Измерение углов угловые приемы



§ 13. Инструменты для измерения углов

При слесарной обработке широко применяются угольники, угломеры, шаблоны угловые и угловые меры (плитки).

Угольники 90° (ГОСТ 3749—65) предназначены для проверки и разметки прямых углов, для контроля взаимно перпендикулярного расположения поверхностей деталей при монтаже различных видов оборудования и для проверки точности станков.

Угольники изготовляют из инструментальной легированной стали ХГ и X, углеродистой стали марок 10; 15; 20 и 50, а также из инструментальной углеродистой стали марки У8.

Промышленность выпускает угольники с углами 45; 60; 90 и 120° и специальные угольники с углами 30; 45; 90; 120 и 135° (рис. 67, а). Если требуются угольники с другими углами, то их изготовляют в виде шаблонов, например для проверки углов сверл, резьбы, шаблон типа «ласточкина хвоста» и др.

Рис. 67. Угольники:
а — специальный; б — лекальные; 1 — плоский, 2 — с широким основанием, 3 — с уровнем; в — приемы измерения угольником угла и плоскости

По ГОСТ 3749—65 угольники выпускаются четырех классов точности 0, 1,2, 3-й. Наиболее точные — угольники класса 0.

Точные угольники с фасками называются лекальными. Угольники 1-го класса точности применяют в инструментальном производстве для особо точных работ, 2-го класса — для выполнения слесарных работ повышенной точности, 3-го класса — для грубых работ.

Применяют следующие типы лекальных угольников (рис. 67, б): плоский 1, с широким основанием 2, с уровнем 3.

У лекальных угольников края длинной стороны скошены с обеих сторон. Скосы дают возможность точнее обработать угольник. Таким угольником удобно определять отклонения в углах проверяемого изделия методом световой щели (на просвет).

Угольники с широким основанием (аншлажные) предназначены для проверки прямого угла у изделия при установке его на проверочной плите.

При проверке внутренних углов угольник прикладывают к поверхности детали наружной частью (рис. 67, в), а при проверке наружного угла — внутренней частью. По просвету между угольником и проверяемой деталью на глаз (а иногда щупом) определяют отклонение угла.

Угломеры с нониусом (ГОСТ 5378—66) применяют для измерения углов контактным методом с отсчетом по угловому нониусу. В настоящее время широко распространены угломеры типа I (УН) и величиной отсчета по нониусу 2′ (2 мин) и 5′ (5 мин).

Угломер типа I (рис. 68, а), предназначенный для измерения наружных углов от О до 180° и внутренних углов от 40 до 180°, состоит из полукруглого основания (диска) 5, скрепленного со съемной линейкой 4. Подвижная линейка 10 вращается на оси 2 вместе с сектором 3, на котором закреплен нониус 8. Микрометрическая подача б подвижной линейки 10 осуществляется гайкой 7, после чего линейка 10 закрепляется стопором 9.

Рис. 68. Угломер типа I (а) и прием измерения угломером (б)

Измерение углов от 0 до 90° производится с помощью угольника 1, углы более 90° измеряются без угольника 1. На шкале нониуса нанесено 30 делений; каждое деление соответствует 2 минутам.

Угломер накладывают на проверяемую деталь так, чтобы линейки 10 и 4 были совмещены со сторонами измеряемого утла. Целое число градусов отсчитывают по шкале диска до нулевого штриха нониуса. Затем определяют штрих нониуса, совпадающий со штрихом основной шкалы. После следует определить на нониусе число минут, обозначенное ближайшим меньшим числом, совпадающим со штрихом нониуса. Показания градусов и минут складываются, причем минуты нужно умножить на точность отсчета.

Прием измерения угломером показан на рис. 68, б.

Угломер типа II (УМ) предназначается для измерения наружных углов от 0 до 180° (рис. 69) с величиной отсчета по нониусу 15′ (15 мин).

Рис. 69. Угломер типа II

Угломер состоит из полукруглого основания 1, на котором закреплена линейка 2. Сектор 3 с нониусом 8 перемещается по основанию 1 и после установки закрепляется винтом 4. К сектору 3 при помощи державки 7 крепится угольник 5, а к нему присоединяется съемная линейка 6. Этим угломером можно измерить не только наружные, но и внутренние углы.

Проверку погрешности показаний угломеров следует производить по угловым плиткам в пяти — семи точках, равномерно расположенных по основной шкале нониуса.

Более точно углы проверяются при помощи угловых призматических плиток (ГОСТ 2875—62), которые подбираются в блоки (рис. 70).

Рис. 70. Набор угловых плиток (а), прием проверки угла (б)

Вопросы для самопроверки

  1. Чем отличается устройство резьбового микрометра от гладкого, как резьбовой микрометр устанавливается на нуль и как этим микрометром измеряется средний диаметр резьбы?
  2. Составьте из плоскопараллельных плиток малого набора блоки следующих размеров: 28,04; 4,32, 3,35; 3,29; 2,08 мм.
  3. Установите микрометр на следующие размеры: 10,15; 15,23; 8,56; 12,42; 12,92 мм Покажите установки на эти размеры преподавателю или мастеру.
  4. Измерить микрометром средний диаметр резьбы на болтах М12, М18.
  5. Определить с помощью резьбометра систему и шаг резьбы на нескольких деталях.
  6. Установите угломер на размеры углов: 30°30′; 60°22′; 132°24′; 140°18′.

Источник

Способы угловых измерений

Результаты угловых измерений в ГГС должны быть равноточными, т.е. на всех пунктах иметь один и тот же вес, и получены с наивысшей точностью при наименьших затратах труда и времени. Для этого высокоточные измерения каждого направления и угла выполняют по строго одинаковой наиболее совершенной методике в периоды наивыгоднейшего времени наблюдений, когда влияние внешней среды минимально. Необходимо, чтобы каждое направление измерялось на разных диаметрах лимба, равномерно распределенных по кольцу делений; в приеме должно быть обеспечено единообразие операций при измерении каждого направления и симметрия во времени относительно среднего для приема времени наблюдений; целесообразно все направления и углы на пункте измерять симметрично относительно момента изотермии воздуха.

Перед выполнением наблюдений на пункте производят осмотр геодезического знака, откапывают центр до марки с меткой, на площадку наблюдателя поднимают теодолит и другое снаряжение, крышу сигнала накрывают брезентом. В результате осмотра наблюдатель должен убедиться в прочности и устойчивости столика сигнала и в том, что внутренняя пирамида не соприкасается с полом площадки для наблюдателя и с лестницей. Обнаруженные недостатки необходимо устранить.

Перед наблюдением с помощью теодолита согласно схеме геодезической сети отыскивают все подлежащие наблюдению пункты и после наведения на них делают с точностью до 1’ отсчеты по горизонтальному и вертикальному кругам. Кроме того, при наведении на пункты положение алидады фиксируют на нижней части прибора с помощью штрихов против индекса на алидаде. Теодолит устанавливают на штатив или столик сигнала не менее чем за 40 минут до начала наблюдений. К измерению горизонтальных направлений приступают при хорошей видимости, когда изображения визирных целей спокойны или слегка колеблются (в пределах 2”).

Измерение отдельного угла.Незакрепленную алидаду отводят влево на 30 – 40 0 и обратным вращением наводят на визирную цель первого направления так, чтобы она оказалась справа от биссектора, алидаду закрепляют. Наводящим винтом алидады, только ввинчиванием, биссектор наводят на визирную цель и берут отсчет по оптическому микрометру (если имеется окулярный микрометр, то трижды наводят его биссектор на визирную цель и берут отсчеты). Открепляют алидаду и наводят на 2-е направление так же, как и на 1-е. На этом заканчивается полуприем.

Трубу переводят через зенит, по часовой стрелке наводят на 2-е направление, предварительно отведя алидаду на 30 – 40 0 ; наводящим винтом биссектор наводят на визирную цель и берут отсчет по оптическому микрометру. По часовой стрелке алидаду поворачивают на угол, дополняющий измеряемый до 360 0 , наводят на визирную цель 1-го направления, берут отчет. Заканчивается прием.

Способ круговых приемов – способ Струве.Способ был предложен в 1816 г. В.Я. Струве, получил широкое применение почти во всех странах. В нашей стране используется в геодезических сетях 2 — 4 классов и сетях более низкой точности.

В этом способе при неподвижном лимбе алидаду вращают по ходу часовой стрелки и биссектор сетки нитей трубы последовательно наводят на первый, второй,…, последний и снова на первый (замыкание горизонта) наблюдаемые пункты, каждый раз отсчитывая по горизонтальному кругу. В этом состоит первый полуприем. Затем трубу переводят через зенит и, вращая алидаду против часовой стрелки, наводят биссектор на те же пункты, но в обратной последовательности: на первый, последний, …, второй, первый; заканчивают второй полуприем и первый прием., состоящий из первого и второго полуприемов.

Между приемами лимб переставляется на угол

,

где m – число приемов, i – цена деления лимба.

Наведение биссектора на на визирную цель выполняют только ввинчиванием наводящего винта алидады. Перед каждым полуприемом алидаду вращают по ее движению в данном полуприеме.

В результаты измеренных направлений вводят поправки за рен, наклон вертикальной оси теодолита (при углах наклона визирного луча в 1 0 и более) и поправки за кручение знака – по отсчетам по окулярному микрометру поверительной трубы.

Контроль угловых измерений: по расхождениям значений первого направления в начале и конце полуприема (незамыкание горизонта), по колебанию двойной коллимационной ошибке, определяемой для каждого направления, и по расхождению приведенных к нулю значений одноименных направлений, полученных в разных приемах. В триангуляции 2 – 4 классов незамыкание горизонта и колебание направлений в приемах не должны превышать 5, 6 и 8” для Т05, Т1; ОТ-02 и Т2; колебание 2С – 6,8 и 12” для этих же теодолитов соответственно.

В пунктах 2 класса направления измеряют 12-15 круговыми приемами, на пунктах 3 класса – 9, на пунктах 4 класса – 6, а в сетях полигонометрии 2, 3, 4 классов – 18, 12, 9 приемами.

Уравнивание на станции сводится к вычислению среднего значения по каждому направлению из m приемов. При этом предварительно все измеренные направления приводят к начальному, придав ему значение 0 0 00’00,00”. Вес уравненного направления равен p = m – числу приемов измерений. Для оценки точности направления обычно применяют приближенную формулу Петерса

,

где μ – с.к.о. направления, полученного из одного приема (с.к.о. единицы веса); ∑‌‌[v] – сумма абсолютных величин уклонений измеренных направлений от их средних значений, вычисленных по всем направлениям; n, m – число направлений и приемов соответственно. Значения k при m = 6, 9, 12, 15 равны 0,23; 0,15; 0,11; 0,08. С.к.о. уравненного направления (среднего из m приемов) вычисляют по формуле

.

Достоинстваспособа круговых приемов: простота программы измерений на станции; значительное ослабление систематических ошибок делений лимба; высокая эффективность при хорошей видимости по всем направлениям.

Недостатки:сравнительно большая продолжительность приема, особенно при большом числе направлений; повышенные требования к качеству геодезических сигналов; необходимость примерно одинаковой видимости по всем направлениям; разбивка направлений на группы при их большом числе на пункте; более высокая точность начального направления.

Способ измерения углов во всех направлениях – способ Шрейбера.Этот метод предложен Гауссом. Методика разработана Шрейбером, применившим его в 1870-х годах в прусской триангуляции. В России начал применяться с 1910 г., используется и в настоящее время. Суть способа: на пункте с n направлениями измеряют все углы, образующиеся при сочетании из n по 2, т.е.

Число таких углов

.

Значение углов можно получить путем непосредственных измерений и путем вычислений. Если вес непосредственно измеренного угла равен 2 , то вес этого же угла, полученного из вычислений, будет равен 1. Следовательно. Вес угла, полученного из вычислений, в два раза меньше веса непосредственно измеренного угла.

При уравнивании на станции для каждого угла вычисляют его среднее значение из всех приемов (при допустимых расхождениях между приемами). Используя эти средние, находят уравненные на станции углы как среднее весовое значение. Учитывая, что сумма весов измеренного и вычисленных значений данного угла , находим

где n – число направлений на пункте. Углы, полученные в результате уравнивания на станции, по направлениям – равноточны.

Применяя формулу веса функции, для угла [1.2] находим

.

Так как , то , откуда . При Р = 1 , , т.е. веса уравненных углов равны половине числа направлений, наблюдаемых с данного пункта. Если каждый угол измерен m приемами, то при n направлениях вес каждого угла будет равен mn / 2. Для равенства весов окончательных углов на всех станциях необходимо, чтобы произведение mn для всех пунктов сети являлось постоянным. Так как вес направления в два раза больше веса угла, то mn – вес направления.

Вес углов, измеренных во всех комбинациях должен быть равен весу углов, измеренных способом круговых приемов, т.е. p = mкр = mn / 2 , откуда 2mкр = mn , где mкр – число приемов в методе круговых приемов. Например, если углы в триангуляции 2 класса измеряют 15 круговыми приемами (mкр = 15), то mn = 30; при числе направлений n = 5 способом во всех комбинациях их нужно измерять 6 приемами (m = 30 / 5 = 6).

При измерении углов способом во всех комбинациях выполняют следующий контроль: 1) расхождение углов из двух полуприемов – 6” для теодолита с окулярным микрометром и 8” – без; 2) расхождение углов из разных приемов 4 и 5” для сетей 1 и 2 классов соответственно; 3) колебание среднего значения угла, полученного по результатам непосредственных измерений и найденного из вычислений, не должно превышать 3 “ при n до 5 и 4” – более 5. Если законченные приемы не удовлетворяют этим допускам, то их переделывают на тех же установках круга. Если второй контроль не выполняется, то перенаблюдают углы, имеющие максимальное и минимальное значение, при тех же установках круга. Все наблюдения выполняют заново, если число повторных приемов более 30% от числа приемов, предусмотренных программой. Наблюдения повторяют и при несоблюдении третьего контроля.

С.к.о. единицы веса и уравненного угла определяют по формулам

.

Достоинстваспособа: уравненные результаты являются рядом равноточных направлений; углы можно измерять в любой последовательности, выбирая наиболее благоприятные условия видимости и обеспечивая в итоге высокую точность; малая продолжительность одного приема (2-4 минуты измерения угла) обеспечивает меньшую зависимость точности результата от кручения сигнала; большое число перестановок горизонтального круга ослабляет влияние ошибок диаметров лимба.

Недостатки:быстрое уменьшение числа m приемов измеренного угла с ростом числа n направлений на пунктах (малое число приемов непосредственного измерения углов снижает точность их средних и уравненных значений); быстрый рост объема работ при n > 5.

Способ неполных приемовпредложен в 1954 г. Ю.А. Аладжаловым. Все направления разбивают на группы по три направления (без замыкания горизонта) так, чтобы определяемые по ним углы соответствовали бы углам, измеренным во всех комбинациях, но требовали бы меньшего объема работ и позволили увеличить число приемов непосредственных измерений каждой группы направлений. Следовательно, в этом способе заложено стремление избавиться от недостатков методов Струве и Шрейбера при наблюдении на пунктах с большим количеством направлений.

Практически не всегда путем подбора можно разбить направления на группы из трех направлений. В этом случае кроме групп из трех направлений измеряют отдельные углы, дополняющие программу. Программа измерений приведена в Инструкции. Способ неполных приемов применяется в триангуляции 2 класса на пунктах с 7 – 9 направлениями.

Обработка результатов измерений на станции заключается в определении средних значений направлений из m приемов в каждой группе и средних значений отдельных углов. По этим средним значениям вычисляют все углы – по три угла из каждой группы из трех направлений. Окончательно уравненные углы вычисляют по формулам способа Шрейбера. С.к.о. уравненных направлений определяют по формуле

,

где v – разности между измеренными и уравненными значениями углов; n – число направлений на пункте; r – число отдельно измеренных углов в программе. Вес уравненных направлений

,

где m – число приемов измерений направлений и отдельных углов; n, k – число направлений на пункте и в группе соответственно (k = 3, для углов k = 2).

Достоинства способа: результаты уравнивания на станции равноточны; объем работы на пункте на 20 – 25% меньше, чем в способе Шрейбера; число приемов непосредственных измерений групп при n = 7 – 9 больше, чем в способе Шрейбера, что позволяет более полно ослаблять ошибки измерений; дает возможность измерять направления, на которые в данный момент имеется хорошая видимость; короткая продолжительность приема (2 – 4 минуты), что позволяет уменьшить зависимость точности измерений от качества сигнала.

Недостатки:отсутствуют правила образования групп из трех направлений; при n = 8 нужно измерять большое число отдельных углов, что приводит к неклторому нарушению равноточности уравненных направлений; программа не предусматривает ослабление односторонне действующих ошибок измерений.

Видоизмененный способ измерения углов в комбинацияхпредложен А.Ф.Томилиным. Используется в триангуляции 2 класса на пунктах с 6 – 9 направлениями. В этом способе на станции с n направлениями независимо измеряют 2n углов:

Каждый угол измеряют 5 или 6 приемами. В этом способе измеряют не все углы, образующие сочетания направлений из n по 2, поэтому результат уравнивания на станции не является рядом равноточных направлений, и формулы для вычислений поправок в измеренные углы являются довольно сложными.

Достоинстваспособа: при n =7 – 9 число приемов непосредственных измерений углов больше и их точность выше, чем в способе Шрейбера; требует меньшего объема измерений, чем способ во всех комбинациях.

Недостатки:сложные формулы для вычисления поправок в измеренные углы.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector