где I — значение тока, установленное при положении 1 переклю­чателя В; — значение образцового компенсирующего сопро­тивления, при котором имеет место состояние равновесия.

Сопротивление выполняют по специальным схемам, кото­рые обеспечивают постоянное сопротивление между точками 3, 4 и переменное сопротивление между точками 3, Д, а также необхо­димое число знаков и точность отсчета.

Указанным условиям удовлетворяют схемы с замещающими (рис. 7.5) и шунтирующими декадами (рис. 7.6). В схеме с замещаю­щими декадами все секции верхних декад полностью дублированы соответствующими секциями нижних декад. Переключатели двух одинаковых декад связаны механически. При перемещении пере­ключателей общее сопротивление остается неизменным: если умень­шаются значения сопротивлений верхних декад, то увеличиваются значения сопротивлений нижних декад, и наоборот. Компенсирую­щее напряжение можно снимать с верхних или нижних декад. Каждая последующая декада имеет сопротивление секции в десять раз меньше предыдущей. В схеме с шунтирующими декадами при каждом положении двойных переключателей одна секция верхней декады шунтируется девятью секциями нижней декады, при этом общее сопротивление между точками 3 и 4 (см. рис. 7.4) остается неизменным. Ток через секции сопротивлений нижней декады в десять раз меньше тока через секции сопротивлений верхней декады, т. е.

Рисунок 7.5 – Схема с замещающими декадами

(7.5)

Компенсирующее напряжение можно определить так

(7.6)

где , — соответственно число включенных секции верхней и нижней декад; , — падения напряжения на отдельных секциях соответствую­щих декад.

Рассмотренные вари­анты выполнения сопро­тивления обеспечи­вают неизменность его полного значения, а сле­довательно, и неизмен­ность тока в момент компенсации, если ЭДС вспомогательного источ­ника .

Рисунок 7.6 – Схема с шунтирующими декадами

В зависимости от зна­чения сопротивления ра­бочей цепи различают компенсаторы постоянного тока большого сопротивления (высокоомные 10-40 кОм, ток рабочей цепи , порядок измеряемого напряжения 1-2,5 В, погрешность измерения 0,02 % от измеряемой величины) и малого сопротивления (низкоомные 10-1000 Ом; ток рабочей цепи , по­рядок измеряемого напряжения до 100 мВ, погрешность измере­ние 0,6 % от измеряемого значения).

Схемные решения и конструкции компенсаторов постоянного тока могут быть различны.

Высокоомные компенсаторы используют для поверки магнитоэлектрических, электродинамических вольтметров, для расширения пределов измерения напряжения компенсаторами применяют высокоомные резисторные делители напряжения с отводами от опре­деленных частей, что позволяет уменьшить измеряемое напряжение в раз (10, 100, 1000) до значения, близкого к верхнему пределу измерения компенсатора. При использовании делителя напря­жения от объекта измерения потребляется некоторая мощность, т. е. теряется одно из основных преимуществ компенсационного метода.

При измерении ЭДС источников с большим внутренним сопро­тивлением или напряжений, действующих в высокоомных цепях, входное сопротивление магнитоэлектрических и электронных вольтмет­ров может быть недоста­точно большим, поэтому целесообразно использо­вать дифференциальный или компенсационный метод.

Рисунок 7.7 – Схема измерения постоянного напряжения дифференциальным методом

Дифференциальный метод основан на изме­рении разности между измеряемым и образцовым напряжением при их неполной компен­сации. Схема измерения представлена на рис. 7.7. Высокоомный электронный вольтметр с чувствительным пределом служит для измерения разностного напряжения между измеряемым и образ­цовым напряжениями. Магнитоэлектрический аналоговый или цифровой вольтметр используется для измерения образцового напряжения . Рекомендуется при измерить вольтмет­ром ориентировочное значение , а уже затем установить по вольтметру удобное для отсчета напряжение . Измеряе­мое напряжение при указанной полярности включения вольт­метра определяется как .

Дифференциальный метод обеспечивает высокую точность изме­рения напряжения. Погрешность измерения определяется в основ­ном погрешностью вольтметра, измеряющего .

Входное сопротивление цепи

(7.7)

и намного превышает входное сопротивление вольтметра

Гальванометрические компенсаторы служат для измерения ма­лых постоянных напряжений (порядка В). Основными эле­ментами гальванометрического компенсатора (рис. 7.8) являются: измерительный механизм магнитоэлектрического зеркального галь­ванометра , образцовый резистор обратной связи , фоторезисторы и , источники постоянного напряжения с , магнитоэлектрический микроамперметр. На зеркальце гальвано­метра направлен луч света от прожектора Пр. При отсутствии напряжения луч света, отраженный от зеркала, оди­наково освещает фотосопро­тивления, в результате ток . При подаче на вход измерителя напряжения в цепи гальванометра появ­ляется ток , подвижная часть гальванометра повора­чивается на некоторый угол и происходит перераспределе­ние освещенности фоторези­сторов и изменение их соп­ротивлений. Согласно схеме включения фоторезисторов и полярности сопротивление фоторезистора уменьшится, a увеличится. Через резистор потечет ток , создавая на компенсирующее напряжение , почти равное измеряемому напряжению . Значение тока авто­матически изменяется в зависимости от изменения измеряемого напряжения , но всегда так, что выполняется условие , обеспечиваемое за счет небольших изменений тока в цепи галь­ванометра:

(7.8)

Чем чувствительнее гальванометр, тем при меньших измене­ниях произойдет соответствующее изменение тока , нужное для выполнения условия .

Повышение чувствительности достигается благодаря примене­нию специальной конструкции гальванометра, что обеспечивает при токах порядка максимальный угол поворота подвижной части.

Значение компенсирующего тока зависит от значений , относительного изменения фотосопротивлений и может достигать нескольких десятков микроампер.

Рисунок 7.8 – Схема гальванометрического компенсатора

Гальванический компенсатор имеет высокую чувствительность при высоком входном сопротивлении.

Электрометрические компенсаторы — измерители напряжения, использующие электромеханический электрометр и имеющие весьма высокое входное сопротивление ( ). Они просты и удобны в эксплуатации. Электромеханический электрометр представляет собой чувствительный электростатический измеритель­ный механизм, легкая подвижная часть которого подвешивается на тонкой упругой нити. В механизме применяется световой ука­затель положения подвижной части. Схема электрометрического компенсатора представлена на рис. 7.9, где электрический электро­метр, состоящий из двух неподвижных обкладок 1, 2 иподвижной обкладки 3, расположенной симметрично относительно неподвиж­ных. К подвижной обкладке прикреплено миниатюрное зеркальце. На неподвижные обкладки подается напряжение возбуждения , что позволяет повысить чувствительность и возможность установки нуля показаний электрическим путем (при замкнутых зажимах посредством переменного резистора ).

Принцип работы элект­рометрического компенса­тора аналогичен работе гальванометрического ком­пенсатора.

При подключении изме­ряемого напряжения подвижная часть электро­метра Э повернется на не­который угол, что приве­дет к перераспределению световых потоков, освещаю­щих фоторезисторы и , к появлению тока компенсации и соответст­венно напряжения , уравновешивающего измеряемое напряжение . Подвижная часть электрометра будет отклоняться до тех пор, пока не наступит равенство напряжений . Так как сопротивление резистора обратной связи RK может быть незначительным, то ток может быть сравнительно большим и измеряться микроамперметром. Входной ток компенсатора опре­деляется токами утечки, поэтому он мал, а, следовательно, входное сопротивление велико ( Ом). Кроме измерителей напря­жения строятся и высокочувствительные электрометрические изме­рители тока.

Рисунок 7.9 – Схема электрометрического компенсатора

Измерение постоянного тока

Метод непосредственной оценки. Амперметр включается после­довательно в разрыв исследуемой цепи.

Последовательное включение амперметра с внутренним сопро­тивлением в цепь с источником ЭДС и сопротивлением (сопротивление нагрузки и источника) приводит к возрастанию общего сопротивления и уменьшению протекающего в цепи тока.

Относительная погрешность измерения тока

(7.9)

где — действительное значение тока в цепи до включения амперметра; — измеренное значение тока в цепи .

Отношение сопротивлений можно заменить отношением мощ­ностей и потребления соответственно амперметра и самой цепи:

(7.10)

Погрешность измерения тем меньше, чем меньше мощностьпотребления амперметра по сравнению с мощностью потребле­ния цепи , в которой осуществляется измерение. Поэтому амперметр, включаемый последовательно в цепь измерения, должен обладать малым сопротивлением, т. е. .

Диапазон значений постоянных токов, с измерением которых приходится встречаться в различных областях техники, чрезвы­чайно велик (от токов А до десятков и сотен тысяч ампер). Поэтому, естественно, методы и средстваизмерения их различны.

Измерение постоянного тока может быть выполнено любым измерителем постоянного тока:магнитоэлектрическими, электродинамическими, аналоговыми и цифровыми электронными амперметрами. При необходимости измерения весьма малых токов, значительно меньших тока полного отклонения , магнитоэлектриче­скогоизмерителя, последний применяют совместно с усилителем постоянного тока. Усиления тока можно добиться при включении биполярных транзисторов по схеме с общим эмиттером (ЭП), которая обеспечивает малое входное сопротивление усилителя.

Токи А можно измерить непосредственно с помощью высокочувствительных магнитоэлектрических зеркальных галь­ванометров и гальванометрических компенсаторов.

Косвенное измерение тока. Кроме прямого измерения токов амперметрами возможно косвенное измерение токов с помощью образцовых резисторов, включаемых в разрыв цепи, и высоко­чувствительных измерителей напряжения. Измеряемый ток опре­деляется , где — падение напряжения на образцовом резисторе , измеренное вольтметром, компенсатором постоянного тока.

Для получения минимальных погрешностей измерения сопро­тивление резистора должно быть много меньше сопротивления цепи, в которой измеряется ток.

Измерение малых токов. Предельная чувствительность любого измерителя тока зависит от тока тепловых шумов, который тем меньше, чем больше внутреннее сопротивление измерителя. Для снижения этого тока до уровня А в полосе частот от 0 до 0,01-0,1 Гц необходимо применять приборы с внутренним сопротивлением не менее Ом, поэтому магнитоэлектри­ческие гальванометры, гальванометрические компенсаторы, уси­лители на биполярных транзисторах относят к сравнительно низкоомным измерительным устройствам и, следовательно, они не мо­гут использоваться при измерении токов менее А. Для измерения малых постоянныx и медленно изменяющихся токов применяют пассивные преобразователи тока в напряжение в сочетании с чувствительным измерителем напряжения, имеющим очень высокое входное сопротивление (до Ом) и малый уро­вень шумов. Максимально должны быть уменьшены также паразит­ные токи. К пассивным преобразователям относят преобразователи резистивные, емкостные, логарифмирующие.

В резистивных преобразователях тока в напряжение применяют высокоомные резисторы, значение сопротивления которых зависит от протекающего через резистор тока и изменяется во времени под влиянием температуры, влажности и т. п. Номинальные значе­ния сопротивлений выпускаемых высокоомных резисторов до Ом значительно зависят от приложенного напряжения, темпе­ратурный коэффициент до и временной дрейф до несколь­ких процентов в год.

В узкой полосе частот высокоомный резистор может быть пред­ставлен в виде параллельного соединения сопротивления и емкости (порядка десятых долей пикофарады).

В емкостных преобразователях тока в напряжение скорость изменения напряжения) применяют конденсаторы с высококачественной изоляцией или специальные воздушные конденсаторы. Погрешность преобразования определяется погрешностью измере­ния емкости конденсатора и изменением емкости в процессе накоп­ления заряда под влиянием медленной поляризации диэлектрика, поэтому емкость конденсатора зависит от частоты измеряемого тока. Для конденсатора характерны те же источники помех по току и напряжению, что и для резистора. Шунтирующее сопротивление конденсатора достигает Ом.

В логарифмирующих преобразователях тока в напряжение при­меняются электровакуумные и полупроводниковые приборы с вольтамперной характеристикой, описываемой логарифмической зависи­мостью. Сопротивление логарифмирующего элемента изменяется под действием измеряемого тока таким образом, что абсолютные приращения напряжения при одинаковых относительных прира­щениях тока остаются неизменными. В зависимости от типа лога­рифмирующего элемента и режима его работы приращение напря­жения на декаду тока лежит в пределах от 50 мВ до нескольких вольт. Поведение логарифмирующего элемента как преобразователя малого тока в напряжение наиболее полно может быть описано его вольтамперной характеристикой. Логарифмирующий элемент шун­тирован сопротивлением изоляции и емкостью между электродами. Влияние шунтирующего сопротивления проявляется в искажении вольтамперной характеристики. Полоса рабочих частот преобразо­вателя определяется емкостью логарифмирующего элемента.

Измерители малых токов с резистивными и емкостными преобра­зователями тока в напряжение для усиления выходного напряже­ния преобразователя, необходимого для работы показывающих или регистрирующих устройств, используют электрометрические усилители (ЭМУ). Входная цепь ЭМУ может быть охарактеризо­вана входным сопротивлением , входной емкостью , эквива­лентным источником напряжения помех и эквивалентным источником тока помех .

Значительное увеличение входного сопротивления ЭМУ полу­чают за счет использования во входном каскаде электростатических измерительных механизмов, электрометрических ламп (с сеточным током до А), динамических конденсаторов (емкостных вибрационных преобразователей постоянного напряжения в напря­жение высокой частоты); варикапов(полупроводниковых управ­ляемых емкостей); МОП-транзисторов (полевых транзисторов с изо­лированным затвором); сегнетодиэлектриков.

Сегнетоэлектрики класс диэлектриков, обладающий электризованностью в отсутствии внешнего электрического поля.

Если стрелками указать вектора поляризованности, то схематически можно представить

Внешнее поле отсутствует

Дата добавления: 2018-02-28 ; просмотров: 5595 ; Мы поможем в написании вашей работы!

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector